Lecture 19
Object recognition II
A simple object detector

- Simple but contains some of same basic elements of many state of the art detectors.
- Based on boosting which makes all the stages of the training and testing easy to understand.

Most of the slides are from the ICCV 05 short course http://people.csail.mit.edu/torralba/shortCourseRLOC/
Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows
… and a decision is taken at each window about if it contains a target object or not.

Where are the screens?
Discriminative methods

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines and Kernels

Guyon, Vapnik
Heisele, Serre, Poggio, 2001

Conditional Random Fields

McCallum, Freitag, Pereira 2000
Kumar, Hebert 2003
Formulation

- Formulation: binary classification

\[\text{Features } x = X_1 \quad X_2 \quad X_3 \quad \ldots \quad X_N \quad X_{N+1} \quad X_{N+2} \quad \ldots \quad X_{N+M} \]

\[\text{Labels } y = -1 \quad +1 \quad -1 \quad -1 \quad ? \quad ? \quad ? \quad ? \]

Training data: each image patch is labeled as containing the object or background

Test data

- Classification function

\[\hat{y} = F(x) \]

Where \(F(x) \) belongs to some family of functions

- Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)
Overview of section

• Object detection with classifiers

• **Boosting**
 – Gentle boosting
 – Weak detectors
 – Object model
 – Object detection
A simple object detector with Boosting

Download
- Toolbox for manipulating dataset
- Code and dataset

Matlab code
- Gentle boosting
- Object detector using a part based model

Dataset with cars and computer monitors

http://people.csail.mit.edu/torralba/iccv2005/
Why boosting?

• A simple algorithm for learning robust classifiers
 – Freund & Shapire, 1995
 – Friedman, Hastie, Tibshhirani, 1998

• Provides efficient algorithm for sparse visual feature selection
 – Tieu & Viola, 2000
 – Viola & Jones, 2003

• Easy to implement, not requires external optimization tools.

For a description of several methods:
Friedman, J. H., Hastie, T. and Tibshhirani, R.
Additive Logistic Regression: a Statistical View of Boosting. 1998
Boosting

- Defines a classifier using an additive model:

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]
Boosting

• Defines a classifier using an additive model:

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]

• We need to define a family of weak classifiers

\[f_k(x) \] from a family of weak classifiers
Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\circ) \\
-1 & (\bigcirc)
\end{cases} \]

and a weight:

\[w_t = 1 \]

Boosting

• It is a sequential procedure:
Toy example

Weak learners from the family of lines

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\bullet) \\
-1 & (\bigcirc)
\end{cases} \]

and a weight:

\[w_t = 1 \]

\[h => p(\text{error}) = 0.5 \text{ it is at chance} \]
Toy example

This one seems to be the best

Each data point has a class label:
\[y_t = \begin{cases}
+1 & (\textcolor{red}{\circ}) \\
-1 & (\textcolor{blue}{\bigcirc})
\end{cases} \]

and a weight:
\[w_t = 1 \]

This is a ‘weak classifier’: It performs slightly better than chance.
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\bullet) \\
-1 & (\bigcirc)
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\bullet) \\
-1 & (\circ)
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
 +1 & (\circ) \\
 -1 & (\bigcirc)
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again. Each data point has a class label:

\[y_t = \begin{cases} +1 & (\circ) \\ -1 & (\bigcirc) \end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.
Boosting

• Different cost functions and minimization algorithms result in various flavors of Boosting
• In this demo, I will use gentleBoosting: it is simple to implement and numerically stable.
Overview of section

• Object detection with classifiers

• Boosting
 – Gentle boosting
 – Weak detectors
 – Object model
 – Object detection
Boosting

Boosting fits the additive model

\[F(x) = f_1(x) + f_2(x) + f_3(x) + \ldots \]

by minimizing the exponential loss

\[J(F) = \sum_{t=1}^{N} e^{-y_t F(x_t)} \]

The exponential loss is a differentiable upper bound to the misclassification error.
Exponential loss

Misclassification error
Squared error
Exponential loss

Squared error

\[J = \sum_{t=1}^{N} [y_t - F(x_t)]^2 \]

