Project presentations

Dec 6 and Dec 11
Dec 13 reports due

Assigned days in the website.

Sent us emaill if there is a mistake in the title/group
members or a time conflict.



Presentations

4 Min + 1 min questions

* Send us presentation. We will run all
presentations from the same computer.



How to give a talk

http://www.cs.berkeley.edu/~messer/Bad talk.html

http://www-psych.stanford.edu/~lera/talk.html




First, some bad news

The more you work on a talk, the better it
gets: if you work on it for 1 day, the talk
you give will be better than if you had
only worked on it for 1 hour. If you work
on it for 2 days, it will be better still. 7
days, better yet...



All talks are important

here are no unimportant talks.
"here are no big or small audiences.

Prepare each talk with the same
enthusiasm.



How to give a talk

Delivering:
Look at the audience! Try not to talk to your laptop

or to the screen. Instead, look at the other
humans in the room.

You have to believe in what you present, be
confident... even if it only lasts for the time of
your presentation.

Do not be afraid to acknowledge limitations of
whatever you are presenting. Limitations are
g:[;_ood They leave job for the people to come.

rying to hide the problems in your work will
make the preparation of the talk a lot harder and
your self confidence will be hurt.



Let the audience see your
personality

They want to see you enjoy yourself.
They want to see what you love about the work.

People really respond to the human parts of a talk.
Those parts help the audience with their difficult task
of listening to an hour-long talk on a technical subject.
What was easy, what was fun, what was hard about
the work?

Don’t be afraid to be yourself and to be quirky.



The different kinds of talks you'll have to
give as a researcher

e 2-5 minute talks
« 20 -30 minute conference presentations
* 30-60 minute colloquia



How to give a talk

Talk organization: here there are as many theories as there are talks.
Here there are some extreme advices:

—

. Go into details / only big picture
. Go in depth on a single topic / cover as many things as you can

Be serious (never make jokes, maybe only one) / be funny (it is just
another form of theater)

w N

Corollary: ask people for advice, but at the end, if will be just you and
the audience. Chose what fits best your style.

What everybody agree on is that you have to practice in advance (the
less your experience, the more you have to practice). Do it with an
audience or without, but practice.

The best advice | got came from Yair Weiss while preparing my job talk:

“just give a good talk”



How to give the project class talk

Initial conditions:
* | started with a great idea
* |t did not work

* The day before the presentation | found 40
papers that already did this work

e Then | also realized that the idea was not
SO great

How do | present?
» Just give a good talk



Sources on writing technical papers

How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya,

SIGGRAPH 1993 Papers Chair, http://www.siggraph.org/publications/
instructions/rejected.html

Ted Adelson's Informal guidelines for writing a paper, 1991. http://
www.ai.mit.edu/courses/6.899/papers/ted.htm

Notes on technical writing, Don Knuth, 1989.

http://www.ai.mit.edu/courses/6.899/papers/knuthAll.pdf

What's wrong with these equations, David Mermin, Physics
Today, Oct., 1989. http://www.ai.mit.edu/courses/6.899/papers/mermin.pdf

Ten Simple Rules for Mathematical Writing, Dimitri P. Bertsekas
http://www.mit.edu:8001/people/dimitrib/Ten_Rules.html




Knuth

24. The opening paragraph should be your best paragraph, and its first sentence should
be your best sentence. Il a paper starts badly, the reader will wince and be resigned to
a difficult job of fighting with your prose. Conversely. if the beginming fows smoothly,
the reader will be hooked and won’t notice occasional lapses in the later parts.
Probably the worst way to start is with a sentence of the form “An @ is »." For
example,

Bad: An important method for internal sorting is quicksort.
Good: Quicksort is an important method for internal sorting, because .
Bad: A commonly used data structure is the priority queue,
Good: Priority queues arve significant components of the data structures needed
for many different applications.



Knuth on equations

13, Many readers will skim over [ormulas on their first reading of your exposition. There-
fore, your sentences should flow smoothly when all but the simplest formulas are
replaced by “blaly™ or some other grunting noise,



The paper impact curve

Lots of
impact

Paper impact

nothing

Paper quality

So-so Ok Pretty good Creative,
original and
good.



