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Depth Perception:

The inverse problem




Monocular cues to depth

* Absolute depth cues: (assuming known
camera parameters) these cues provide
iInformation about the absolute depth

between the observer and elements of the
scene

* Relative depth cues: provide relative
Information about depth between elements

In the scene (this point is twice as far at
that point, ...)
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Estimating depth with stereo

e Stereo: shape from disparities between two views

e We'll need to consider:

— Info on camera pose (“calibration”)

— Image point correspondences

scene point
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Slide credit: Kristen Grauman



Geometry for a simple stereo system

« Assume a simple setting:
— Two identical cameras
— parallel optical axes
— known camera parameters (i.e., calibrated cameras).
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Geometry for a simple stereo
system

« Assume parallel optical axes, known camera parameters
(l.e., calibrated cameras). We can triangulate via:

Similar triangles (p,, P, p,)
and (O, P, O,):
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Slide credit: Kristen Grauman




Depth from disparity

image I(x,y) Disparity map D(x,y) image I"(x",y")

(x”,y " )=(x+D(x,y), ¥)

Slide credit: Kristen Grauman



Stereo Topics

Special, simple system, main idea
More general camera conditions, epipolar constraints
— epipolar geometry
— epipolar algebra
Image rectification
Stereo matching (likelihood term)
Stereo regularization (prior term)
Inference
— dynamic programming
— graph cuts
Structured light



General case, with calibrated cameras

« The two cameras need not have parallel optical axes.
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Stereo correspondence constraints

* Given p in left image, where can corresponding
point p’ be?

Slide credit: Kristen Grauman



Stereo correspondence constraints

—

/

d.

L/

A

\?

il

N

Slide credit: Kristen Grauman



Epipolar constraint
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Geometry of two views constrains where the corresponding pixel for some image
point in the first view must occur in the second view:

It must be on the line carved out by a plane connecting the world point and
optical centers.

Why is this useful?

Slide credit: Kristen Grauman



Epipolar constraint

This is useful because it reduces the correspondence
problem to a 1D search along an epipolar line.

Image from Andrew Zisserman Slide credit: Kristen Grauman



Epipolar geometry

Epipolar Line p’Epipolar Line

 Epipolar Plane

Baseline

(PE‘ E'q/\

Baseline: line joining the camera centers

Epipole: point of intersection of baseline with the image plane
Epipolar plane: plane containing baseline and world point
Epipolar line: intersection of epipolar plane with the image plane

All epipolar lines intersect at the epipole
An epipolar plane intersects the left and right image planes in epipolar lines

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html Slide credit: Kristen Grauman



http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman



Example: parallel cameras

Where are the
epipoles?

Figure from Hartley & Zisserman Slide credit: Kristen Grauman



Example: converging cameras

Figure from Hartley & Zisserman Slide credit: Kristen Grauman



« So far, we have the explanation in terms of
geometry.

* Now, how to express the epipolar constraints
algebraically?

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

X world point

Main idea

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

X world point

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get

to camera reference frame 2.

Rotation: 3 x 3 matrix R; translation: 3 vector T.
Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

X world point

—_ -

R

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get
to camera reference frame 2. v !

X' =RX_+T

Slide credit: Kristen Grauman



From geometry to algebra

X world point

AN

) X
O
Ye
Ye
X' = RX4T X'(TxX)=X-(TxRX)
\TXX’J: — O
Normal {o the plane
= TxRX

Slide credit: Kristen Grauman



Aside: cross product
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Vecrtor cross product takes two vectors
and returns a third vector that' s
perpendicular to both inputs.

So here, c is perpendicular to both a and
b, which means the dot product = 0.

Slide credit: Kristen Grauman



Another aside:

Matrix form of cross product

0
a3
a4,

axb

0
A

d,

—a

0

0, L

~ a-¢c=0
2 | =0 b-t=0
03_

Can be expressed as a matrix multiplication.