Exponential loss

\[J = \sum_{t=1}^{N} e^{-y_t F(x_t)} \]
Boosting

Sequential procedure. At each step we add

\[F(x) \leftarrow F(x) + f_m(x) \]

to minimize the residual loss

\[(\phi_m) = \arg \min_{\phi} \sum_{t=1}^{N} J(y_i, F(x_t) + f(x_t; \phi)) \]

Parameters
weak classifier

Desired output
input

gentleBoosting

• At each iteration:

 We chose $f_m(x)$ that minimizes the cost:

 \[
 J(F + f_m) = \sum_{t=1}^{N} e^{-y_t(F(x_t) + f_m(x_t))}
 \]

 Instead of doing exact optimization, gentle Boosting minimizes a Taylor approximation of the error:

 \[
 J(F) \propto \sum_{t=1}^{N} e^{-y_t F(x_t)} (y_t - f_m(x_t))^2
 \]

 At each iterations we just need to solve a weighted least squares problem

Weights at this iteration

Weak classifiers

- The input is a set of weighted training samples \((x, y, w)\)

- Regression stumps: simple but commonly used in object detection.

\[
f_m(x) = a[x_k < \theta] + b[x_k \geq \theta]
\]

Four parameters: \([a, b, \theta, k]\)

\[
a = E_w(y [x < \theta])
\]

\[
b = E_w(y [x \geq \theta])
\]
function classifier = gentleBoost(x, y, Nrounds)

...

for m = 1:Nrounds

fm = selectBestWeakClassifier(x, y, w);

w = w .* exp(- y .* fm);

% store parameters of fm in classifier
...

end

Initialize weights $w = 1$

Solve weighted least-squares

Re-weight training samples
Demo gentleBoosting

Demo using Gentle boost and stumps with hand selected 2D data:
> demoGentleBoost.m
Flavors of boosting

- AdaBoost (Freund and Shapire, 1995)
- Real AdaBoost (Friedman et al, 1998)
- LogitBoost (Friedman et al, 1998)
- Gentle AdaBoost (Friedman et al, 1998)
- BrownBoosting (Freund, 2000)
- FloatBoost (Li et al, 2002)
- ...
Overview of section

• Object detection with classifiers

• Boosting
 – Gentle boosting
 – **Weak detectors**
 – Object model
 – Object detection
From images to features: Weak detectors

We will now define a family of visual features that can be used as weak classifiers ("weak detectors")

\[h_i(I, x, y) \]

Takes image as input and the output is binary response. The output is a weak detector.
Object recognition
Is it really so hard?

Find the chair in this image

But what if we use smaller patches? Just a part of the chair?
Parts
But what if we use smaller patches? Just a part of the chair?

Find a chair in this image

Seems to fire on legs… not so bad
Weak detectors

Textures of textures

Tieu and Viola, CVPR 2000. One of the first papers to use boosting for vision.

\[g_{i,j,k} = \sum_{\text{pixels}} |I * f_i| \downarrow 2 * f_j | \downarrow 2 * f_k \]

Every combination of three filters generates a different feature

This gives thousands of features. Boosting selects a sparse subset, so computations on test time are very efficient. Boosting also avoids overfitting to some extent.
Weak detectors

Haar filters and integral image
Viola and Jones, ICCV 2001

The average intensity in the block is computed with four sums independently of the block size.
Fig. 1. **Object recognition using contour fragments.** Our innate biological vision system is able to interpret spatially arranged local fragments of contour to recognize the objects present. In this work we show that an automatic computer vision system can also successfully exploit the cue of contour for object recognition.
Other weak detectors:

- Carmichael, Hebert 2004
- Yuille, Snow, Nitzbert, 1998
- Amit, Geman 1998
- Papageorgiou, Poggio, 2000
- Heisele, Serre, Poggio, 2001
- Agarwal, Awan, Roth, 2004
- Schneiderman, Kanade 2004
- …
Weak detectors

Part based: similar to part-based generative models. We create weak detectors by using parts and voting for the object center location.

Car model

Screen model

These features are used for the detector on the course web site.
Weak detectors

First we collect a set of part templates from a set of training objects.

Vidal-Naquet, Ullman (2003)
Weak detectors

We now define a family of “weak detectors” as:

\[h_i(I, x, y) = [I \otimes P_i] \ast g_i \]

Better than chance
Weak detectors

We can do a better job using filtered images

\[h_i(I, x, y) = [I \ast f_i \otimes P_i] \ast g_i \]

Still a weak detector but better than before
Training

First we evaluate all the N features on all the training images.

