Lecture 9

Image formation
Image formation

3D world

2D image

Point of observation

Figures © Stephen E. Palmer, 2002
Cameras, lenses, and calibration

- Camera models
- Projection equations

Images are projections of the 3-D world onto a 2-D plane…
The structure of ambient light
The structure of ambient light
The intensity P can be parameterized as:

$$P(\theta, \phi, \lambda, t, X, Y, Z)$$

“The complete set of all convergence points constitutes the permanent possibilities of vision.” Gibson
Measuring the Plenoptic function

Why is there no picture appearing on the paper?
Light rays from many different parts of the scene strike the same point on the paper.
Measuring the Plenoptic function

The camera obscura
The pinhole camera
The pinhole camera only allows rays from one point in the scene to strike each point of the paper.
Pinhole camera

Photograph by Abelardo Morell, 1991
Problem Set 1

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html
Problem Set 1
Effect of pinhole size

(A) Source

(B) Source

Wandell, Foundations of Vision, Sinauer, 1995
2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred. (B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.
Fig. 1.6 A patch of light sensitive epithelium can be gradually turned into a perfectly focussed camera-type eye if there is a continuous selection for improved spatial vision. A theoretical model based on conservative assumptions about selection pressure and the amount of variation in natural populations suggest that the whole sequence can be accomplished amazingly fast, in less than 400 000 generations. The number of generations is also given between each of the consecutive intermediates that are drawn in the figure. The starting point is a flat piece of epithelium with an outer protective layer, an intermediate layer of receptor cells, and a bottom layer of pigment cells. The first half of the sequence is the formation of a pigment cup eye. When this principle cannot be improved any further, a lens gradually evolves. Modified from Nilsson and Pelger (1994).
Measuring distance

- Object size decreases with distance to the pinhole
- There, given a single projection, if we know the size of the object we can know how far it is.
- But for objects of unknown size, the 3D information seems to be lost.
Playing with pinholes
Two pinholes
What is the minimal distance between the two projected images?
Anaglyph pinhole camera
Anaglyph pinhole camera
Anaglyph pinhole camera
Synthesis of new views

Anaglyph
Problem set

• Build the device
• Take some pictures and put them in the report
• Take anaglyph images
• Work out the geometry
• Recover depth for some points in the image
Shadows?
Accidental pinhole camera
Window turned into a pinhole

View outside
"a camera obscura has been used ... to bring images from the outside into a darkened room"
Window open

Window turned into a pinhole
Making a pinhole with home materials
Making a pinhole with home materials
An hotel room, contrast enhanced.

The view from my window

Accidental pinholes produce images that are unnoticed or misinterpreted as shadows.
Another hotel room
Accidental pinholes in outdoor scenes

Pierre Moreels father (source: facebook)
Accidental pinhole camera

Visualizing the convolution
Anti-pinhole imaging

ADAM LLOYD COHEN
Parmly Research Institute, Loyola University of Chicago,
Chicago, Illinois 60626, U.S.A.

(Received 16 April 1981; revision received 8 July 1981)

Abstract. By complementing a pinhole to produce an isolated opaque spot, the light ordinarily blocked from the pinhole image is transmitted, and the light ordinarily transmitted is blocked. A negative geometrical image is formed, distinct from the familiar ‘bright-spot’ diffraction image. Anti-pinhole, or ‘pinspeck’ images are visible during a solar eclipse, when the shadows of objects appear crescent-shaped. Pinspecks demonstrate unlimited depth of field, freedom from distortion and large angular field. Images of different magnification may be formed simultaneously. Contrast is poor, but is improvable by averaging to remove noise and subtraction of a d.c. bias. Pinspecks may have application in X-ray space optics, and might be employed in the eyes of simple organisms.
Pinhole and Anti-pinhole cameras

Adam L. Cohen, 1982
Natural eyes

Lenses

Pinholes

Anti-pinholes

nautilus

Euglena?
Mixed accidental pinhole and anti-pinhole cameras
Mixed accidental pinhole and anti-pinhole cameras
Mixed accidental pinhole and anti-pinhole cameras

