
Lecture 13 
 Homographies and RANSAC 



Depth-based ambiguity of position 
Camera A Camera B 
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Under what conditions can you know where 
to translate each point of image A to where it 
would appear in camera B (with calibrated 
cameras), knowing nothing about image 
depths? 

Camera A Camera B 
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(a) camera rotation 
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 and (b) imaging a planar surface 
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Geometry of perspective projection 

pinhole 

sensor plane inverted copy of 
sensor plane 

Let’s look at this scene from above... 



Two cameras with same center of projection 

camera A camera B 

Can generate any synthetic camera view 
as long as it has the same center of projection! 

common pinhole 
position of the cameras 



camera A camera B 

camera A center 

camera B center 

Two cameras with offset centers of projection 



Recap 
•  When we only rotate the camera (around nodal point) 

depth does not matter  
•  It only performs a 2D warp  

–  one-to-one mapping of the 2D plane 
–  plus of course reveals stuff that was outside the field 

of view 

•  Now we just need to figure out this mapping 

A 
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B 
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ra 



Aligning images: translation? 

Translations are not enough to align the images 

left on top right on top 



Homography 
•  Projective – mapping between any two projection 

planes with the same center of projection 
•  called Homography  
•  represented as 3x3 matrix in homogenous coordinates 

PP2 

PP1 
H p p’   

To apply a homography H 
•  Compute     p’ = Hp   (regular matrix multiply) 
•  Convert p’ from homogeneous to  image 

coordinates (divide by w) 
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homography 



homography 



homography 

How many pairs of points does it take to specify M_10? 



Images of planar 
objects, taken by 
generically offset 
cameras,  are also 
related by a 
homography. 
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Planar objects 



CSE 576, Spring 2008 Projective Geometry 6 

1 2 3 4 
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Measurements on planes 

Approach:  unwarp then measure 
How to unwarp? 
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Image rectification 

To unwarp (rectify) an image 
•  solve for homography H given p and p’ 
•  solve equations of the form:  wp’ = Hp 
–  linear in unknowns:  w and coefficients of H 
–  H is defined up to an arbitrary scale factor 
–  how many points are necessary to solve for H? 

p 
p’ 
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Solving for homographies 
w 

w 

w 
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Solving for homographies 

A h 0 

Defines a least squares problem: 
2n × 9 9 2n 

•  Since h is only defined up to scale, solve for unit vector ĥ 
•  Solution: ĥ = eigenvector of ATA with smallest eigenvalue 
•  Works with 4 or more points 



Image warping with homographies 

image plane below 
black area 
where no pixel 
maps to 

homography so 
that image is 
parallel to floor 

homography so 
that image is 
parallel to right 
wall 



automatic image mosaicing 
•  Basic Procedure 

– Take a sequence of images from the same position. 
•  Rotate the camera about its optical center (entrance pupil). 

– Robustly compute the homography transformation 
between second image and first. 

– Transform (warp) the second image to overlap with first. 
– Blend the two together to create a mosaic. 
–  If there are more images, repeat. 



Robust feature matching through 
RANSAC 

15-463: Computational Photography 
Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from 

 Steve Seitz and Rick Szeliski 

© Krister Parmstrand  
Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation. 



Feature matching 

? 

descriptors for left image feature points descriptors for right image feature points 
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Strategies to match images robustly 

(a) Working with individual features:  For each feature point, 
find most similar point in other image (SIFT distance) 
Reject ambiguous matches where there are too many similar points 
 

(b) Working with all the features:  Given some good feature 
matches, look for possible homographies relating the two 
images 
Reject homographies that don’t have many feature matches. 

24 



(a) Feature-space outlier 
rejection 

•  Let’s not match all features, but only these that 
have “similar enough” matches? 

•  How can we do it?  
–  SSD(patch1,patch2) < threshold 
–  How to set threshold? 

Not so easy. 



Feature-space outlier rejection 

•  A better way [Lowe, 1999]: 
–  1-NN: SSD of the closest match 
–  2-NN: SSD of the second-closest match 
–  Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN 
–  That is, is our best match so much better than the rest? 



Feature-space outlier rejection 

•  Can we now compute H from the blue 
points? 
– No!  Still too many outliers…  
– What can we do? 



(b) Matching many features--looking for 
a good homography 

What do we do about the “bad” matches? 

Note: at this point we don’t know which ones are good/bad 

Simplified illustration with translation instead of homography 



RAndom SAmple Consensus 

Select one match, count inliers 



RAndom SAmple Consensus 

Select one match, count inliers 

0 inliers 



RAndom SAmple Consensus 

Select one match, count inliers 

4 inliers 



RAndom SAmple Consensus 

Select one match, count inliers Select one match, count inliers 

Keep match with largest set of inliers 



At the end: Least squares fit 

Find “average” translation vector,  
but with only inliers 



34 

Reference 

•  M. A. Fischler, R. C. 
Bolles. Random Sample 
Consensus: A Paradigm for 
Model Fitting with 
Applications to Image 
Analysis and Automated 
Cartography. Comm. of the 
ACM, Vol 24, pp 381-395, 
1981. 

