Chapter 6

Color

Tuesday, Sept. 10, 2013 MIT EECS course 6.869, Bill FreemdnAatonio Torralba

Figure 6.1: Mixing of the colors of cleaning fluids: The blgesen of Windex and the yellow of Joy
make green.

My first experience with color science happened when | wasld.diplaced my yellow ski goggles
over a light blue bedspread and saw a color different thareeif those two— green! It was magical.
(The scene is re-enacted in Fig. 6.1 using cleaning fluidsw&# see from our analysis shortly, the
light blue bedspread would probably better be called “cyaolor theory is a wonderful mixture of
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mathematics and aesthetics.

Why do we need color vision? People with color deficits canrmenare of their deficiencies relative
to other peoples’ visual systems and can function just firtaénworld. Yet color makes vision much
easier: it lets us isolate objects in front of backgroundferiphysical properties of foods and surfaces
(check whether fruit is ripe), and tell whether our childeae sick by looking at the color of their skin.

We'll first describe the physics of color, then discuss ouception of it—the physiology and psychophysics—
, and finally address how we make inferences about the waid @rolor measurements.

6.1 Color physics

Figure 6.2: Isaac Newton’s illustration of experimentshwlight. White light enters from a hole in
the window shade at the right, where it is focused with a lemsthen passes through the triangularly
shaped prism. The prism bends the light rays a different atdepending on each color. Those colors
are elemental: if a color is passed through a prism agaimgsiit further break into other colors.

Electromagnetic waves surround us, at wavelengths rarigong shorter than the 0.5 nm of x-rays
through the longer than 5 meters for radio waves. Our eyesarsitve to only a narrow band of that
electromagnetic spectrum, however, from approximatety/ for deep purple to 700 nm for deep red.

What are the properties of light? In experiments summatigelis drawing, shown in Fig 6.2, Isaac
Newton revealed several intrinsic properties. Here, ag@bf sunlight comes in through the window
shade, and a lens focuses the light onto a prism. The prismdi@les the white light up into many
different colors. These colors seem to be elemental: if yie bne of the component colors and pass it
through a second prism, it doesn’t split into further comgus; it just bends.

Such experiments led to our understanding of light and cdamlight has a broad distribution of
light of the visible wavelengths. At an air/glass interfdaght bends in a wavelength-dependent manner,
so a prism disperses the different wavelength componergardight into different angles, and we see
the different wavelengths of light as different colors, thédse do not further subdivide into other colors.



(b)

Figure 6.3: (a) A spectrograph constructed using a compskt@D). Light enters through a slit at the
right, diffracting from the narrowly spaced lines of the QB) Photograph of diffraction pattern from
sunlight, seen thorugh hole at bottom left.

Another simple experimental set-up to reveal the spectriitigint, using very accessible parts, is
the CD spectrometer depicted in Fig. 6.3 (a). Light passesigh the slit at the right, and strikes a CD
(with a track pitch of about 1600 nm). Constructive integfeze from the light waves striking the CD
tracks occurs at a different angle for each wavelength ofigie, yielding a separation of wavelengths
by diffracting angle. The diffracted light can be viewed twopographed through the hole at the bottom
left. (For construction details and more examples, seertrignice web page:

http://www.cs.cmu.edu/"zhuxj/astro/html/spectromete r.html

6.1.1 Radiometry and simplified reflection model

We can characterize the light by its power at each of the iesitavelengths, Fig. 6.4 shows a number of
different light sources, and the spectra of the light thejt.em

Light interacting with matter

We see through the interaction of light with matter. Whehtligtrikes a surface, it re-radiates with a dis-
tribution of directions and intensities at each wavelen#t depends on the properties of the reflecting
surface. The distribution of the outgoing light also desead properties of the incoming light, one of
the many reasons why vision is difficult.

We can summarize the changes to the light upon surface ieflegith a “bi-directional reflectance
distribution function”, or BRDF. The function is called “Wirectional” because it depends on both the
direction of the light incident on the surface and on thedliom of the reflected light being characterized.
The BRDF of a surface characterizes, for each wavelengtHralational change in the spectral power of
light reflecting off the surface as a function of the anglenafidence of the light to the surface, and the
viewing (reflection) angle. Shiney surfaces reflect mosheflight into a single angle. Diffuse surfaces
scatter the light broadly over a hemisphere of directions.
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Figure 6.4: (a) and (b): Plots of the power spectra of blueasky a tungsten light bulb. Photographs
show (c) a flourescent light and (d) its spectrum as vieweH thi¢ spectrograph of Fig. (6.3) (a).