Then, we sample the feature outputs on the object center and at random locations in the background:
Representation and object model

Selected features for the screen detector

Lousy painter
Representation and object model

Selected features for the car detector
Overview of section

• Object detection with classifiers

• Boosting
 – Gentle boosting
 – Weak detectors
 – Object model
 – **Object detection**
Object model

- Voting

Here, invariance in translation and scale is achieved by the search strategy: the classifier is evaluated at all locations (by translating the image) and at all scales (by scaling the image in small steps).

The search cost can be reduced using a cascade.

- Invariance: search strategy
Example: screen detection

Feature output
Example: screen detection

Feature output

Thresholded output

Weak ‘detector’
Produces many false alarms.
Example: screen detection

Feature output → Thresholded output → Strong classifier at iteration 1
Example: screen detection

First feature output

Thresholded output

Strong classifier

Second weak ‘detector’

Produces a different set of false alarms.
Example: screen detection

Feature output → Thresholded output → Strong classifier

Strong classifier at iteration 2
Example: screen detection

Feature output → Thresholded output → Strong classifier

Strong classifier at iteration 10
Example: screen detection

Feature output → Thresholded output → Strong classifier

Adding features

Final classification

Strong classifier at iteration 200
Maximal suppression

Detect local maximum of the response. We are only allowed detecting each object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final performance.
Evaluation

When do we have a correct detection?

Is this correct?

\[
\frac{\text{Area intersection}}{\text{Area union}} > 0.5
\]

• ROC
• Precision-recall
ROC and Precision-Recall

Detection rate

Precision

False alarm rate

Recall

Plots from PASCAL competition
Rapid Object Detection Using a Boosted Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:
What is novel about this approach?

- Feature set (… is huge about 16,000,000 features)
- Efficient feature selection using AdaBoost
- New image representation: Integral Image
- Cascaded Classifier for rapid detection
 - Hierarchy of Attentional Filters

What is new is the combination of these ideas. This yields the fastest known face detector for gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Image Features

“Rectangle filters”

Similar to Haar wavelets

Differences between sums of pixels in adjacent rectangles

\[
h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}
\]

160,000 \times 100 = 16,000,000

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Integral Image

• Define the Integral Image

\[I'(x, y) = \sum_{x' \leq x} \sum_{y' \leq y} I(x', y') \]

• Any rectangular sum can be computed in constant time:

\[
D = 1 + 4 - (2 + 3) \\
= A + (A + B + C + D) - (A + C + A + B) \\
= D
\]

• Rectangle features can be computed as differences between rectangles

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Huge “Library” of Filters

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084 false positives.

Not quite competitive. Need to add more features, but then that slows it down.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Fast and accurate classifier using a cascade

Fleuret and Geman 2001, Viola and Jones 2001

- Given a nested set of classifier hypothesis classes

- Cascade

\[\begin{array}{c}
\text{IMAGE}
\\\downarrow \\
\text{SUB-WINDOW}
\end{array} \rightarrow
\begin{array}{c}
\text{Classifier 1}
\\\rightarrow \\
\text{T}
\\\rightarrow \\
\text{Classifier 2}
\\\rightarrow \\
\text{T}
\\\rightarrow \\
\text{Classifier 3}
\\\rightarrow \\
\text{T}
\\\rightarrow \\
\text{FACE}
\end{array} \]

\begin{array}{c}
\downarrow \\
\text{F}
\\\downarrow \\
\text{NON-FACE}
\end{array} \]

\begin{array}{c}
\downarrow \\
\text{F}
\\\downarrow \\
\text{NON-FACE}
\end{array} \]

\begin{array}{c}
\downarrow \\
\text{F}
\\\downarrow \\
\text{NON-FACE}
\end{array} \]
A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.

A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative) – using data from previous stage.

A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
A Real-time Face Detection System

Training faces: 4916 face images (24 x 24 pixels) plus vertical flips for a total of 9832 faces

Training non-faces: 350 million sub-windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10, 25, 25, 50, 50, 50, 75, 100, …, 200, …

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Speed of Face Detector

Speed is proportional to the average number of features computed per sub-window.