MIT CSAIL

6.869: Advances in Computer Vision

(

Lecture 22
Scene understanding

COMPUTER
VISION



Beyond single classes

 Multiclass
 Multiview
 Datasets



Beyond single classes

 Multiclass
 Multiview
 Datasets



Shared features

* |s learning the object class 1000 easier than
Iearnmg the first?

-

e Can we transfer knowledge from one object to
another?

* Are the shared properties interesting by
themselves?




Reusable Parts

Krempp, Geman, & Amit “Sequential Learning of Reusable Parts for Object
Detection”. TR 2002

Goal: Look for a vocabulary of edges that reduces the number of

features.
Examples of reused parts
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Additive models and boosting

* Independent binary classifiers:

w Screen detector

Car detector

Face detector

 Binary classifiers that share features:

Screen detector

>

. Car detector

Face detector

Torralba, Murphy, Freeman. CVPR 2004. PAMI 2007



Area under ROC

Generalization as a function of object similarities

12 unrelated object classes 12 viewpoints
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Beyond single classes

e Multiclass
e Multiview
e Datasets



Class experiment



Class experiment

Experiment 1: draw a horse (the entire body,
not just the head) in a white piece of paper.

Do not look at your neighbor! You already know
how a horse looks like... no need to cheat.




Class experiment

Experiment 2: draw a horse (the entire body,
not just the head) but this time chose a
viewpoint as weird as possible.




3D object categorization

Despite we can categorize all three
pictures as being views of a horse,
the three pictures do not look as
being equally typical views of
horses. And they do not seem to be
recognizable with the same
easiness.




Canonical Perspective

Examples of canonical perspective:

Experiment (Palmer, Rosch & Chase 81):
participants are shown views of an object
and are asked to rate “how much each one
looked like the objects they depict”

(scale; 1=very much like, 7=very unlike)

PIANO TEAPOT

In a recognition task, reaction time .

correlated with the ratings. CAR CHAIR CAMERA

Canonical views are recognized faster
at the entry level.

CLOCK TELEPHONE HOUSE

From Vision Science, Palmer



Canonical Viewpoint

Clocks are preferred as purely frontal

< ;O Ugle clock [ SearchImages || Searchthe Web | ",;—9—:;?::;':3 2 Sgtech

Moderate SafeSearch is on

Images Showing:  Allimage sizes [ﬂ Results 1 - 18 of about 38,300,000 for

Related searches: cartoon clock clock clipart alarm clock clock face
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clock character Wind-up alarm clocks have been Artistic Clock And Wall Clock ... mechanical clock Ifit is 3 o'clock and we add 5 ...
359 x 344 - 4k - gif 360 x 360 - 18k - jpg screensaver. 305 x 319 - 4k - gif
school.discoveryeducation.com 346 x 510 - 22k - jpg www.global-b2b-network.com 640 x 480 - 53k - jpg www-math.cudenver.edu
electronics.howstuffworks.com davinciautomata.wordpress.com [ More from

www-math.cudenver.edu ]




Object representations

Explicit 3D models: use volumetric
representation. Have an explicit model of
the 3D geometry of the object.

Appealing but hard to get it to work...



Object representations

Implicit 3D models: matching the input 2D
view to view-specific representations.

(b) For cars, classifiers are trained on 8 viewpoints

Not very appealing but somewhat easy to get it to work...



Beyond single classes

 Multiclass
 Multiview
« Datasets



The PASCAL Visual Object Classes

In 2007, the twenty object classes that have been selected are:

Person: person
Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

M. Everingham, Luc van Gool , C. Williams, J. Winn, A. Zisserman 2007



Caltech 101 and 256

Griffin, Holub, Perona, 2007

Caltech 101 Categories Data Set
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Labell\/le

Zoom Erase Help  Make 3D 'r' Show me another imag There are 416643 labelled objects

Polygons in this image (s, yu

building
building oecludad
building occluded
building

!

stairs

person walking
sidewalk

road

tree

shop window
shop window

s s plant pot
Whatis this object? 3 bench

pole| 1 plent

& -- | e

Tool went online July 1st, 2005
530,000 object annotations collected

Labelme.csail.mit.edu B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, IJCV 2008



30.000.000 images

75.000 non-abstract nouns from WordNet 7 Online image search engines
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A. Torralba, R. Fergus, W.T. Freeman. PAMI 2008



IMJAAGE

 An ontology of images based on WordNet

* ImageNet currently has
— 13,000+ categories of visual concepts
— 10 million human-cleaned images (~700im/categ)

— 1/3+ is released online @ www.image-net.org
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Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009
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Dataset biases

testing car on SUNQ9

testing car on pascal
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Torralba, Efros. Unbiased Look at Dataset Bias. CVPR 2011



The texture

The object
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The detector challenge
%

ool o o dl L PPl s

By looking at the output of a detector on a random set
of images, can you guess which object is it trying to detect?