In this chapter, to simplify our study of surface appearanee will ignore many of the rich de-
tails of the BRDF. We will assume that the observed power tepecof the reflected light does not
depend on either the angles of incidence or reflection frarsthrface. That is commonly the case for
diffuse reflections Under such conditions, the power spettof the reflected lightR(\), is simply a
wavelength-by-wavelength product of the illumination gowpectrum/ () and the surface reflectance
spectrum,S(A):

R(N) =1(N)S(N) (6.1)

Wavelength-by-wavelength multiplication is also a gooddeddor spectral changes to light caused by
viewing light through an attenuating filter. The incidentgw spectrum is multiplied at each wavelength
by the transmittance spectrum of the filter.

Even the simple model of Eqg. (6.1) describes a rich visualldvand allows us to make useful
inferences.

(d)

Figure 6.5: Some real-world objects and the reflected ligetsa (photographed using Fig. (6.3) (a))
from outdoor viewing. (a) Leaf and (b) its reflected spectru(m) A red door and (d) its reflected
spectrum.



(d)

Figure 6.6: More real-world objects and the reflected lighgcira. (a) Blue-green chair and (b) its
reflected light. (c) Toby the dog and (d) his reflected spettru
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Figure 6.7: Observed spectra of light reflecting off the atef Source: Forsyth and Ponce, Computer
Vision, Prentice Hall.

6.1.2 Color appearance of various spectra

Figure 6.4 (a) shows some example illumination spectra. spieetrum of blue sky is on the left, and
the spectrum of a tungsten light bulb (which will look orasigiis on the right. Some reflectance spectra
are in Figure 6.7. A white flower reflects spectral power alneggially over all visible wavelengths. A
yellow flower reflects in the green and red.



6.1.3 Cartoon Color Spectra

It's helpful to develop the skill of being able to look at aHigpower spectrum and to know roughly what
color that spectrum would correspond to. Here is a roughriign of what wavelengths correspond
to what perceived colors, with a reference spectrum showdnghly what each individual wavelength,
viewed by itself, looks like. (An engineer at the photogriaptompany, Polaroid, showed this to me. |
think of it as a cartoon color model, a hard-edged approxonab a much softer reality). The visible
spectrum lies roughly in the range between 400 and 700 nm.aWeligide into three one-hundred nm
bands, which, from short to long wavelengths, correspoadsiue, green, and red (again, speaking in
broad strokes). These are often called the additive primalgrs, which we’ll write more about.

White light is a mixture of all spectral colors. There areethiother possible combinations of the
three one-hundred nm bands of wavelengths, and each casdgadsd with a color name: Cyan is a
mixture of blue and green, or roughly spectral power betwk¥hand 600 nm. In printing applications,
this is sometimes called “minus red”, since it is the full cipem, with the red band subtracted. Blue and
red, or light in the 400-500nm band, and in the 600-700nm piarmhlled magenta, or minus green. Red
and green, with spectral power from 500-700 nm, make yelbowninus blue.
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Figure 6.8: Cartoon model for the reflectance spectra ofrabdecolors

6.1.4 Why color is useful

Here is why color is useful: it tells us something about stefain the world. For example, assume we
have a white light source shining on a yellow egg. The ligleoted from the egg, returning to the eye,
will be yellow, letting us know, from a distance somethingabthe properties of the egg’s surface (that
it's yellow).

Let's pose a problem that we’ll address later in the chagi®en that we only observe the product of
the illumination and reflection spectra, how do we know whethie are observing a white egg, viewed
under yellow illumination, or a yellow egg, viewed under wehilumination? See Fig. 6.23.

Before we address color appearance, we continue with twe msues with the physical properties
of light spectra: color mixing, and low-dimensional models



6.1.5 Color mixing

A light of one spectrum and color, shining on a surface of lagotolor spectrum produces a third color
whose spectrum is the wavelength-by-wavelength produtiteofwo colors, as described by Eq. (6.1).
This can be thoughtof as a form ajdlor mixing, where the illumination color and the surface reflectance
color mix to form the color of the reflected light.

There are two different ways that spectra combine when wecaiors together. While the precise
way two spectra combine may depend on the details of thesmwrgling physical process, these two
methods are a good model for many physical processes.

The first way is called additive color mixing. This is the waestra combine when you project two
lights simultaneously, so they are summed in our eye. CRir¢elevisions, DLP projectors, and colors
viewed very closely in space or time all exhibit additivearahixing. The spectrum of the mixed color
is a weighted sum of the spectra of the individual componelmighe additive color mixing model, in
our cartoon color model, red and green combine to give yellow

The second way colors combine is called subtractive colaingj but might make more sense to be
called multipliciative color mixing. This is the mixing afght reflecting off a surface. Under this mixing
model, the spectrum of the combined color is proportionsthéoproduct of the mixed components. This
color mixing occurs when light reflects off a surface, or pagtirough a sequence of attenuating spectral
filters, such as with photographic film, paint, optical fiteand crayons. An example of color mixing
under the subtractive model, cyan and yellow combine to gireen, since the cyan filter attenuates the
red components of white light, and yellow filter would remakie remaining blue components, leaving
only the green spectral region of the original white light.