On the MIT+CMU test set, an average of 9 features out of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium III, a 384x288 pixel image takes about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Output of Face Detector on Test Images

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Cascade of classifiers

- Perhaps, enough efficiency can overcome combinatorics…
Edge based descriptors
Edge based descriptors

What makes an image memorable?

Gavrila, Philomin, ICCV 1999

Papageorgiou & Poggio (2000)

J. Shotton, A. Blake, R. Cipolla. PAMI 2008.

Opelt, Pinz, Zisserman, ECCV 2006
Edges and chamfer distance

Gavrila, Philomin, ICCV 1999
Edges and chamfer distance

Gavrila, Philomin, ICCV 1999
Chamfer distance

\[d_{\text{chamfer}}(x) = \sum_{u \in F} \min_{v \in E} \| (u + x) - v \|_2 \]

- Sum over pixels on the edge template \(F \)
- Find closest edge location after displacement \(x \)

\(E = \) edge map of the image
Chamfer distance

Edges

Distance transform

DT(E) = Function that assigns to each pixel the distance to the nearest edge.

Using the distance transform, the Chamfer distance can be written as a convolution
Edges and chamfer distance

Gavrila, Philomin, ICCV 1999
Distance transform

Edges
Distance transform

Edges

Distance transform (with Manhattan distance)
Efficient computation of DT

$P =$ set of edge pixels.

Two pass $O(n)$ algorithm for 1D L_1 norm

1. **Initialize:** For all j
 \[D[j] \leftarrow 1_{P}[j] \]
 // 0 if j is in P, infinity otherwise

2. **Forward:** For j from 1 up to $n-1$
 \[D[j] \leftarrow \min(D[j], D[j-1]+1) \]

3. **Backward:** For j from $n-2$ down to 0
 \[D[j] \leftarrow \min(D[j], D[j+1]+1) \]

Adapted from D. Huttenlocher
Chamfer distance

\[d_{chamfer}(x) = \sum_{u \in F} \min_{v \in E} \| (u + x) - v \|_2 \]

Find closest edge location after displacement \(x \)

Sum over pixels on the edge template \(F \)

\(E = \) edge map of the image

\[E = F \ast DT(E) \]
REAL-TIME OBJECT DETECTION FOR "SMART" VEHICLES

D.M. Gavrila

Image Understanding Systems
DaimlerChrysler Research
Ulm 89081, Germany
dariu.gavrila@DaimlerChrysler.com

V. Philomin

Computer Vision Laboratory
University of Maryland
College Park, MD 20742, U.S.A.
vasi@cs.umd.edu
To deal with multiple appearances…
Issues

Global templates are sensitive to:
• Partial occlusions
• Non-rigid deformations

Constellation of local edge fragments
Building a Fragment Dictionary

Masks (~10 images)

Contour Fragments T_n (~1000 fragments)
Matching Features

• Gaussian weighted oriented chamfer matching
 – aligns features to image

Opelt, Pinz, Zisserman, ECCV 2006
J. Shotton, A. Blake, R. Cipolla. PAMI 2008.
Matching Features

• Gaussian weighted oriented chamfer matching
 – aligns features to image

\[u(F_m, E|c) \] feature match score at optimal position
\[r(F_m, E|c) \] optimal position
Location Sensitive Classification

• Feature match scores make detection simple
• Detection uses a boosted classification function $K(c)$:

$$K(c) = \sum_{m=1}^{M} a_m \delta(v(F_m, E|c) > \theta_m) + b_m$$

<table>
<thead>
<tr>
<th>M</th>
<th>number of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_m</td>
<td>feature m</td>
</tr>
<tr>
<td>E</td>
<td>canny edge map</td>
</tr>
<tr>
<td>c</td>
<td>object centroid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ_m</th>
<th>weak learner threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_m</td>
<td>weak learner confidence</td>
</tr>
<tr>
<td>b_m</td>
<td>weak learner confidence</td>
</tr>
</tbody>
</table>

δ 0-1 indicator function
Object Detection

- Evaluate $K(c)$ for all c gives a classification map
 - confidence as function of position

- Globally thresholded local maxima give final detections
Learning System

Segmented Training Data \rightarrow Boosting Algorithm \rightarrow Test Data

Background Training Data \rightarrow K(c) \rightarrow Detection

Object Detections
Training Data

Class

Segmented (10)