•  http://portal.acm.org/
citation.cfm?id=358692  



RANSAC for estimating homography 
RANSAC loop: 
Select four feature pairs (at random) 
Compute homography H (exact) 
Compute inliers where ||pi’, H pi|| < ε 
Keep largest set of inliers 
Re-compute least-squares H estimate using all of 
the inliers 
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Simple example: fit a line 

•  Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 
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3 inlier 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 
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4 inlier 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 
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9 inlier 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 

40 

8 inlier 
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Simple example: fit a line 

•  Use biggest set of inliers 
•  Do least-square fit 
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RANSAC 

red:  
rejected by 2nd nearest 
neighbor criterion 
blue: 
Ransac outliers 
yellow: 
inliers 
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Robustness 
•  Proportion of inliers in our pairs is G (for 
“good”) 

•  Our model needs P pairs  
– P=4 for homography 

•  Probability that we pick P inliers? 
– GP 

•  Probability that after N RANSAC iterations 
we have not picked a set of inliers? 
–  (1-GP)N 
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Robustness: example 

•  Proportion of inliers G=0.5  
•  Probability that we pick P=4 inliers? 

–  0.54=0.0625 (6% chance) 
•  Probability that we have not picked a set of 

inliers? 
– N=100 iterations:  

(1-0.54)100=0.00157 (1 chance in 600) 
– N=1000 iterations: 

1 chance in 1e28 44 

•  Matlab: p=4; x=0.5; n=1000; (1-x^p)^n!
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Robustness: example 

•  Proportion of inliers G=0.3  
•  Probability that we pick P=4 inliers? 

–  0.34=0.0081 (0.8% chance) 
•  Probability that we have not picked a set of 

inliers? 
– N=100 iterations:  

(1-0.34)100=0.44 (1 chance in 2) 
– N=1000 iterations: 

1 chance in 3400 45 
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Robustness: example 

•  Proportion of inliers G=0.1  
•  Probability that we pick P=4 inliers? 

–  0.14=0.0001 (0.01% chances, 1 in 10,000) 
•  Probability that we have not picked a set of 

inliers? 
– N=100 iterations:  (1-0.14)100=0.99 
– N=1000 iterations: 90% 
– N=10,000: 36% 
– N=100,000: 1 in 22,000 
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Robustness: conclusions 

•  Effect of number of parameters of model/
number of necessary pairs 
– Bad exponential 

•  Effect of percentage of inliers 
– Base of the exponential 

•  Effect of number of iterations 
– Good exponential 
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RANSAC recap 

•  For fitting a model with low number P of 
parameters (8 for homographies) 

•  Loop 
– Select P random data points 
– Fit model 
– Count inliers  

(other data points well fit by this model) 
•  Keep model with largest number of inliers 
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Example: Recognising 
Panoramas 

M. Brown and D. Lowe,  
University of British Columbia 

    * M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant 
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007 (pdf 3.5Mb 
| bib)    * M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th 
International Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice, 
France, 2003 (pdf 820kb | ppt | bib)  



“Recognising Panoramas”? 



RANSAC for Homography 



RANSAC for Homography 



RANSAC for Homography 



Finding the panoramas 



Finding the panoramas 



Finding the panoramas 



Finding the panoramas 



Results 
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Benefits of Laplacian image compositing 

M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant 
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007 
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Photo Tourism: 
Exploring Photo Collections in 3D 

Noah Snavely      
Steven M. Seitz  
    University of Washington  

Richard Szeliski  
    Microsoft Research    

© 2006 Noah Snavely 
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15,464  

76,389  

37,383  
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Movie 
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Photo Tourism overview 

Scene 
reconstruction 

 
 
 
 
 

Photo 
Explorer Input photographs 

[Note: change to Trevi for 
consistency] 

Relative camera positions 
and orientations 

Point cloud 

Sparse correspondence 
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Photo Tourism overview 

Scene 
reconstruction 

 
 
 
 
 

Photo 
Explorer 

Input photographs 

[Note: change to Trevi for 
consistency] 
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Scene reconstruction 
•  Automatically estimate  

–  position, orientation, and focal length of cameras 
–  3D positions of feature points 

Feature detection 

Pairwise 
feature matching 

Incremental 
structure 

from motion 

Correspondence 
estimation 
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Feature detection 
Detect features using SIFT [Lowe, IJCV 2004] 



© 2006 Noah Snavely 

Feature detection 
Detect features using SIFT [Lowe, IJCV 2004] 
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Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 
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Feature matching 

Match features between each pair of images 
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Feature matching 
Refine matching using RANSAC [Fischler & Bolles 1987] 
to estimate fundamental matrices between pairs 

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry.   

See also the fundamental matrix song:  http://danielwedge.com/fmatrix/ ) 



© 2006 Noah Snavely 

Structure from motion 

Camera 1 

Camera 2 

Camera 3 
R1,t1 

R2,t2 

R3,t3 

p1 

p4 

p3 

p2 

p5 

p6 

p7 

minimize 
f (R, T, P) 
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Links   

•  Code available: http://phototour.cs.washington.edu/bundler/ 
•  http://phototour.cs.washington.edu/ 
•  http://livelabs.com/photosynth/ 
•  http://www.cs.cornell.edu/~snavely/ 