Figure 6.9 shows the cartoon spectra of these color mixiagngies.
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Figure 6.9: Examples of color mixing, in the world of cartamslor spectra. (a) In additive mixing, red
and green combine to give yellow. (b) Under subtractive ngixcyan and yellow mix to give green.



6.1.6 Low-dimensional models for spectra

Before we turn to color perception, let's introduce a matagecal model for light spectra that makes
them much easier to work with. In general, when modeling tbhddy we want to keep everything as
simple as possible, and that usually means working withasifgrees of freedom as possible. Color
spectra seem like relatively high-dimensional objects¢esiwe can pick any combination of numbers,
from 400 to 700 nm, as we'd like. Even sampling only every 10 afmvavelength, that gives us 31
numbers for each spectrum.

It turns out that for many real-world spectra, those 31 numbee not independent and in practise
spectra have far fewer degrees of freedom. Itis common ttousdimensional linear models to approx-
imate real-world reflectance and illumination spectra. Aiwen spectrum, sag(\), is approximated
as some linear combination of “basis spectig’)). For example, a 3-dimensional linear modelSgh )
would be

: : : : w1
SA) | = wi(N) wa(N) ws(A) w2 (6.2)
. . . . ws

The basis spectra can be found from a collection of trainpagsa. If we write the training spectra
as columns of a matrix), then performing a singular value decomposition/ogields

D=UxAxV (6.3)

whereU is a set of orthonormal spectral basis vectdrss a diagonal matrix of singular values, aWd
is a set of coefficients. The first columns ofU are then basis spectra that can best approximate the
spectra in the training set, in a least squares sense.

Figure 6.10 shows a demonstration, with a particular ctlacf surface reflectance spectra(\)
that this works quite well. The “Macbeth Color Checker”, altof color scientists and engineers, is a
standard set of 24 color tiles, always made the same wayd-ga0 (a). (So iconic that this woman,
Figure 6.10 (b), a dedicated color scientist, | presumefdtased a Macbeth color checker on her arm!
Alas, I'm sure the tatoo colors can only be an approximatmtié real Macbeth colors).

The reflectance spectra of each Macbeth color chip has beasuneel. The first four basis spectra,
calculated using the measured reflectance spectra and.Byj.df shown in Figure 6.10 (c). The rows
of Figure 6.10 (d) show the Macbeth color checker spectraptimally approximated by 1, 2, and 3
basis functions, respectively. The spectra are pretty aygiroximated by a 3-dimensional linear model,
as you can see from the plots.
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Figure 6.10: (a) The Macbeth color checker, of such icortustthat a woman (b) has tatooed it on her
arm. The bottom two figures are from Foundations of VisionBlokan Wandell, Sinauer Assoc., 1995
(c) Basis functions from which the Macbeth color checkeretfince spectra can be approximated, in
(d), using 1, 2, and 3 basis functions (each row of (d), botimhop).

98 A LINEAR MODEL TO APPROXIMATE THE SLURFACE REFLECTANCES IN THE



6.2 Color measurement: assigning categories and numbers tolor spec-
tra

Now, we turn to the measurement of color appearance. Do@fllp@eceive colors in the same way? Not
all human languages divide up the space of all colors in theesgroupings, which, in principle, could
imply differences in perception among those different hargeoups. For example, some languages,
which tend to be spoken by people at high northern latitudiegje up the colors that English speakers
call “blue” into a finer set of categories,

http://www.nature.com/news/2007/070430/full/news070 430-2.html.

There may be cultural or physiological reasons why peopladiin such locations would form finer
categories of particular color shades.

L

Figure 6.11: English speakers lump all these shades inte*pivhile Russian speakers put them into
two different verbal categories.

Despite these differences across languages, it turns auirthst humans match colors very consis-
tently and one can reliably assigh humbers that predict coliches.

If you can assign coordinates to a color percept, there areadthwof applications. You can build a
machine to display colors that match some desired outputc®o ensure that the colors of manufactured
items are consistent. Companies can trademark colors, seeeto be able to specify what is being
trademarked. We have color standards for foods, for exarfpyeire 6.12 shows a chart showing french
fry color standards, one among many standards for food €olor

To see how to quantify colors, we first need to understand tehinery of the eye.
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Figure 6.12: French fries color standard



6.2.1 The machinery of the eye

Given that spectra are generally low-dimensional, an asgaloesn’t need a large number of spectral
measurements to measure natural spectra. For our colonyigur eyes have three different classes
of photoreceptors, which determines the fact that therghaee primary colors, three color layers in
photographic film, three colors of dots on a display screed,veéhy two color coordinates are needed to
specify any color, independent of its overall intensity€tcolor dimensions, minus one for the overall
color normalization).

