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Depth-based ambiguity of position @%

Camera A Camera B




Under what conditions can you know where
to translate each point of image A to where 1t
would appear in camera B (with calibrated

cameras), knowing nothing about image
depths?
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(a) camera rotation




and (b) 1maging a planar surface
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Geometry of perspective projection

sensor plane inverted copy of
sensor plane
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Let’ s look at this scene from above...




Two cameras with same center of projection é?f}. )

camera A camera B

common pinhole >
position Ofw ’

Can generate any synthetic camera view
as long as it has the same center of projection!




Two cameras with offset centers of projection CSAIL

camera A camera B

camera A center

camera B center




Recap &7

 When we only rotate the camera (around nodal point)
depth does not matter

It only performs a 2D warp
— one-to-one mapping of the 2D plane

— plus of course reveals stuff that was outside the field
of view

 Now we just need to figure out this mapping



Aligning images: translation? dige




Homography 5T,

* Projective — mapping between any two projection
planes with the same center of projection

 called Homography
 represented as 3x3 matrix in homogenous coordinajes

PP2
[ wx' *ox k][ x
M — [*x % 3k
;;{_ o f-
PP1
To apply a homography H

« Compute p’ =Hp (regular matrix multiply)

« Convert p’ from homogeneous to image
coordinates (divide by w)

See Szeliski Sect 2.1.5, Mapping from one camera to another.



homography




homography




homography

How many pairs of points does it take to specify M 10?



Planar objects

CSAIL

From Szeliski book

56

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p=XLZ1)

(a) (b)
Figure 2.1Z A point 1s projected mnto two images: (a) relationship between the 31) point co-
ordinate (XY, Z, 1) and the 2D projected point (z,y, 1, d): (b) planar homography induced
by points all lying on a common plane g - p + cp = 0.

Mapping from one camera to another

What happens when we take two images of a 3D scene from different camera positions or
orientations (Figure 2.12a)? Using the full rank 4 x 4 camera matrix P = K E from (2.64),
we can write the projection from world to screen coordinates as

io ~ I.(()Eop = ﬁop (268)

Assuming that we know the z-buffer or disparity value dj for a pixel in one image, we can
compute the 3D point location p using

p~E;'K, % (2.69)
and then project it into another image yielding
&1 ~ K \Eip= K E\E;'K, 20 = PP, 39 = M 10&0. (2.70)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, as discussed above in (2.66), we can
replace the last row of Py in (2.64) with a general plane equation, fig - p + co that maps
points on the plane to dy = 0 values (Figure 2.12b). Thus, if we set dy = 0, we can ignore
the last column of M ¢ in (2.70) and also its last row, since we do not care about the final
z-buffer depth. The mapping equation (2.70) thus reduces to

Zy ~ H oo, 71)

where H g is a general 3 x 3 homography matrix and &, and ¢ are now 2D homogeneous
coordinates (i.e., 3-vectors) (Szeliski 1996).This justifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;
Szeliski 1996).

Images of planar
objects, taken by
generically offset
cameras, are also
related by a
homography.

camera A




Measurements on planes
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Approach: unwarp then measure

How to unwarp?
CSE 576, Spring 2008 Projective Geometry 6



Image rectification

(

To unwarp (rectify) an image

solve for homography H given p and p’

solve equations of the form: wp’ = Hp
linear in unknowns: w and coefficients of H

H is defined up to an arbitrary scale factor

how many points are necessary to solve for H?

CSE 576, Spring 2008 Projective Geometry




Solving for homographies
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Solving for homographies
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Defines a least squares problem:  minimize ||[Ah — 0|2

« Since h is only defined up to scale, solve for unit vector h
- Solution: h = eigenvector of ATA with smallest eigenvalue
 Works with 4 or more points

CSE 576, Spring 2008 Projective Geometry



warping with homographies “<i.
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automatic image mosaicing v

» Basic Procedure
— Take a sequence of images from the same position.

» Rotate the camera about its optical center (entrance pupil).

— Robustly compute the homography transformation
between second 1mage and first.

— Transform (warp) the second 1image to overlap with first.
— Blend the two together to create a mosaic.
— If there are more 1mages, repeat.



Robust feature matching through
RANSAC

© Krister Parmstrand

Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation.

with a lot of slides stolen from 15-463: Computational Photography
Steve Seitz and Rick Szeliski Alexei Efros, CMU, Fall 2005



Feature matchln




Strategies to match images robustly

(a) Working with individual features: For each feature point,
find most similar point in other image (SIFT distance)

Reject ambiguous matches where there are too many similar points

(b) Working with all the features: Given some good feature
matches, look for possible homographies relating the two
images

Reject homographies that don’ t have many feature matches.