What object is the detector trying to detect?
%

ool o o dl L PPl s

By looking at the output of a detector on a random set
of images, can you guess which object is it trying to detect?



What object is the detector trying to detect?
%

By looking at the output of a detector on a random set
of images, can you guess which object is it trying to detect?



Microwave Search

Top 8 out of 4317 images

P. Felzenszwalb, D. McAllester, and D. Ramanan. CVPR, 2008



Microwave & refrigerator Search ’

Top 8 out of 4317 images



What object is hidden behind the red box?

¢/
2 W 17 1y SRR e ]






Objects in context

Torralba, Sinha (2001) Torralba Murphy Freeman (2004)

Fink & Perona (2003)

C. face b
feature
from face
detection

i‘ﬁ"‘ .
Pl A,

Sudderth, Torralba, © TENNIS

A. eye
feature
from
raw
image

image
. RACKET
Wilsky, Freeman (2005)

B. face D. eye
feature feature =
ff°“_‘ from eye
raw detection
image image

Image
Horizon\ Pplane
Posmon\

Kumar, Hebert (2005)

Object Image

Camera
Height

*
*

Heitz and Koller (2008)
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Increasing the context strength

16x16 32x32 64x64
Bedroom Beach Bedroom Bedroom Bedroom

wall
: I |ndo
ceiling P amp
OB headbo d
ab|e




Scenes rule over objects
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3D percept is driven by the scene, which imposes its ruling to the objects



Mary Potter (1976)

Mary Potter (1975, 1976) demonstrated that during a rapid sequential
visual presentation (100 msec per image), a novel picture is instantly
understood and observers seem to comprehend a lot of visual
information




Demo : Rapid image understanding

By Aude Oliva

Instructions: 9 photographs will be shown for
half a second each. Your task is to memorize
these pictures


































Memory Test

Which of the following pictures have you seen ?

If you have seen the image
clap your hands once

If you have not seen the image
do nothing



Have you seen this picture ?






Have you seen this picture ?






Have you seen this picture ?






‘ A :

. 3 ~\‘\\\ %

Have you seen this picture ?






Have you seen this picture ?



-,_ m-_ I




Have you seen this picture ?






You have seen these pictures




The gist of the scene

In a glance, we remember the meaning of an
Image and its global layout but some
objects and details are forgotten




Scene Categorization

Inside
City

Fei and Perona, 2005

ol =

Mountain

Open Street
Country Building

-
‘ o

Bedroom  Kitchen "Living Room Office

Lazep_nik, Schmid, and Ponce, 2006

15 Scene
Database



Which are the important elements?

Cgiling wall
Light _ painting
Door Door mirror Painting  mirror
oor Door Lamp
Wall Door Wall wall wall
: phone
_Fireplace Bed alarm
armchair armchair
Floor Side-table
Coffee table carpet

Different content (i.e. objects), different spatial layout




Which are the important elements?

cabinets

window

seat

seat
seat

ceiling

window
seat seat

cabinets

window

seat

seat
seat

cabinets

window

seat

ceiling _
cabinets
steat seat window
sea
seat seat
seat
seat

ceiling
ngcl)lumn screen
seat seat
sea seat
seat seat seat seat
seat seat gogtgeat
seat seat seat seat

Similar objects, and similar spatial layout

Different lighting, different materials, different “stuff”




What can be an alternative to
objects?



Scene emergent features

“Recognition via features that are not those of individual objects but “emerge” as
objects are brought into relation to each other to form a scene.” — Biederman 81
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FIG. 8.23. Downtown Buffalo. Drawn by Robert Mezzanotte by converting
objects in a photograph to basic rectilinear or cylindrical bodies. FIG. 8.24. Office, drawn by Robert Mezzanotte.