Room with a window Person in front of the window Difference image

\[
\text{Room with a window} - \text{Person in front of the window} = ?
\]
Mixed accidental pinhole and anti-pinhole cameras
Mixed accidental pinhole and anti-pinhole cameras

Body as the occluder

View outside the window
Looking for a small accidental occluder.
Looking for a small accidental occluder

Body as the occluder

Hand as the occluder

View outside the window
Camera Models
Right - handed system
Perspective projection

Cartesian coordinates:
We have, by similar triangles, that
\((x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z}, -f)\)

Ignore the third coordinate, and get
\((x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})\)
Geometric properties of projection

- Points go to points
- Lines go to lines
- Planes go to whole image or half-planes.
- Polygons go to polygons
- Degenerate cases
 - line through focal point to point
 - plane through focal point to line
Vanishing point

camera

z

y
Vanishing Points close to the object

http://www.ider.herts.ac.uk/school/courseware/graphics/two_point_perspective.html
Vanishing points

- Each set of parallel lines (=direction) meets at a different point
 - The *vanishing point* for this direction
- Sets of parallel lines on the same plane lead to *collinear* vanishing points.
 - The line is called the *horizon* for that plane
Line in 3-space

\[x(t) = x_0 + at \]
\[y(t) = y_0 + bt \]
\[z(t) = z_0 + ct \]

Perspective projection of that line

\[x'(t) = \frac{fx}{z} = \frac{f(x_0 + at)}{z_0 + ct} \]
\[y'(t) = \frac{fy}{z} = \frac{f(y_0 + bt)}{z_0 + ct} \]

In the limit as \(t \to \pm \infty \)
we have (for \(c \neq 0 \)):

\[x'(t) \to \frac{fa}{c} \]
\[y'(t) \to \frac{fb}{c} \]

This tells us that any set of parallel lines (same \(a, b, c \) parameters) project to the same point (called the vanishing point).
What if you photograph a brick wall head-on?
Brick wall line in 3-space

\[
x(t) = x_0 + at \\
y(t) = y_0 \\
z(t) = z_0
\]

Perspective projection of that line

\[
x'(t) = \frac{f \cdot (x_0 + at)}{z_0} \\
y'(t) = \frac{f \cdot y_0}{z_0}
\]

All bricks have same \(z_0\). Those in same row have same \(y_0\).

Thus, a brick wall, photographed head-on, gets rendered as set of parallel lines in the image plane.
Other projection models:
Orthographic projection

\[(x, y, z) \rightarrow (x, y)\]
Other projection models: Weak perspective

• Issue
 – perspective effects, but not over the scale of individual objects
 – collect points into a group at about the same depth, then divide each point by the depth of its group
 – Adv: easy
 – Disadv: only approximate

\[
\begin{pmatrix}
\frac{fx}{z_0} \\
\frac{fy}{z_0}
\end{pmatrix}
\]
Three camera projections

(1) Perspective: \((x, y, z) \rightarrow \left(\frac{fx}{z}, \frac{fy}{z} \right)\)

(2) Weak perspective: \((x, y, z) \rightarrow \left(\frac{fx}{z_0}, \frac{fy}{z_0} \right)\)

(3) Orthographic: \((x, y, z) \rightarrow (x, y)\)
Three camera projections

Perspective projection

Parallel (orthographic) projection

Weak perspective?
Homogeneous coordinates

• Is this a linear transformation?
 • no—division by z is nonlinear

Trick: add one more coordinate:

\[
(x, y) \Rightarrow \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

homogeneous image coordinates

\[
(x, y, z) \Rightarrow \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

homogeneous scene coordinates

Converting *from* homogeneous coordinates

\[
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix} \Rightarrow (x/w, y/w)
\]

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} \Rightarrow (x/w, y/w, z/w)
\]
Perspective Projection

• Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1/f & 0 \\
0 & 0 & 1/f & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
z/f \\
1
\end{bmatrix} \Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]

This is known as perspective projection

• The matrix is the projection matrix
Perspective Projection

How does scaling the projection matrix change the transformation?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1/f & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
Z/f \\
1
\end{bmatrix}
\Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]

\[
\begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
fx \\
fy \\
z \\
1
\end{bmatrix}
\Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]
Orthographic Projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

- Also called “parallel projection”

- What’s the projection matrix?