0

Slide credit: Kristen Grauman



From geometry to algebra

X world point

X'=RX+T
T X’}:Tx RX+TxT

Normal {o the plane

=T xRX

X' (TxX']=X-(TxRX)

Slide credit: Kristen Grauman



Essential matrix

X'-(TxRX)=0
X'-(Tx RX)=0
Let E=TxR T i
XTEX =0

E is called the essential matrix, and it relates
corresponding image points between both cameras,
given the rotation and translation.

If we observe a point in one image, its position in other
Image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.



X and X’ are scaled versions of X and X’

X world point




X" (T'xRX) =0
XL (T!x RX) — O | X world point
Let E=T R |

X’TEX — O Yo R

x'T E X = O pts x and x” in the image planes are scaled versions of X and X’ .

E is called the essential matrix, and it relates corresponding image points
between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is
constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.



Essential matrix example: parallel

prTEp _ O

For the parallel cameras,
image of any point must
lie on same horizontal line
in each image plane.

cameras

P =[x9y9f]
p'=[X',y',f]

Slide credit: Kristen Grauman



image I(x,y)

Disparity map D(x,y)

v

Vd

)=(x+D(x,

y).y)

image I’ (x",y")

What about when cameras’ optical axes are not

parallel?

Slide credit: Kristen Grauman



Stereo image rectification

In practice, it is
convenient if image
scanlines (rows) are
the epipolar lines.

Reproject image planes onto écomm
plane parallel to the line between optica
centers

Pixel motion is horizontal after this transformation

Two homographies (3x3 transforms), one for each
input image reprojection

See Szeliski book, Sect. 2.1.5, Fig. 2.12, and
“Mapping from one camera to another” p. 56
Adapted from Li Zhang

Slide credit: Kristen Grauman



Stereo image rectification: example




Your basic stereo algorithm
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For each eplpolar I|ne

For each pixel in the left image
« compare with every pixel on same epipolar line in right image

* pick pixel with minimum match cost

Improvement. match windows

Slide credit: Rick Szeliski 35



Image block matching

How do we determine correspondences?

« block matching or SSD (sum squared differences)

E(z,y;d) = S U 4d )~ IR, Y)])?
(', y')eEN(z,y)

d is the disparity (horizontal motion)

Slide credit: Rick Szeliski 36

How big should the neighborhood be?



Neighborhood size

Smaller neighborhood: more detalls
Larger neighborhood: fewer isolated mistakes
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Slide credit: Rick Szeliski 37



Matching criteria

Raw pixel values (correlation)
Band-pass filtered images [Jones & Malik 92]
“Corner” like features [Zhang, ...]

Edges [many people...]
Gradients [Seitz 89; Scharstein 94]
Rank statistics [Zabih & Woodfill 94]

Slide credit: Rick Szeliski 38



| ocal evidence framework

For every disparity, compute raw matching
Costs

Eg(x,y;d) = p(Ir(x' + d,y') — Ir(z',y"))

Why use a robust function?
e occlusions, other outliers

Can also use alternative match criteria

Slide credit: Rick Szeliski 39



| ocal evidence framework

Aggregate costs spatially

E(z,y,d) = > Eo(2',y/, d)
(2, y')EN(z,y) a s
d \ LA
Here, we are using a box filter A\ = w \
(efficient moving average R i \
Implementation) X

Can also use weighted average,
[non-linear] diffusion...

Slide credit: Rick Szeliski 40



| ocal evidence framework

Choose winning disparity at each pixel
d(xz,y) = arg min E(x,y, d)

Interpolate to sub-pixel accuracy

E(d)

Slide credit: Rick Szeliski
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Active stereo with structured light

Li Zhang’ s one-shot stereo

camera 1 camera l

projector projector -,<
camera 2

Project “structured” light patterns onto the object

» simplifies the correspondence problem

Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. In Proceedings of the 1st International
Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), Padova, Italy,
June 19-21, 2002, pp. 24-36.