What is the machinery of human vision? Here is a drawing ofdldeand cones of the eye, and some
of the nerve cells connecting them. The tall ones are theandghe short ones are the cones, both at the
top layer. By the way, where does the light come in, in thisuilng? Differently than how you or | might
design things, the light comes in at the bottom, passes dghrthe nerve fibers and blood vessels, then
reaches the photosensitive detectors at the top of the inEagdution may have determined that there
are benefits to having the photodetectors on the inside,eathely can more easily receive nourishment
from blood vessels.

The retina consists of 3 classes of color receptors. Figutd @) shows the variability of the
numbers and spatial layout of color receptors (the red,ngrand blue of the figure is *much* more
saturated than the spectral sensitivities of the cone tecelasses are). The 3 cone classes are denoted
L, M, and S, for whether they are sensitive to the long, middieshort wavelengths of the visible
spectrum. The spectral sensitivity curves are shown in6zig (c).

In some sense, Fig. 6.13 (c) tells the whole story of spectrased color perception. Three detectors,
with the spectral sensitivitie®;(A) shown here, signal their response to an incoming light spext
I(X). The responsey; of a cone of color classis

= /A Ri(NI(A)dA (6.4)

This can be thought of as projection of the incoming lightcépen onto the three basis vectdRs(\),
projecting the high-dimensional input spectrum onto arBefisional subspace.

The fact that there are three different detectors meansuwddt3 numbers to describe a perceived
color in the world ( or 2 numbers, if we normalize for integ}it The shapes of those curves tell us
which real-world spectra will look the same to us (becausg’ihgive the same trio of photoreceptor
responses) and thus will tell us how make one color look liketlaer one.

To help understand how color is measured, and the expesntiesit taught us what we know about
color vision, let’'s examine the psychophysical experiraehat were done to learn what we know about
color perception.

6.2.2 Color matching

Color perception measurement is mostly about color magchive try to match a color with an additive

combination of a set of reference colors, typically callédary colors. Through experimentation, it has
been found that we can match the appearance of any colowgtnelinear combination of three primary
colors, stemming from the fact that we have three classebhaibpeceptors in our eyes.

In this section, we're assuming that the color appearaneatisely determined by the spectrum of
the light arriving at the eye. To ensure that this is true eéRperiments, care must be taken to view the
color comparisons under repeatable, controlled surrogndolors, because such details can influence
the color percept. We shine a controllable combination efghmary lights on one half of a bipartite
white screen, and the test light on the other half, see Fig. @&). A grey surround field is placed around
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Figure 6.13: (a) Drawing of the eye’s photoreceptors by thanh physiologist, Ramon y Cajal. (b)
View of 9 different human foveas, with the cone receptor $yfle M, or S) marked (in R, G, and B,
respectively). [citation below] (c) Spectral sensitiegtiof the L, M, and S cones.

The Journal of Neuroscience, 19 October 2005, 25(42): 9669- 9679; doi:
10.1523/INEUROSCI.2414-05.2005, Organization of the Hum an Trichromatic Cone Mosaic,
Heidi Hofer, Joseph Carroll, Jay Neitz, Maureen Neitz, and D avid R. Williams



the viewing aperture, giving a view to the subject that losésething like that of the right hand side of
Fig. 6.14 (a).

Finally, we arrive at how we can assign a number to any colak B set of 3 lights, called pri-
maries, and see what combination of these primaries isnegjth match any given color. This gives a
(reproducible) representation for the color at the leftyati take these amounts of each of the selected
primaries, you'll match the input color.

What if our three selected primiaries don't let us reach éis¢¢olor? Fig. 6.14 (b) shows an example
of that. It turns out we can always match any input test cdlarei “add negative light”, which means to
add positive light to the other side of the test comparison.

Human color matching has elegant properties that help usidescolors using linear algebra. Most
every desirable linear property is satisfied with such caolatching experiments. Here's one of them:
if color A; matches colo3;, and color4, matches coloB,y, then the sum of colorgl; and A, will
match the sum of color8; and Bs.

That tells us that if we represent a color by the amount of therBaries needed to make a match,
or any number proportional to that, then we’ll be able to usé&a vector space representation for color,
where the observed linear combination laws will be obeyed.

That's the psychophysics. We also have in the back of oursh#a& mechanistic view for how
colors generate signals in our brain: the light power spettgets projected onto the 3 photoreceptor
classes spectral sensitivity curves, generating thredoatsnthe L, M, and S cone responses, which are
the signal for that color. If we can adjust the primary coloraaunts,a, a2, andag, so that their sum
generates the same set of photoreceptor signals when eidj@ato the photoreceptor spectral response
curves, we have matched the color.

6.2.3 Linear algebraic interpretation of color perception

The psychophysics result leads to a linear algebraic ird&on of color. Let the space of all possible
spectral signals be N-dimensional. In this figure, we dehmtas a 3-dimensional space. The generation
of cone response for a given spectral sensitivity curve @athbught of as projecting a N-dimensional
signal onto a basis function and recording the resultingeptmn length. If we record the response of the
three different spectral sensitivity curves, we are maaguthe projection of our N-d vector onto each
of three linearly independent basis vectors. Thus, a trigfleone responses maps onto some coordinate
in a 3-dimensional subspace (depicted as a 2-d plane heiteg ofiginal N-dimensional space.