Unsegmented (40)

Background (50)
Boosting as Feature Selection

1. Fragment Selection
 - 1000 random fragments
 - 50 discriminative fragments

2. Model Parameter Estimation
 Select σ, λ for each feature

3. Weak-Learner Estimation
 Select θ, a, b for each feature
Contour Results
Contour Results
Histograms of oriented gradients
Histograms of oriented gradients

SIFT, D. Lowe, ICCV 1999

Shape context
Belongie, Malik, Puzicha, NIPS 2000

Count the number of points inside each bin, e.g.:

Count = 4

Count = 10

Compact representation of distribution of points relative to each point
Image features:

Histograms of oriented gradients (HOG)

Bin gradients from 8x8 pixel neighborhoods into 9 orientations

(Dalal & Triggs CVPR 05)

Source: Deva Ramanan
Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhône-Alps, 655 avenue de l’Europe, Montbonnot 38334, France

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.
Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.
HOG

a) Input image

b) Oriented edges

\[r = \sqrt{dx^2 + dy^2} \]

\[b = \text{round}(\theta / \pi) \mod 9 \]

\[\theta = \text{atan}(dy/dx) \]

c) Subsampling edge maps

\[F_1(x,y) = r \text{ if } b = 1 \]

\[C_1(x,y) \]

\[N_1(x,y) = \left[C(x,y)^2 + C(x+1,y)^2 + C(x,y+1)^2 + C(x+1,y+1)^2 \right]^{0.5} \]

\[C / N_1 \]

\[N_2(x,y) = \left[C(x,y)^2 + C(x-1,y)^2 + C(x,y+1)^2 + C(x-1,y+1)^2 \right]^{0.5} \]

\[C / N_2 \]

\[N_3(x,y) = \left[C(x,y)^2 + C(x+1,y)^2 + C(x,y-1)^2 + C(x+1,y-1)^2 \right]^{0.5} \]

\[C / N_3 \]

\[N_4(x,y) = \left[C(x,y)^2 + C(x-1,y)^2 + C(x,y-1)^2 + C(x-1,y-1)^2 \right]^{0.5} \]

\[C / N_4 \]

d) Local contrast normalization

HOG = 36 dimensions/pixel
A Support Vector Machine (SVM) learns a classifier with the form:

$$H(x) = \sum_{m=1}^{M} a_m y_m k(x, x_m)$$

Where \(\{x_m, y_m\} \), for \(m = 1 \ldots M \), are the training data with \(x_m \) being the input feature vector and \(y_m = +1, -1 \) the class label. \(k(x, x_m) \) is the kernel and it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of \(H(x) \).

There is a large number of possible kernels, each yielding a different family of decision boundaries:

- Linear kernel: \(k(x, x_m) = x^T x_m \)
- Radial basis function: \(k(x, x_m) = \exp(-|x - x_m|^2/\sigma^2) \).
- Histogram intersection: \(k(x, x_m) = \sum_i (\min(x(i), x_m(i))) \)
Linear SVM

\[f(x) = (w \cdot x + b) \]
Scanning-window templates

Dalal and Triggs CVPR05 (HOG)

Papageorgiou and Poggio ICIP99 (wavelets)

\[w \cdot x > 0 \]

\(w = \text{weights for orientation and spatial bins} \)

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Source: Deva Ramanan
How to interpret positive and negative weights?

\[w \cdot x > 0 \]

\[(w_{pos} - w_{neg}) \cdot x > 0 \]

\[w_{pos} \cdot x > w_{neg} \cdot x \]

Pedestrian template > Pedestrian background template

\(w_{pos}, w_{neg} = \) weighted average of positive, negative support vectors

Right approach is to compete pedestrian, pillar, doorway... models

Background class is hard to model - easier to penalize particular vertical edges

Source: Deva Ramanan
Histograms of oriented gradients

Dalal & Trigs, 2006
Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.
Constellation models

Source: short course on object recognition. Fergus, Fei-fei, Torralba
Representation

- Object as set of parts
 - Generative representation

- Model:
 - Relative locations between parts
 - Appearance of part

- Issues:
 - How to model location
 - How to represent appearance
 - Sparse or dense (pixels or regions)
 - How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]
History of Parts and Structure approaches

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Perona et al. ‘95, ‘96, ‘98, ’00, ’03, ’04, ’05
- Felzenszwalb & Huttenlocher ’00, ’04
- Crandall & Huttenlocher ’05, ’06
- Leibe & Schiele ’03, ’04
- Many papers since 2000
The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER AND ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the following. Given some description of a visual object, find that object in an actual photograph. Part of the solution to this problem is the specification of a descriptive scheme, and a metric on which to base the decision of "goodness" of matching or detection.