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
= \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} \Rightarrow (x, y)
\]

Slide by Steve Seitz
Orthographic Projection

Special case of perspective projection
• Distance from the COP to the PP is infinite

Also called “parallel projection”
• What’s the projection matrix?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\Rightarrow (x, y)

Slide by Steve Seitz
Homogeneous coordinates

2D Points:

\[p = \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow p' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \]

\[p' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \rightarrow p = \begin{bmatrix} x' / w' \\ y' / w' \end{bmatrix} \]

2D Lines: \(ax + by + c = 0 \)

\[\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 \]

\[l = \begin{bmatrix} a & b & c \end{bmatrix} \Rightarrow [n_x, n_y, d] \]

\((n_x, n_y) \)
Homogeneous coordinates

Intersection between two lines:

\[a_2 x + b_2 y + c_2 = 0 \]
\[a_1 x + b_1 y + c_1 = 0 \]

\[l_1 = \begin{bmatrix} a_1 & b_1 & c_1 \end{bmatrix} \]
\[l_2 = \begin{bmatrix} a_2 & b_2 & c_2 \end{bmatrix} \]

\[x_{12} = l_1 \times l_2 \]
Homogeneous coordinates

Line joining two points:

\[\begin{align*}
 \mathbf{p}_1 &= \begin{bmatrix} x_1 & y_1 & 1 \end{bmatrix} \\
 \mathbf{p}_2 &= \begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix}
\end{align*} \]

\[l = \mathbf{p}_1 \times \mathbf{p}_2 \]

\[ax + by + c = 0 \]
2D Transformations
2D Transformations

Example: translation

\[x' = x + t \]
2D Transformations

Example: translation

\[x' = x + t \]

\[x' = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \]
2D Transformations

Example: translation

\[x' = x + t \]

\[x' = \begin{bmatrix} I & t \end{bmatrix} \bar{x} \]

\[\bar{x}' = \begin{bmatrix} I & t \\ 0^T & 1 \end{bmatrix} \bar{x} \]

Now we can chain transformations
Translation and rotation, written in each set of coordinates

Non-homogeneous coordinates

\[\mathbf{B} \mathbf{p} = \mathbf{B} \mathbf{R} \mathbf{A} \mathbf{p} + \mathbf{B} \mathbf{t} \]

Homogeneous coordinates

\[\mathbf{B} \mathbf{p} = \begin{pmatrix} \mathbf{B} \mathbf{C} \mathbf{A} \mathbf{p} \end{pmatrix} \]

where

\[\begin{pmatrix} \mathbf{B} \mathbf{C} \end{pmatrix} = \begin{pmatrix} \mathbf{B} \mathbf{R} \mathbf{A} \mathbf{t} \end{pmatrix} \begin{pmatrix} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{1} \end{pmatrix} \]
Translation and rotation

“as described in the coordinates of frame B”

Let’s write

\[\mathbf{B} \mathbf{p} = \mathbf{B} \mathbf{R} \mathbf{A} \mathbf{p} + \mathbf{B} \mathbf{t} \]

as a single matrix equation:

\[
\begin{pmatrix}
 B p_x \\
 B p_y \\
 B p_z \\
 1
\end{pmatrix}
=
\begin{pmatrix}
 - & - & - \\
 - & \mathbf{B} \mathbf{R} & - \\
 - & - & - \\
 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 \mathbf{A} p_x \\
 \mathbf{A} p_y \\
 \mathbf{A} p_z \\
 1
\end{pmatrix}
\]
Camera calibration

Use the camera to tell you things about the world:

– Relationship between coordinates in the world and coordinates in the image: geometric camera calibration, see Szeliski, section 5.2, 5.3 for references