Viewed that way, then the task of color measurement is sirtifytask of finding the projection of
any of the possible N-d spectra into the special 3-d subgpefoged by the cone spectral response curves.
Any basis for that 3-d subspace will serve that task. Eqeivil, we seek to predict the cone responses
to any spectral signal, and projection of the spectral $igneo any 3 independent linear combinations
of the cone response curves will let us do that.

So we can define a color system by simply specifying its 3-&gabe basis vectors. And we can
translate between any two such color representations bylh\siapplying a general 3x3 matrix transfor-
mation to change basis vectors. Note, the basis vectors tdoeral to be orthogonal, and most color
system basis vectors are not.

Long before scientists had measured the L, M, and S speetnaitiwity curves of the human eye,
others had measured equivalent bases through psychoghgsgperiments. It is interesting to observe
how such curves could be measured psychophysically.
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4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and
adjusts the intensities of the three primary lights to match the appearance of the test
light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to
the observer. After Judd and Wyszecki, 1975.
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Figure 6.14: (a) Color matching experiment (From Brian Wahé&oundations of Vision, Sinauer, 1995).
(b) Vector model for color matching experiment. Primanhtigcan synthesize a cone of possible colors.
If a desired color to match is outside that cone, we can addnaapy color to the test light until it is
inside the feasible cone. Adding a light to the test lighesigt), is the same as subtracting it from the
primaries, but doesn't require negative light intensity.



Color matching functions

Here’s what we can do to find such basis vectors, called “colaiching functions”, for any given set of

primary lights. We exploit the linearity of color matchingdafind the primary light values contributing

to a color match, one wavelength at a time. So for every pueetsgd color as a test light, we measure
the combination of these three primaries required to colatchnlight of that wavelength. For some
wavelengths and choices of primaries, the matching wilblve negative light values, and remember
that just means those primary lights must be added to théidghsto achieve a color match.
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Figure 6.15: Psychophysically measured color matchingtions.

Figure 6.15 is an example of such a measured color matchimgiun, for a particular choice of
primaries, monochromatic laser lights of wavelengths $4525.3, and 444.4 nm. We can see these
matches are behaving as we would expect: when the spedtréibte wavelength reaches that of one of
the primary lights, then the color matching function is 1ttwat primary light, and O for the two others.

Because of the linearity properties of color matching, égsy to derive how to control the primary
lights in order to matctany input spectral distribution{(\). Let the three measured color matching
functions bec;(\), fori = 1,2, 3. Let the matrixC be the color matching functions arranged in rows,

C1 (/\1) Cl(/\N)
C=1 ca(M) c2(An) (6.5)
c3(A1) c3(AN)
t(M)
Then, by linearity, the primary controls to yield a color atafor any input spectrum = :
t(An)

will be Zj Cijtj = Cf
So there is an infinite space of color matching basis funsttorpick, so it's natural to ask whether
any one choice of bases is better than another. One natwiakcmight be the cone spectral responses

themselves, but those were only measured relatively rigcemd many other systems were tried, and
standardized on, earlier.



=== X}
— Y10
— Z10(A)

1.4

1.2

- K =0\ 22
it \ 2°

VVVVVVV

Ty

1.0

aad

0.8

Tristimulus value

0.6

0.4

0.2

e 400 500 600 700

: - . Wavelength (nm)
Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

(@)

Figure 6.16: (a) CIE color matching functions. (b) The spatall colors (intensity normalized), as
described in the CIE coordinate system.

6.2.4 CIE color space

One standard you should know about, because it's so commaine iCIE XYZ color space. Again, a
color space is simply a table of 3 color matching functionkjoly must be a linear combination of all
the other color matching functions, because they all spasdme 3-d subspace of all possible spectra.
The CIE color matching functions were designed to be alltjpesat every wavelength. They're shown
in Fig. 6.16 (a). What might be the benefit of having an alli{pees set of color matching functions? |
believe they were selected so that it would be simple to kaidachine that used color filters of those
spectral responses to directly measure the color coogdirwdta signal.

A bug with the CIE color matching functions is that there isatigpositive set of color primary lights
associated with those color matching functions. But if tbelgs to simply specify a color from an input
spectrum, then any basis can work, regardless of whether itha physically realizable set of primaries
associated with the color matching functions.

To find the CIE color coordinates, one projects the input spetonto the 3 color matching func-
tions, to find coordinates, called tristimulus values, labeX, Y, and Z. Often, these values are nor-
malized to remove overall intensity variations, and onatteculates: = ﬁ andy = —~%

X1Y+Z:
Fig. 6.16 (b) shows the visible colors (intensity normaligplotted in the CIE coordinatesandy.