From “on the semantics of a glance at a scene”, Biederman, 1981



Examples of scene emergent features
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Ensemble statistics

Ariely, 2001, Seeing sets: Representation by statistical properties
Chong, Treisman, 2003, Representation of statistical properties
Alvarez, Oliva, 2008, 2009, Spatial ensemble statistics

Set

Conclusion: observers had
more accurate representation of
the mean than of the individual
members of the set.

Test




Global image descriptors



Global image descriptors

Bag of words o

Sivic et. al., ICCV 2005
Fei-Fei and Perona, CVPR 2005

Non localized textons

Walker, Malik. Vision Research 2004

Spatlally organized textures
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M. Gorkani, R. Picard, ICPR 1994
A. Oliva, A. Torralba, IJCV 2001
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S. Lazebnik, et al, CVPR 2006

R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age,
ACM Computing Surveys, vol. 40, no. 2, pp. 5:1-60, 2008.



Gist descriptor

Oliva and Torralba, 2001

- HHEB
fli.i EEIEIED

* Apply oriented Gabor filters
over different scales
 Average filter energy

in each bin
(wwmw BRI
X AII HEHEE
i 8 orientations
sl BEIEE ¢
X 16 bins
P R 52 cimensions

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004,
Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...



Gist descriptor

Steerable




Gist descriptor

Steerable
pyramid
“‘i“‘ W “:. !

Vv

= {energy at each orientation and

scale} = 6 x 4 dimensions

e

L 80 fea_tures

— vl — PCA —>

Q ROdE BRI MR L LNl

Oliva, Torralba. IJCV 2001



Global features (I) ~ global features (I’) Oliva & Torralba (2001)



Global features

“The viewer is presented with a ‘potential image’, that is, a complex muItipIi?;ity o‘f possible images,
none of which ever finally resolves”.




Textons

Kmeans over a set of

vectors on a collection
Vector of filter responses of images

at each pixel

I ——>

\

Filter bank

Malik, Belongie, Shi, Leung, 1999



in image

label = beoom

# occurences
in image

label = beach

# occurences

Textons

Filter bank

best match

universal textons

%2 = 417 x 103

bl g,

universal textons  \Nalker, Malik, 2004

K-means (100 clusters)



Histogram Intersection

Histogram

intersection A (H(X>, H(Y)> — Z min (H(X)ja H<Y>J)

Adapted from Kristen Grauman



SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H ( I ) — Z A Ym k ( I, Tm )

m=1

Where {X.,, ¥,,}, form =1 .. .M, are the training data with x_, being
the input feature vector and y, = +1,-1 the class label. k(x, Xx,,,) is the kernel and
it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, x,,) = x" X,
« Radial basis function: k(x, x,,) = exp(—|x — x.,|/0?).
« Histogram intersection: k(x,x,,) = sum,(min(x(i), X,,(i)))



Bag of words
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Bag of words &
spatial pyramid matching

Sivic, Zisserman, 2003. Visual words = Kmeans of SIFT descriptors

S. Lazebnik, et al, CVPR 2006
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The 15-scenes benchmark

Oliva & Torralba, 2001
Fei Fei & Perona, 2005
Lazebnik, et al 2006

Industrial Street



store
livingroom
kitchen

industrial [ - - -

bedroom

office [ - :

tall building
street

open country
mountain
Inside city
highway

forest [
coast
suburb |

Scene recognition

100 training samples per class

SVM classifier in both cases

= =Pyramid matching |
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SUN Dataset Project

We want:

« Large variety of scene categories (we want them all)
* Lots of objects categories

» Multi-object scenes

1. We take all scene words
from a dictionary

5 WordNet

D:ct:onary

2. We download images 3. We segment all
and clean the categories the images

Google

Image Search{_

altavista:

flickr

Krista Ehinger  Jianxiong Xiao

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010
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Recognition rate

J all [34.4]
45 geometry texton histograms [24.2]|
! phow [18.6] : S
40f hogx2[185] RN g
] texton histogram [17.9] : L
35} ssim [17.3]
| gist [14.4]
30 sparse SIFT histograms [12.6]
geometry color histograms [9.9]
25‘5 color histogram [9.1]
f geometric classification map [6.7]
20_@ tiny images [6.5]
15 straight line histograms [G/V]/

0 i . : . i

1 5. 10 20 50
Number training samples per class

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Training images

Airplane cabin

Airport terminal

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Training images Correct classifications

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Training images Correct classifications Miss-classifications
Monastery Cathedral Castle

Airplane cabin

Subway = Stage Restaurant

Airport terminal

Alley

Athletic |

field

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Categories or a continuous space?