We offer a combined descriptive scheme and decision metric which is general, intuitively satisfying, and which has led to promising experimental results. We also present an algorithm which takes the above descriptions, together with a matrix representing the intensities of the actual photograph, and then finds the described object in the matrix. The algorithm uses a procedure similar to dynamic programming in order to cut down on the vast amount of computation otherwise necessary.

One desirable feature of the approach is its generality. A new programming system does not need to be written for every new description; instead, one just specifies descriptions in terms of a certain set of primitives and parameters.

There are many areas of application: scene analysis and description, map matching for navigation and guidance, optical tracking, stereo compilation, and image change detection. In fact, the ability to describe, match, and register scenes is basic for almost any image processing task.

Index Terms—Dynamic programming, heuristic optimization, picture description, picture matching.

THE PRIMARY paper is the following: a visual object, find a photograph. The object might be complicated, such as an object can be linguistic, pictorial, or a photograph will be called the object being sought is called the search area.

This ability to find a visual object, equivalently, to match scenes, is basic for almost any application to such an area. Map matching for navigation, map matching for...
Table 1

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f(x, y) = g(x, y) + n(x, y))</td>
</tr>
<tr>
<td>2</td>
<td>(f(x, y) = h(x, y) + e(x, y))</td>
</tr>
<tr>
<td>3</td>
<td>(g(x, y) = k(x, y) + m(x, y))</td>
</tr>
<tr>
<td>4</td>
<td>(h(x, y) = l(x, y) + p(x, y))</td>
</tr>
<tr>
<td>5</td>
<td>(k(x, y) = q(x, y) + r(x, y))</td>
</tr>
<tr>
<td>6</td>
<td>(l(x, y) = s(x, y) + t(x, y))</td>
</tr>
<tr>
<td>7</td>
<td>(m(x, y) = u(x, y) + v(x, y))</td>
</tr>
<tr>
<td>8</td>
<td>(n(x, y) = w(x, y) + x(x, y))</td>
</tr>
<tr>
<td>9</td>
<td>(e(x, y) = y(x, y) + z(x, y))</td>
</tr>
</tbody>
</table>

Note

Noisy picture (sampled scene) as used in experiment.
Sparse representation

+ Computationally tractable (10^5 pixels $\rightarrow 10^1 -- 10^2$ parts)
+ Generative representation of class
+ Avoid modeling global variability
+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes
Structure models

Voting models
- Many patches (>100)

Constellation models
- Few parts (~6)

Deformable models
- No parts
Region operators

- Local maxima of interest operator function
- Can give scale/orientation invariance

Figures from [Kadir, Zisserman and Brady 04]
The correspondence problem

- Model with P parts
- Image with N possible assignments for each part
- Consider mapping to be 1-1
- \(N^P \) combinations!!!
Different connectivity structures

\[O(N^6) \quad O(N^2) \quad O(N^3) \quad O(N^2) \]

- **a)** Constellation [13]
- **b)** Star shape [9, 14]
- **c)** k-fan \((k = 2)\) [9]
- **d)** Tree [12]
- **e)** Bag of features [10, 21]
- **f)** Hierarchy [4]

- Fergus et al. '03
- Fei-Fei et al. '03
- Crandall et al. '05
- Fergus et al. '05
- Crandall et al. '05
- Felzenszwalb & Huttenlocher '00
- Bouchard & Triggs '05
- Csurka '04
- Vasconcelos '00
- Carneiro & Lowe '06

from Sparse Flexible Models of Local Features
Gustavo Carneiro and David Lowe, ECCV 2006
How much does shape help?

- Crandall, Felzenszwalb, Huttenlocher CVPR’05
- Shape variance increases with increasing model complexity
- Do get some benefit from shape
Some class-specific graphs

• Articulated motion
 – People
 – Animals

• Special parameterisations
 – Limb angles

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05]
Layout CRF: Winn & Shotton, CVPR ‘06

Part labels (color-coded)
How to model location?