6.2.5 Color metamerism

One final topic for the model where power spectral densitgrdeines color is metamerism, when two
different spectra necessarily look the same to our eye.€lierhuge space of metamers: any two vectors
describing light power spectra which give the same prapeadinto a set of color matching functions will
look the same to our eyes.

There’s a sense that our eyes are missing much of the possgilal action. There’s a high-
dimensional space of colors out there, and we're only vigvgrojections onto a 3-d subspace of that.

But in practise, the projections we observe do a pretty gobdof capturing much of the interest-
ing action in images. Given how much information is not cagduby our eyes, hyperspectral images
(recorded at many different wavelengths of analysis) addesdout not a lot, to the pictures formed by



our eyes.

Let us summarize our discussion of color so far. Under genawing conditions, the perceived
color depends just on the spectral composition of lightvergi at the eye (we move to more general
viewing conditions next). Under such conditions, there ssnaple way to describe the perceived color:
project its power spectrum onto a set of 3 vectors calledreuktching functions. These projections are
the color coordinates. We standardize on particular set®lof coordinates. One such set is the CIE
XYZ system.

How do you translate from one set of color coordinates tolarptsay, from the color coordinates
in a unprimed system to those in a primed system? Place tlhramé a set of primary lights into the
columns of a matriXP. If we take the color coordinates, as a 3x1 column vector and multiply them
by the matrixP, we get a spectrum which is metameric with the input spectsiose color coordinates
wereZz. So to convert’ to its representation in a primed coordinate system, wehaat to multiply this
spectrum by the color matching functions for the primed celstem:

7 = C'Pi (6.6)

The color translation matri’P is a 3x3 matrix.
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4.11 METAMERIC LIGHTS. Two lights with these spectral power distributions appear
identical to most observers and are called metamers. (A) An approximation to the
spectral power distribution of a tungsten bulb. (B) The spectral power distribution of
light emitted from a conventional television monitor whose three phosphor intensities

were set to match the light in panel A in appearance.
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Figure 6.17: (a) The cone spectral sensitivity curves catfntaght of as three basis vectors onto which
the observed light spectrum is projected. This takes thetispectrum from a high-dimensional space
(depicted as 3-d here) into a three-dimensional subspagéc(dd as a 2-d plane here). Any two spectra
with the same projection into the 3-d subspace (with the seone responses) will look the same. (b)
Two spectra with the same projection onto the cone respanses; and a depiction of the two spectra
as distinct points in the high-dimensional space of all jbsgpower spectra, projecting onto the same

point in the subspace of possible cone responses.



6.3 Other color coordinate systems

To measure color, we just need to describe point locatiotlimthe subspace of human cone responses,
but we are free to use different projection bases that sarséime 3d subspace. Once we have made the
projection into one coordinate system spanning that 3-dEade, we are free to apply a 3x3 coordinate
transformation matrix to employ a different coordinatetegs There are many such coordinate systems
that have been used to describe colors.

6.3.1 RGB

There are many different standards for color bases callel BBGB, Adobe RGB, etc). Here are the
transformation matrices between the CIE coordinates X, degcribed above and sRGB:

R 324 —1.54 —0.50 X
G | = —-097 1.8 0.04 Y (6.7)
B 0.06 —0.20 1.06 z

The inverse coordinate transformation is:

X 0.41 0.36 0.18 R
y | = 021 072 0.07 G (6.8)
Z 0.02 0.12 0.95 B

6.3.2 YIQ

It is often useful to have one color component corresponddgsgale, or luminance, image variations.
A color basis that does this is the YIQ system, used in the di&®l television standard. Here, Y is
a luminance component (not the CIE Y component), and | andp@esent chromatic variations. The
translation from an RGB system is given here:

Y 0.299 0.587  0.114 R
I | =] 059 —0274 —0.322 G (6.9)
Q 0211 —0.523 0.312 B

6.3.3 Uniform color spaces

All the color systems described have a common drawback:| @gueeptual differences between colors
do not correspond to equal numerical distances in the cefmesentations. Nonlinear transformations
are required to achieve that, typically a cube root. See

http://en.wikipedia.org/wiki/Lab_color_space

for the formulas.

6.4 Spatial Resolution and Color

One reason to transform between color coordinate systetrecause of the human visual response to
different colors. Figure 6.18 shows the contrast sensjtia sinusoids of different spatial frequencies
for a luminance (Y) grating, and two different color compoise(labeled R/Y and B/Y in the plot).



We are much more sensitive to variations in luminance, argptoperty is often exploited in image
compression, processing, and display algorithms. FigbuEs through 6.22 show the effect on the full
color image of blurring different color channels, withirifdrent color representations. Blurred chromatic

components have very little effect on the full-color imagijle a blurred luminance component is quite
noticable.
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SPATIAL FREQUENCY (C/DEG)
Figure 6.1
Contrast sensitivity threshold functions for static luminance gratings
1Y) and Isoluminance chromaticity gratings (R/7Y.B/Y) averaged over

Agec

seven observers.