Check poster by Malisiewicz, Efros



Categories or a continuous space?

From the city to the mountains in 10 steps




Objects in context




Is local information enough??




Is local information even enough?



o

Is local information even enough?

 Information Contextual features

o

»

Distance



The system does not care about the
scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

... even if there is one indeed.



The multiple personalities of a blob




The multiple personalities of a blob
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Look-Alikes by Joan Steiner




.
b

S Fe——

=

[ S S g

=
AL

—




Look-Alikes by Joan Steiner




The importance of context

Cognitive psychology
— Palmer 1975
— Biederman 1981

Computer vision

— Noton and Stark (1971)

— Hanson and Riseman (1978)
— Barrow & Tenenbaum (1978)
— Ohta, kanade, Skai (1978)

— Haralick (1983)

— Strat and Fischler (1991)

— Bobick and Pinhanez (1995)
— Campbell et al (1997)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE
RGB-IS-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT/
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE—CONTAINS(comp[ete—ground)
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
- CLIQUE-CONTAINS(skyline)
GROUND TIME-IS-DAY DARK




Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

Biederman’s violations (1981):

1.
L

3I
4.

Suppor? (e.g., a floating fire hydramt). The object docs not appear to be resting on & iu_rf:c:_l

Interposition (e.g., \he background appearing through the hydrant). The objects undergoing this
violation appear 1o be transparem or passing through another object. ’

Probabiliry {e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.

Pasition (¢.g., the fire hydrant on top of a mailbox in a sireet scene). The object i& likely 1o occur
in that scene, but it is unlikely to be in that particular position.

Size (e.g., the fire hydrant appearing larger than a building). The object appears 1o be oo large
or too small relative to the other objects in the scenc.




CONDOR system

Strat and Fischler (1991)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
SKY SKY-1S-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE
RGB-1S-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT/
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE-CONTAINS(complete-ground)
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
- CLIQUE-CONTAINS(skyline)
GROUND TIME-IS-DAY DARK
Guzman (SEE), 1968 . Brooks (ACRONYM), 1979
Noton and Stark 1971 « Marr, 1982
Hansen & Riseman (VISIONS), 1978 « Ohta & Kanade, 1978

Barrow & Tenenbaum 1978

. Yakimovsky & Feldman, 1973



An Age of Scene Understanding

(a} Bomom-up process (b1 Top-down process

[Ohta & Kanade 1978]

Guzman (SEE), 1968 * Brooks (ACRONYM), 1979
Noton and Stark 1971 « Marr, 1982

Hansen & Riseman  Ohta & Kanade, 1978
(VISIONS), 1978 +  Yakimovsky & Feldman, 1973

Barrow & Tenenbaum 1978



objects image

P(O [ 1) a p(l|O) p(O)

Object model Context model



P(O [ 1) a p(l|O) p(O)

'

Object model Context model

Full joint
Scene model Approx. joint



P(O [ 1) a p(l|O) p(O)

'

Object model Context model

Full joint Scene model Approx. joint



p(O [ 1) a p(l|O) p(O)

O\

Object model Context model
Full joint 1 \
Scene model Approx. joint

p(O) = 2 Ip(O1|S=s) p(S=8)

street




P(O [ 1) a p(l|O) p(O)

'

Object model Context model

Full joint
Scene model Approx. joint



Context models

Independent model

Objects are correlated via Dependencies among objects
the scene




Context models

Independent model

Dependencies among objects

133
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L8 Forest Before Trees: The Precedence of Global Features in Visual 4"
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Global and local representations

building

=g Urban street scene

= sidewalk

— 1




Global and local representations

building

=g Urban street scene

, Image index: Summary statistics,
\ configuration of textures

4

histogram H =P Urban street scene
e

features



An integrated model of Scenes,
Objects, and Parts

Scene
S

Context,
Scene recognition

- Regions @ o

(=4l 4
r i 7
Yy I’H b e
] LY E

\ . < — ‘L-

— —_— ~ ” \

B oo = AN @
/ g

f_H

Scene
[
,_:y“: Object parts @ features
SN -

Multiclass and pose invariant
object detection,



Context-based vision system for
place and object recognition

We use 17 annotated sequences for trainin

< > < > < > < >
Office 610 Corridor 6b Corridor 6¢ Office 617

Hidden states = location (63 values)
Observations = v&, (80 dimensions)
Transition matrix encodes topology of environment