– (Relationship between intensities in the world and intensities in the image: photometric image formation, see Szeliski, sect. 2.2.)
Intrinsic parameters: from idealized world coordinates to pixel values

\[u = f \frac{x}{z} \]
\[v = f \frac{y}{z} \]

Perspective projection
Intrinsic parameters

But “pixels” are in some arbitrary spatial units

\[u = \alpha \frac{x}{z} \]
\[v = \alpha \frac{y}{z} \]
Intrinsic parameters

Maybe pixels are not square

\[u = \alpha \frac{x}{z} \]
\[v = \beta \frac{y}{z} \]
We don’t know the origin of our camera pixel coordinates

\[u = \alpha \frac{x}{z} + u_0 \]

\[v = \beta \frac{y}{z} + v_0 \]
Intrinsic parameters

May be skew between camera pixel axes

\[u = \alpha \frac{x}{z} - \alpha \cot(\theta) \frac{y}{z} + u_0 \]
\[v = \beta \frac{y}{\sin(\theta)} \frac{z}{z} + v_0 \]
Intrinsic parameters, homogeneous coordinates

Using homogenous coordinates, we can write this as:

\[
\begin{pmatrix}
 u \\
 v \\
 1
\end{pmatrix}
=
\begin{pmatrix}
 \alpha & -\alpha \cot(\theta) & u_0 & 0 \\
 0 & \beta & v_0 & 0 \\
 0 & \frac{\beta}{\sin(\theta)} & 1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

or:

\[
\vec{p} = K \begin{pmatrix} C \end{pmatrix}
\]

In pixels

In camera-based coords
Extrinsic parameters: translation and rotation of camera frame

\[\overrightarrow{p}_c = \overrightarrow{R}_W \overrightarrow{p}_w + \overrightarrow{t}_W \]

\[
\begin{pmatrix}
\overrightarrow{p}_c \\
\overrightarrow{t}_W
\end{pmatrix}
=
\begin{pmatrix}
\overrightarrow{R}_W & | \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\overrightarrow{p}_w \\
1
\end{pmatrix}
\]

Non-homogeneous coordinates

Homogeneous coordinates
Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

\[
\mathbf{p}^c = \mathbf{K} \mathbf{c} \mathbf{p}^c
\]

\[
\begin{pmatrix}
\mathbf{c} \mathbf{p}^c
\end{pmatrix}
= \begin{pmatrix}
- & - & - \\
- & \mathbf{c} \mathbf{R} & - \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\mathbf{c} \mathbf{t} \\
\mathbf{w} \mathbf{p}
\end{pmatrix}
\]

\[
\mathbf{p} = \mathbf{K} \left(\begin{array}{cc}
\mathbf{c} \mathbf{R} & \mathbf{c} \mathbf{t}
\end{array} \right) \mathbf{w} \mathbf{p}
\]

\[
\mathbf{p} = \mathbf{M} \mathbf{w} \mathbf{p}
\]
Other ways to write the same equation

\[\vec{p} = M^w \vec{p} \]

\[
\begin{pmatrix}
 u \\
 v \\
 1 \\
\end{pmatrix}
=
\begin{pmatrix}
 \cdot & m_1^T & \cdot \\
 \cdot & m_2^T & \cdot \\
 \cdot & m_3^T & \cdot \\
\end{pmatrix}
\begin{pmatrix}
 w p_x \\
 w p_y \\
 w p_z \\
\end{pmatrix}

\begin{align*}
u &= \frac{m_1 \cdot \vec{P}}{m_3 \cdot \vec{P}} \\
v &= \frac{m_2 \cdot \vec{P}}{m_3 \cdot \vec{P}}
\end{align*}

Conversion back from homogeneous coordinates leads to:
Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation

$$
X = \begin{bmatrix}
sx \\
sy \\
s
\end{bmatrix}
= \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix} = \Pi X
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\Pi = \begin{bmatrix}
-fs_x & 0 & x'_c \\
0 & -fs_y & y'_c \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
R_{3x3} & 0_{3x1} \\
0_{1x3} & 1 \\
0_{1x3} & 1
\end{bmatrix}
$$

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another