Figure 6.18: Human spatial frequency sensitivity in R, Gn# &, a, b color representations



(a) Original

(b) R, G, B components

(c) blurred R, G, B components

Figure 6.19: (a) Original image. (b) RGB components (c) R@Biponents, each blurred.



(@) R component blurred (b) G component blurred (c) B component blurred

Figure 6.20: (a) R component blurred, G and B componentpsiiay G blurred, R and B sharp. Green
is the dominant component of the luminance signal, and iblyr& has the most effect on the color
image. (c) B blurred, R and G sharp.



(a) Original

(b) L, a, b components (c) blurred L, a, b components

Figure 6.21: (a) Original image. (b) Lab components (c) Laimponents, each blurred.



(@) L component blurred (b) a component blurred (c) b component blurred

Figure 6.22: (a) L component blurred, a and b componentpgbay effect!). (b) a component blurred,
L and b sharp. (c) b blurred, L and a sharp.



6.5 Color Constancy

Color perception depends strongly on the power spectrureolight arriving at the eye, but it does not
depend only on that. Now we address the assumption that a gpectral power distribution always
leads to the same color percept.

In the demonstration of Fig. 6.24, identical spectral distions arriving at your eye lead to different
color percepts. What's going on? The eyes receive the ptadtite illumination and surface reflectance
spectra, but the visual system may want to let us “see” ther aifl the surface color, independent of
the spectrum of the illumination. So our visual system ndedsliscount the illuminant” and present
a percept of the underlying colors of the surfaces being etgwather than simply summarizing the
product spectrum arriving at the eye. The visual system tigesontext of the other colors is used to
perform that calculation.

Figure 6.23: How do we distinguish an egg that is yellow beeaa yellow illuminant is falling on it,
from a yellow egg?

The ability to perceive or estimate the surface colors ofdhgects being viewed, and to not be
fooled by the illumination color, is called “color constatieyou perceive a constant color, regardless of
the illumination. People have some degree of color congtattiough not perfect color constancy.

For the case where there is just one illumination color iriege, if we know either the illumination
spectrum or any of the surface color reflectance spectra,aweestimate the other from the data. So,
from a computational point of view, you can also think of tlidoc constancy task as that of estimating
the illuminant spectrum from an image.

The rendering equation

Let's examine the computation required to achieve colostmty. Here’s the rendering equation, show-
ing, in our model, how the L, M, and S cone responses fortheatch are generated:

L;
M; | =E"(AZ. «BF) (6.10)
Sj

In the above[;, M;, andS; are the cone responses of thpatch of color. In this matrix equation, we
divide the visible spectrum int®y bins. The three rows of the Nx3 matrik,, are the spectral sensitivity
curves of the three cone classes. The columns of the mAtaxe the surface reflectance spectra basis
functions andr; contains the surface)reflectance basis function coefficients for ik color patch.



Figure 6.24: Color constancy demonstration (made by PrafidBrainard, U. Penn) (a) a set of colors.
(b) The “nothing up my sleeves” picture: the tiny blue squatrthe left, and the large blue square at right
are made from the same filter material. If we cover some of therg with the small blue square, the
colors change their appearance. (c) the white square (&dBrd column) goes to blue, and (d) orange
(1st column, 5th row) goes to green-brown. (e) But if we caléthe colors with the large blue filter,
the colors maintain their original appearance, for the rpast White stays white, orange stays orange.
This is despite the fact that the same spectral signal ihieggour eye for those two patches as when
the small blue squared covered each of them.



“.*” represents term-by-term multiplication. Similarlyhe columns of the matril are the illumination
reflectance spectra basis functions and the v@tmontains the illumination’) spectral basis function
coefficients.

Figure 6.25 shows a graphical diagram showing the vectomaatiix sizes in the above equation.
We have some unknown illuminant, described by, say, a 34uinaal vector of coefficients for the
illumination spectrum basis functions. For thith color patch, we have a set of surface reflectance
spectrum basis coefficients, let’s say also 3-dimensioffdle term-by-term product of the resulting
spectra (the quantity in parenthesis in the top equatiomjrisnodel of the spectrum of the light reaching
our eye. That spectrum then gets projected onto spectiabmesity curves of each of the three cone
classes in the eye, resulting in the L, M, and S response i®rjtih color patch. (An equation for the
RGB pixel color values would be the same, with just a differeatrix E). If we makeN distinct color
measurements of the image, then we’ll havelifferent versions of this equation, with a different vecto

L
J
z7 and different observationg 1/; | for each equation.
Sj
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Figure 6.25: Graphical depiction of Eq. 6.10.