Observation model is a mixture of Gaussians centered on
prototypes (100 views per place)

Torralba, Murphy, Freeman and Rubin. ICCV 2003



Our mobile rig

Torralba, Murphy, Freeman, Rubin. 2003



Place recognition demo
ED——(

t=930, truth = 400-fl6-visionArea

-

/ \

Input image (120x160) Shows the category and the identity of
The place when the system is confident.
Runs at 4 fps on Matlab.



|dentification and categorization of known places

Thistle corridor
Theresa office
200 side street

Draper street
200 out street
400 Short street
Draper plaza
400 plaza

400 Back street
Jason corridor
elevator 200/7

office 200/936 |-

Vision Area 2
Vision Area 1
kitchen floor 6
elevator 200/6
corridor 6¢
corridor 6b
corridor 6a
office 400/628
office 400/627
office 400/625
office 400/611
office 400/610
elevator 400/1
elevator 400/1

kitchen

lobby -

open space
corridor
office
plaza
street

outdoor
indoor

Building 400

\ 4

Outdoor Al-lab

A

1T 1r1r1rTTrr T 1T T A

T rrrrrrri1rri

»
>

1 Indoor/outdoor

Ground truth
«sa System estimate

Specific location

Location category

2000 2500 3000
Frame number

>




An integrated model of Scenes,
Objects, and Parts

Scene

P(N.. | S = street)

car

P(Ngg | S = park)

" Scene

gist
features

1 5 N

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.



Application of object detection for
Image retrieval

Results using the keyboard detector alone




Application of object detection for
Image retrieval

TR e T . :
Results using the key oo} <<<<<< jamt e

SRR Il

: ,u'DetectOr | ;

S |cene features

. ll .............................................................
_l . . . . . : "
oL B e S AU ST | S -
i f f = = =ocal (auc=0.81) | - - - T
Bl EERERREREEE R LN KEIEE global (auc=0.90) |- | Remmme S _
: : both (auc=0.91) | - e~ .

0 0.2 0.4 0.6 0.8 1
false alarm rate



Object retrieval: scene features vs. detector

Results using the keyboard detector alone

1
0.95 |
09 f
0.85 - ®: @-rcen _
E @ouse
G oosr
@oorway
O ree
i“:, 0.75 1 m’.oman @-yboard
. 2 b@k @e4d ® ff.)ad
Results using both the detector s o7l e
< wind@@erson @uildin okshe
and the global scene features o ore. ® "%,
06 f
[ 3%
G @
0.55 ® @ottlc
0.5

05 055 06 065 07 075 08 08 09 095 1
Area under ROC retrieval set

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.



Localizing the object




An integrated model of Scenes,
Objects, and Parts

Scene
S

Scene
gist
features



Predicting object location

Trammg set (cars) Z|g = Z (A, g+b,) wW.(9)




Predicting location

Predicted Y

Predicted X




screens | keyboard

car pedestrian



An integrated model of Scenes,
Objects, and Parts

We train a multiview car detector.

60 90 120 150 180 210 24
‘ o ,‘"‘H:(V\"v 1 - I»‘l_:
[ S

(e
/

N=4

0 270 300 330
R A S | ‘,l“

p(d | F=1) = N(d | wy, 09)
p(d | F=0) = N(d | uy, 0p)



An integrated model of Scenes,
Objects, and Parts

Scene

Scene
gist
features




a) input image b) car detector output c) location priming c) integrated model output




Two

Object localization

tasks

100 =—— ' : 100
: N : . |====== Detector alone
B . | === Integrated model
80k |; .. .| === === |ntegrated model 80
: with context oracle
SO0 R S ERREEI EEPEEE SPPR 5 60
S o
CHPT] PSR SO - T RN SUS, A Q. 40
20 St 201
0 . 0 ! ! ! !
0 10 20 30 0 20 40 60 80 100
a) Recall b) Recall



A car out of context ...




A car out of context ...