- Explicit: Probability density functions
- Implicit: Voting scheme

- Invariance
 - Translation
 - Scaling
 - Similarity/affine
 - Viewpoint
Explicit shape model

• Cartesian
 – E.g. Gaussian distribution
 – Parameters of model, μ and Σ
 – Independence corresponds to zeros in Σ
 – Burl et al. ’96, Weber et al. ‘00, Fergus et al. ’03

\[
\mu = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \Sigma = \begin{pmatrix} x_1x_1 & x_1x_2 & x_1x_3 & x_1y_1 & x_1y_2 & x_1y_3 \\ x_2x_1 & x_2x_2 & x_2x_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ x_3x_1 & x_3x_2 & x_3x_3 & x_3y_1 & x_3y_2 & x_3y_3 \\ y_1x_1 & y_1x_2 & y_1x_3 & y_1y_1 & y_1y_2 & y_1y_3 \\ y_2x_1 & y_2x_2 & y_2x_3 & y_2y_1 & y_2y_2 & y_2y_3 \\ y_3x_1 & y_3x_2 & y_3x_3 & y_3y_1 & y_3y_2 & y_3y_3 \end{pmatrix}
\]

• Polar
 – Convenient for invariance to rotation

Mikolajczyk et al., CVPR ‘06
Implicit shape model

- Use Hough space voting to find object
- Leibe and Schiele ’03,’05

Learning
- Learn appearance codebook
 - Cluster over interest points on training images
- Learn spatial distributions
 - Match codebook to training images
 - Record matching positions on object
 - Centroid is given

Recognition

Interest Points

Matched Codebook Entries

Probabilistic Voting

Spatial occurrence distributions
Deformable Template Matching

Berg, Berg and Malik CVPR 2005

- Formulate problem as Integer Quadratic Programming
- $O(N^P)$ in general
- Use approximations that allow $P=50$ and $N=2550$ in <2 secs
Multiple view points

Hoiem, Rother, Winn, 3D Layout CRF for Multi-View Object Class Recognition and Segmentation, CVPR ‘07

Thomas, Ferrari, Leibe, Tuytelaars, Schiele, and L. Van Gool. Towards Multi-View Object Class Detection, CVPR 06
Representation of appearance

• Needs to handle intra-class variation
 – Task is no longer matching of descriptors
 – Implicit variation (VQ to get discrete appearance)
 – Explicit model of appearance (e.g. Gaussians in SIFT space)

• Dependency structure
 – Often assume each part’s appearance is independent
 – Common to assume independence with location
Representation of appearance

• Invariance needs to match that of shape model

• Insensitive to small shifts in translation/scale
 – Compensate for jitter of features
 – e.g. SIFT

• Illumination invariance
 – Normalize out
Appearance representation

- SIFT
 - Figure from Winn & Shotton, CVPR '06
 - Image gradients
 - Keypoint descriptor

- PCA

- Decision trees
 - [Lepetit and Fua CVPR 2005]
Background clutter

• Explicit model
 – Generative model for clutter as well as foreground object

• Use a sub-window
 – At correct position, no clutter is present
A simple parts and structure object detector

ICCV 2005 short courses on
Recognizing and Learning Object Categories

An intuitive way to represent objects is as a collection of distinctive parts. Such schemes model both the relative positions of the parts as well as their appearance, giving a sparse representation that captures the essence of the object.

This simple demo illustrates the concepts behind many such "parts and structure" approaches. For simplicity, training is manually guided with the user hand-clicking on the distinctive parts of a few training images. A simple model is then built for use in recognition. Two different recognition approaches are provided: one relying on feature points [1], the other using the efficient methods of Felzenszwalb and Huttenlocher [2].

The code consists of Matlab scripts (which should run under both Windows and Linux). The Image Processing toolbox is required. The code is for teaching/research purposes only. If you find a bug, please email me at fargus@csail.mit.edu.