Like various other problems in vision, this is a bilinear lpem. If we knew one of the two sets of
variables, we could find the other trivially by solving a lareequation (using either a least squares or an
exact solution). It's a very natural generalization of thie a 1 problem that Antonio talked about last
week.

Let's notice the degrees of freedom. We get 3 numbers folyevaw color patch we look at, but we
also add 3 unknowns we have to estimate (the spectrum ceet&a‘i;?), as well as the additional three
unknowns for the whole image, the illumination spectrumfficients z*. If only surface color spectra
had only two degrees of freedom, we’d catch up and poteytiale an over-determined problem if we
just looked at enough colors in the scene. Unfortunatelin®nsional surface reflectance models just
don’t work well in practice, so that approach doesn’t work.



6.5.1 Some color constancy algorithms

So how will we solve this? Let’s look at two well-known simpdégorithms, and then we’ll look at a
Bayesian approach.

Bright equals white If we knew the true color of even a single color patch, we'dentdne information
we needed to estimate the 3-d illumination spectrum. Onelsialgorithm for estimating or balancing
the illuminant is to assume that the color of the brightestipaf an image is white. (If you're working
with a photograph, you'll always have to worry about clippei@nsity values, in addition to all the non-
linearities of the camera’s processing chain). If that ésktth patch, and:" are the known spectral basis
coefficients for white, then we have

7. = | M, | =ET(AZY .« BD) (6.11)

which gives a linear equation that we can solve for the unknitiwminant, 7.

How well does it work? It works sometimes, but not always. Dhight equals white algorithm
estimates the illuminant based on the color of a single patat we might expect to get a more robust
illuminant estimate if we use many color patches in the es#gnA second heuristic that’s often used is
called thegrey world assumptiort the average value of every color in the image is assumed goeye

Figure 6.26: An image that violates the grey world assumptio

We take the sum over all sampl¢®n both sides of the rendering equation, Eq. (6.10). Letiifig
be the spectral basis coefficients for grey, which we equetieet average of all the basis coefficients in

the image ;7 >, 7 we have
1 Lj 1 .
i S M) = ET(AM > @« Bi) (6.12)
J S; J
= ET(AZY .« Bi), (6.13)



where we have assumed there &fecolor patches in the image. Now, again, that leaves us wittear
equation to solve fof".

This assumption can work quite well, although, of course,came find images for which it would
completely mess up, such as the forest scene of Fig. 6.26.

Using just part of the data (the brightest color, or even therage color) gives sub-optimal results.
Why not use all the data, make a richer set of assumptionst abedulluminants and surfaces in the
world, and treat this as Bayesian estimation problen? That's what we’ll do now, and what you'll
continue in your homework assignment.

To remind you, in a Bayesian approach, we seek to find the paspgobability of the state we want
to estimate, given the observations we see. We use Bayewmulite that probability as a (normalized)
product of two terms we know how to deal with: the likelihoedr and the prior term. Letting be the
guantities to estimate, anflbe the observations, we have

P(Z]y) = kP (4]7) P(T) (6.14)

wherek is a normalization factor that forces that the integraPgf’|y) over all Z is one. P(Z|y) is the
posterior probability—in this case, the probability of @tee z* of illumination spectral basis coefficients,
and of all the vector§j of surface spectral basis coefficients, given the dataf observationd.;, M;,
and.S; from each color patch. P(y|Z) is called the likelihood term, ani (%) is the prior probability
of any given illuminant and set of surface reflectance bamstsa.

The likelihood term tells us, given the model, how probable dbservations are. If we assume ad-
ditive, mean zero Gaussian noise, the probability thajtheolor observation differs from the rendered
parameters follows a mean zero Gaussian distribution. Reéreeng that the observatiotys are the the
L, M, and S cone responses,

Lj
v =\ M; (6.15)
Sj
we have o
L s 1 —|g; — f(&, 7))
P(yj| 71:]) - W eXp 20_2 ) (616)
For an entire collection aV surfaces, we have
P(F|y) = P& [ [ PG |27, 25 P(35) (6.17)
J

—

reminder: The rendering functionf(az"',fj.), comes from Eq. (6.10). We assume diffuse reflection
from each colored surface. Given basis function coeffisiémt the illuminant,z?, and a matrixB with
the illumination basis functions as its columns, then trexpl illumination as a function of wavelength
is the column vectoBz*. We also need to compuji¢h surface’s diffuse reflectance spectral attenuation
function, the product of its basis coefficients times thefemer spectral basis functionsAz; In our
diffuse rendering model, the reflected power is the ternteogt product (we borrow Matlab notation for
that, .*) of those two. The observation of thiln color is the projection of that spectral power onto the
eye’s photoreceptor response curves. If those photommcesponses are in the columns of the matrix,
E, then the forward model for the three photoreceptor regmasthejth color is:

f(@, ) =ET(AZ .« BZ'). (6.18)