3d Scene Context

Image
Eori%_on Plane Camera
osition ‘
Camera
Height

Object Image
Height

Object World
Height

Object World
Height

World

Hoiem, Efros, Hebert ICCV 2005



meters

0 20.3
meters

Hoiem, Efros, Hebert ICCV 2005



3D City Modeling using Cognitive Loops

(a) (b) (c) (d)
Figure 6. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (¢) temporal
integration on reconstructed map, (d) estimated 3D car locations, rendered back into the original image.

N. Cornelis, B. Leibe, K. Cornelis, L. Van Gool. CVPR'06



Context models

Independent model

Objects are correlated via Dependencies among objects

the scene



1) Generate candidate objects
(run a detector, or segmentation)

M possible object labels
N regions

Label: ¢, =[1...M] with k =[1...N]
Scores: s, = vector length M

2) For each candidate, get a list of
possible interpretations with
their probabilities

p(cc=m | sy)

3) Goal: to assign labels c, to each
candidate so that they are in
contextual agreement. We
want to optimize the joint
probability of all the labels:

p(cy=my, ..., Cy =My [ Sy, -, Sy)

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



Goal: to assign labels c, to each
candidate so that they are in
contextual agreement.

M possible object labels
N regions

Label: ¢, = [1...M] with k =[1...N]
Scores: s, = vector length M

We want to optimize the joint probability of
all the labels:

p(c,=my, ...,Cy =My | Sy, ---, SN)

Solution 1: Assume objects are
independent:

p(C4=My,..., C\=My|S1,-.., Sy) =i:1IiI_Np(Ci=mi|Si)

OXOXO

Independent model

Problem: it does not makes use of the
correlation between objects in the world.
This is fine if the detectors are perfect.

162



Goal: to assign labels c, to each
candidate so that they are in
contextual agreement.

M possible object labels
N regions

Label: ¢, = [1...M] with k =[1...N]
Scores: s, = vector length M

We want to optimize the joint probability of
all the labels:

p(c,=my, ...,Cy =My | Sy, ---, SN)

Solution 2: Assume objects are fully
dependent: @

. p(c,=my,..., C\=My[Sy,..., Sy) = 0‘@

P(Sq,---,SN|C1=My,...,Cy=My) P(C{=My,...,C\=My)
Z(S4,...SyN)
i=HNp(Si|Ci=mi) p(c;=my,....Cy=My)

Z(S4,-..Sy)

Z(s4,..-8y) = 21 p(silc=m;) p(c=my,...,cy=my)

All [c,,...,c\] assignments

Problem: learning p(c,=m,,...,c=my) will
need a lot of data. Recognition can be slow.

163



Goal: to assign labels c, to each
candidate so that they are in
contextual agreement.

M possible object labels
N regions

Label: ¢, = [1...M] with k =[1...N]
Scores: s, = vector length M

We want to optimize the joint probability of
all the labels:

p(c,=my, ...,Cy =My | Sy, ---, SN)

Solution 3: Approximated model of
dependencies:

(c4=my,..., C\=My|S1,---, SN) =
i_H_,\P(SJCi:mi) p(cy=my,...,Cy=My)

Z(Sy,..-Sy)

p(c,=m,,...,c\=my) = exp(21d>N(ci=mi, c=m,))

i,j=1...

®(c;=m;, ¢;=m;) = co-ocurrence matrix on
training set (count how many times two
objects appear together).

Problem: learning p(c,=m,,...,c=my) will

be easier, but recognition may still be slow.
164



®(c;=m;, ¢;=m;) = co-ocurrence matrix on
training set (count how many times two

objects appear together).

MSRC training data

bui|ding 7518 29 336 9 7 1810
(31 18933823153914 7 7 3 1

(-] 203863 6 436129 4 i
23623 4 4
15 15 1
861518 4 3
15 15
124 118 434 1
4 428111
3 1120
1
1

7
3

21 25051 B ¢ 18 12
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A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007
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A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



Objects in context

Torralba, Sinha (2001) Torralba Murphy Freeman (2004)

Fink & Perona (2003)

C. face b
feature
from face
detection

i‘ﬁ"‘ .
Pl A,

Sudderth, Torralba, © TENNIS

A. eye
feature
from
raw
image

image
. RACKET
Wilsky, Freeman (2005)