Download

Download the code and datasets (24 Mbytes)

Operation of code

To run the demos:
1. Unpack the zip file into a new directory or a subdirectory under your workpath.
Demo (3)
Demo (4)
Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Abstract—We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

Index Terms—Object Recognition, Deformable Models, Pictorial Structures, Discriminative Training, Latent SVM
PASCAL Visual Object Challenge

5000 training images

5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table
dog horse motorbike person plant sheep sofa train tv

Source: Deva Ramanan
5 years of PASCAL people detection

Discriminative mixtures of star models 2007-2010
Felzenszwalb, McAllester, Ramanan CVPR 2008
Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2009

Source: Deva Ramanan
Deformable part models

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan
Image pyramid

Feature pyramid
Scoring function

\[
score(x, z) = \sum w_i \Phi(x, z_i) + \sum w_{ij} \Psi(z_i, z_j)
\]

\(x = \) image
\(z_i = (x_i, y_i)\)
\(z = \{z_1, z_2, \ldots\}\)

Source: Deva Ramanan
Scoring function

\[\text{score}(x,z) = \sum_i w_i \phi(x, z_i) + \]

- \(x \) = image
- \(z_i = (x_i, y_i) \)
- \(z = \{z_1, z_2, \ldots\} \)

Source: Deva Ramanan
Scoring function

\[
\text{score}(x, z) = \sum_i w_i \phi(x, z_i) + \sum_{i,j} w_{ij} \Psi(z_i, z_j)
\]

\(x = \text{image}\)
\(z_i = (x_i, y_i)\)
\(z = \{z_1, z_2, \ldots\}\)

part template scores

spring deformation model

\(E = \text{relational graph}\)

Source: Deva Ramanan
Scoring function

\[\text{score}(x,z) = \sum_i w_i \phi(x, z_i) + \sum_{i,j} w_{ij} \Psi(z_i, z_j) \]

- \(x = \text{image} \)
- \(z_i = (x_i, y_i) \)
- \(z = \{z_1, z_2, \ldots\} \)

Score is linear in local templates \(w_i \) and spring parameters \(w_{ij} \)

\[\text{score}(x,z) = w \cdot \Phi(x, z) \]

Source: Deva Ramanan
Inference: $\max_{z} \text{score}(x,z)$

Felzenszwalb & Huttenlocher 05

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent
Classification

\[f_w(x) = w \cdot \Phi(x) \]

\[f_w(x) > 0 \]

Source: Deva Ramanan
Latent-variable classification

\[f_w(x) = w \cdot \Phi(x) \]

\[f_w(x) > 0 \]

\[f_w(x) = \max_{z} S(x, z) = \max_{z} w \cdot \Phi(x, z) \]

Source: Deva Ramanan
Latent SVMs

Given positive and negative training windows \{x_n\}

\[
L(w) = \|w\|^2 + \sum_{n \in \text{pos}} \max(0, 1 - f_w(x_n)) + \sum_{n \in \text{neg}} \max(0, 1 + f_w(x_n))
\]

\[
f_w(x) = \max_z w \cdot \Phi(x, z)
\]

\(L(w)\) is “almost” convex

Source: Deva Ramanan
Latent SVMs

Given positive and negative training windows \(\{x_n\} \)

\[
L(w) = ||w||^2 + \sum_{n \in \text{pos}} \max(0, 1 - f_w(x_n)) + \sum_{n \in \text{neg}} \max(0, 1 + f_w(x_n))
\]

\[
w \cdot \Phi(x_n, z_n)
\]

\[
f_w(x) = \max_z w \cdot \Phi(x, z)
\]

\(L(w) \) is convex if we fix latent values for positives

Source: Deva Ramanan
1) Given positive part locations, learn w with a convex program

$$w = \underset{w}{\text{argmin}} \ L(w) \quad \text{with fixed} \quad \{z_n : n \in \text{pos}\}$$

2) Given w, estimate part locations on positives

$$z_n = \underset{z}{\text{argmax}} \ w \cdot \Phi(x_n, z) \quad \forall n \in \text{pos}$$

The above steps perform coordinate descent on a joint loss

Source: Deva Ramanan
Treat ground-truth labels as partially latent

Allows for “cleaning up” of noisy labels (in blue) during iterative learning

Source: Deva Ramanan
Initialization

Learn root filter with SVM
Initialize part filters to regions in root filter with lots of energy

Source: Deva Ramanan
Example models

Source: Deva Ramanan
Example models

Source: Deva Ramanan
Example models

False positive due to imprecise bounding box

Source: Deva Ramanan
Other tricks:
• Mining hard negative examples
• Noisy annotations