24



(a) Feature-space outlier
rejection
 Let s not match all features, but only these that

€ . »
have similar enough  matches?

e How can we do 1t?
— SSD(patchl,patch2) < threshold
— How to set threshold?
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Feature-space outlier rejection

* A better way [Lowe, 1999]:
— I-NN: SSD of the closest match
— 2-NN: SSD of the second-closest match
— Look at how much better 1-NN 1s than 2-NN, e.g. 1-NN/2-NN
— That1s, is our best match so much better than therest?
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Feature-space outlier rejection

W o

=520

K7 .

» Can we now compute H from the blue
points?
— No! Still too many outliers...
— What can we do?



(b) Matching many features--looking for
a good homography

Simplified illustration with translation instead of homography

What do we do about the “bad” matches?

Note: at this point we don’ t know which ones are good/bad




RAndom SAmple Consensus

Select one match, count inliers




RAndom SAmple Consensus

Select one match, count inliers

O inliers




RAndom SAmple Consensus

Select one match, count inliers

4 inliers




RAndom SAmple Consensus

Select one match, count inliers

Keep match with largest set of inliers



At the end: Least squares fit
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Find “average” translation vector,
but with only inliers
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Random Sample
Consensus: A
Paradigm for Model
Fitting with
Applications to Image
Analysis and
Automated
Cartography

Martin A. Fischler and Robert C. Bolles
SRI International

A new paradigm, Random Sample Consensus
(Ransac), for fitting a model to experimental data is
introduced. ®ANSAC Is up-blc of qu.nw
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gross errors, and is thus l‘nlly sulted ﬁu npplkillam
in automsated image analysis where interpretation is
based om the data provided by error-prone feature
detectors, A major portion of this paper describes the
application of Kansac to the Location Determination
Problem (LDPx Given an Image deplcting a set of
landmarks with known locations, determine that point
in space from which the image was obtaised. In
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L Istroduction

We introduce a new parsdigm, Random Sample
Consensus (RANSAC), for fitting a model 10 experimental
data; and illustrate s use in woene analysss and auto-
mated cartography. The application discussed, the loca
tion determanation problem (LDP), is treated at a level
beyond that of & mere example of the use of the xansac
paradigm; mew basic findings concerning the condstions
under which the LDP can be solved are peesented and
a comprehensive approach to the sobution of this problem
that we anticipate will have nearderm peactical appls-
catsons is described.

To a large extent, scene analysis (and, ia fact, scsence
in gemeral) s o d with the Lterp on of seased
data in terms of a set of predefined models. Comceptually,
interpretaticn wnvalves two distnct activites: First, there
is the problem of finding 1he best match betwees the
data and one of the available models (the classification
problem); Second, there is the peoblem of computing the
besz values for the free parameters of the selecied model
(the parameter estissation problem). Is practice, these
1wo problems are 0ot independent—s solution 10 the
parameter estimation problem is often required to solve
the chassification problem
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the ption (the ption) that the
maximem expected deviation o( any datum from the
assumed model i a direct function of the size of the data
set. and thus regardless of the size of the data set, there
will always be encugh good values to smooth ost any
gross deviations.

In many practical i blems the
smoothing a;sumpnon does not hold: ie, lhe data con-
tain uncompensated gross errors. To deal with thas situ-
ation, soveral heuristics have been proposed The tech-
nique usually employed is some variation of first using
all the data to derive the model parameters, then locating
lln, datum that is farthest from agreement with 1he
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RANSAC for estimating homography

RANSAC loop:

Sclect four feature pairs (at random)
Compute homography H (exact)
Compute inliers where ||p;” , Hpi|| <&
Keep largest set of inliers

Re-compute least-squares H estimate using all of
the inliers



Simple example: fit a line

« Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

O
O
O OO O

36




Simple example: fit a line

* Pick 2 points
* Fit line

+ o Count inliers

3 inlier o ©
O O
O O
O

37




Simple example: fit a line

* Pick 2 points
* Fit line

+ o Count inliers

4 inlier ® O
—_— OO O

o© O O
O
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+ o Count inliers

Simple example

* Pick 2 points
* Fit line

O inlier

. f1t a line

39




+ o Count inliers

Simple example

* Pick 2 points
* Fit line

8 inlier

. f1t a line

40




Simple example: fit a line

* Use biggest set of inliers

* Do least-square fit

41
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Robustness

* Proportion of inliers in our pairs 1s G (for
“good” )

* Our model needs P pairs
— P=4 for homography

* Probability that we pick P inliers?
_GP

* Probability that after N RANSAC iterations
we have not picked a set of inliers?