B. face D. eye
feature feature =
ff°“_‘ from eye
raw detection
image image

Image
Horizon\ Pplane
Posmon\

Kumar, Hebert (2005)

Object Image

Camera
Height

*
*

Heitz and Koller (2008)
N t:? 7 S ‘.‘._:,:v i
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Object-Object Relationships

Fink & Perona (NIPS 03)

Use output of boosting from other objects at previous
iterations as input into boosting for this iteration

A. eye C. face m E. mouth
feature feature ‘ feature
from from face ! from eye
raw detection detection
HERSES image image
B. face D. eye F. face
feature feature feature
from from eye " from lm.mth
raw detection d;tectmn
image imace image

Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows
of raw images for legibility). The windows’ scale is defined by the detected object
size and by the map mode (local or contextual). C. faces are detected using face
detection maps H s . exploiting the fact that faces tend to be horizontally allgned



Pixel labeling using MRFs

Enforce consistency between neighboring
labels, and between labels and pixels

P(L,z) = P(L)P(z|L) = [—H H wzg(Lz,L )][H P(x;|L;)]

Carbonetto, de Freitas & Barnard, ECCV’04



Beyond nearest-neighbor grids

e Most MRF/CRF models assume nearest-
neighbor graph topology

* This cannot capture long-distance
correlations

) ) TanY N\ T
A A N p NS




Dynamically structured trees

« Each node pick its parents
(Storkey& Williams, PAMI’03)

« 2D SCFGs

(Pollak, Siskind, Harper & Bouman ICASSP’03)

4 5 =
(a) (b)



Object-Object Relationships

Use latent variables to induce long distance correlations
between labels in a Conditional Random Field (CRF)

Local
Classifier

OEOOOIOOO

@'_—C_)_—_"'_"_'

Regional
Features

[0 Q.10 0 0iof0. ,
10 0 00 0i0!0 0000 O
‘0 0 0|0 000 0I0 000
/00000000000 O
000000 O0O00 0

Input Image

000000800000

Label Field

RBM

Hidden

Variables

Label
Nodes

He, Zemel & Carreira-Perpinan (04)



Object-Object Relationships

[Kumar Hebert 20035]



3d Scene Context

Support Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid

Object
Surface?

Support? [Hoiem, Efros, Hebert ICCV 2005]




Using stuff to find things

Heitz and Koller, ECCV 2008

In this work, there is not labeling for stuff. Instead, they look for clusters of
textures and model how each cluster correlates with the target object.




W @ and @ Classifying

even 5cene andg object recognition

event: Rowi gg

Head of the Charles, Qctober, 2003 © S1on Grphles Head of the Charlesn, October, 20023 e

scene: Lake

L-JLi& L. Fei-Fei, ICCV 2007



event:Bocce -

scene:Bocce court

Slide by Fei-fei L.-J. Li & L. Fei-Fei ICCV 2007



Grammars

LINEAR~:
BOUNDARY,

TBRIGHTT
INTENSITY){SATURATIO

Guzman (SEE), 1968

Noton and Stark 1971

Hansen & Riseman (VISIONS), 1978
Barrow & Tenenbaum 1978

Brooks (ACRONYM), 1979

[Ohta & Kanade 1978] Marr, 1982
Yakimovsky & Feldman, 1973




Grammars for objects and scenes

(a) A"d'()r gl.aph Slrwlf“'h_"” Imaigee

Ty ( .() Ound-nudc
= »
".‘"..r Or=noxls
D leaf-node
== =1

- ------ { Frames | {Muambers |
\\ / N~ \._/\

Ahands 2 hands Rectangle Octagon Round Diamond Arabic Roman

. @00 | @) m P —
[, frame lu|rlL|u| A

PR S N

SPB:TETDI'

" | al ol @12 ) M
AR S T L SR P e S S
:,‘-_‘z._:»_:‘ Bl -»/m;
face texture chrve grops textum\\\\\ "_,/ p [jé?ﬁ;”s
color reglon vtext tre
[ ] ‘ , .
IR L2 2 e 121 | X0 Example: parsing (Tuetal, 2000-2004)

S.C. Zhu and D. Mumford. A Stochastic Grammar of Images.
Foundations and Trends in Computer Graphics and Vision, 2006.



Who needs context anyway?
We can recognize objects even out of context