- (1-G"N

43



Robustness: example

e Matlab: p=4; x=0.5; n=1000; (1-x"p)”"n

* Proportion of inliers G=0.5
* Probability that we pick P=4 inliers?
~0.5=0.0625 (6% chance)
* Probability that we have not picked a set of
inliers?
— N=100 1terations:
(1-0.5%)199=0.00157 (1 chance 1n 600)

— N=1000 1terations:
1 chance 1n 1e28

44



* Proportion of inliers G=0.3
* Probability that we pick P=4 inliers?
—0.3*=0.0081 (0.8% chance)
* Probability that we have not picked a set of
inliers?
— N=100 1terations:
(1-0.3919=0.44 (1 chance in 2)

— N=1000 1terations:
1 chance in 3400 ®



Robustness: example

* Proportion of inliers G=0.1

* Probability that we pick P=4 1nhers‘?
—0.14=0.0001 (0.01% chances, 1 1n 10,000)

* Probability that we have not picked a set of
inliers?
— N=100 iterations: (1-0.1%)!9°=0.99
— N=1000 1terations: 90%
—N=10,000: 36%
—N=100,000: 1 1n 22,000

46




Robustness: conclusions

« Effect of number of parameters of model/
number of necessary pairs

— Bad exponential

» Effect of percentage of inliers
— Base of the exponential

o Effect of number of iterations
— Good exponential

47



RANSAC recap

* For fitting a model with low number P of
parameters (8 for homographies)
* Loop
— Select P random data points
— Fit model

— Count 1nliers
(other data points well fit by this model)

« Keep model with largest number of inliers

48



Example: Recognising
Panoramas

M. Brown and D. Lowe,
University of British Columbia

* M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007 (pdf 3.5Mb
| bib) * M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th
International Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice,
France, 2003 (pdf 820kb | ppt | bib)
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Recognising Panoramas  ?
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Homography




RANSAC for Homography




Finding the panoramas




Finding the panoramas




dnoramas



Finding the panoramas




Results




AUT OSTITCH

AutoStitch | Gallery | Download (Windows demo) | Buy Autopano | Licensing | Press | FAQ | Publications

AutoStitch :: a new dimension in automatic image stitching

Serratus

Welcome to AutoStitch. If you have an iPhone, please check out
our new iPhone version of AutoStitch below! If you're looking for
the Windows demo version, you can download it using the link

above, or read on to find out more about AutoStitch. Thanks for
visiting!



Benefits of Laplacian image compositing

(a) Linear blending (b) Multi-band blending

Figure 7. Comparison of linear and multi-band blending. The image on the right was blended using multi-band blending
using 5 bands and 0 = 5 pixels. The image on the left was linearly blended. In this case matches on the moving
person have caused small misregistrations between the images, which cause blurring in the linearly blended result, but
the multi-band blended 1mage 1s clear.

M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant 60
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007



Photo Tourism:
Exploring Photo Collections in 3D

Noah Snavely
Steven M. Seitz

University of Washington

Richard Szeliski

Microsoft Research

© 2006 Noah Snavely






Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
Uniwversity of Washington Microsoft Research

SIGGRAPH 2006




Photo Tourism overview
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© 2006 Noah Snavely



Photo Tourism overview
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Scene reconstruction

* Automatically estimate

— position, orientation, and focal length of cameras

— 3D positions of feature points

[ Feature detection ]

Pairwise
feature matching

]

Correspondence
estimation

]

-

~N

Incremental

structure

from motion
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Feature detection

Detect features using SIFT [Lowe, |JCV 2004]

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, |JCV 2004]

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

© 2006 Noah Snavely



Feature matching

Match features between each pair of images

© 2006 Noah Snavely



Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987]
to estimate fundamental matrices between pairs

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry.

See also the fundamental matrix song: http://danielwedge.com/fmatrix/)

© 2006 Noah Snavely



Structure from motion

O
Pre. oP; minimize
// \ \\\ ‘
/// \\ \\\?2 f (R, T, P)

Camera 1 Camera 3

R19t1 R39t3

Camera 2

RZ 9t2

© 2006 Noah Snavely



Links

Code available: http://phototour.cs.washington.edu/bundler/

http://phototour.cs.washington.edu/

http://livelabs.com/photosynth/

http://www.cs.cornell.edu/~snavely/