Slide credit; Rick Szeliski . 42
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-igure 2. Summary of the one-shot method. (a) In optical triangulation, an illumination pattern is projected onto an object and the
eflected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and
mage. If the image planes are rectified as shown, the displacement is purely horizontal (one-dimensional). (b) An example of
he projected stripe pattern and (c) an image captured by the camera. (d) The grid used for muiti-hypothesis code matching. The
yorizontal axis represents the projected color transition sequence and the vertical axis represents the detected edge sequence,
yoth taken for one projector and rectified camera scanline pair. A match represents a path from left to right in the grid. Each
rertex (j,1) has a score, measuring the consistency of the correspondence between «;, the color gradient vectors shown by the
rertical axis, and g;, the color transition vectors shown below the horizontal axis. The score for the entire match is the summation
f scores along its path. We use dynamic programming to find the optimal path. In the illustration, the camera edge in bold italics
orresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

Li Zhang, Brian Curless, and Steven M. Seitz
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Monocular cues to depth

 Absolute depth cues: (assuming known
camera parameters) these cues provide
iInformation about the absolute depth

between the observer and elements of the
scene

* Relative depth cues: provide relative
Information about depth between elements

In the scene (this point is twice as far at
that point, ...)



Relative depth cues

Simple and powerful cue, but hard to make it work in practice...



Atmospheric perspective

« Based on the effect of air
on the color and visual
acuity of objects at
various distances from
the observer.

 Consequences:
— Distant objects appear
bluer

— Distant objects have lower
contrast.




Atmospheric perspective

http://encarta.msn.com/medias_761571997/Perception_(psychology).html



Claude Lorrain (artist)

French, 1600 - 1682
Landscape with Ruins, Pastoral Figures, and Trees, 1643/1655


http://www.nga.gov/cgi-bin/tsearch?artistid=1145
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Shadows

Slide by Steve Marschner http://www.cs.cornell.edu/courses/cs569/2008sp/schedule.stm



Linear perspective



Linear Perspective

Based on the apparent convergence of
parallel lines to common vanishing
points with increasing distance from
the observer.

(Gibson : “perspective order”)

In Gibson’s term, perspective is a
characteristic of the visual field rather
than the visual world. It approximates
how we see (the retinal image) rather
than what we see, the objects in the
world.

Perspective : a representation that is
specific to one individual, in one
position in space and one moment in
time (a powerful immediacy).

Is perspective a universal fact of the visual
retinal image ? Or is perspective
something that is learned ?

Simple and powerful cue, and easy to make it work in practice...



Linear Perspective

Ponzo’s illusion



Linear Perspective
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Linear Perspective

Muller-Lyer
1889



Linear Perspective

Muller-Lyer
1889



The two Towers of Pisa

Frederick Kingdom, Ali Yoonessi and Elena Gheorghiu of McGill Vision Research unit.



The strength of linear perspective
| ‘ S
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3D percept is driven by the scene, which imposes its ruling to the objects



Manhattan assumption

Application of the statistics of edges:
Manhattan World

Many scenes of man-made
environments are laid out on a
3-D “Manhattan™ grid.

This 3-D structure imposes
statistical regularities on the edges,
and hence the image gradients, in
the image.

These regularities allow us to infer
the viewer orientation relative to the
Manhattan grid and to detect targets
unaligned to the grid.

J. Coughlan and A.L. Yuille. "Manhattan World: Orientation and Outlier )
Detection by Bayesian Inference.” Neural Computation. May 2003, Slide by James Coughlan



Bayesian Model of Manhattan World

Evidence for line edges -- X, y, z or random lines -- provided
by the image gradient. Prior on occurrence of these edges.
Image gradient magnitude provides evidence

for presence or absence of edges, using P, and P
distributions.

on

Image gradient direction provides information about edge
orientations.

Hidden assignment variables: at each pixel, 1s there an x, y,
z or random line, or no edge at all?

If we knew this assignment at each pixel, and the camera
orientation ‘', we could predict likely values of image
oradient magnitude and direction, . = (F.,9-)

Slide by James Coughlan



Evidence over all pixels: Bayes net of full Bayesian model
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Box represents entire image, with an image gradient vector and

assignment variable at each pixel location z,

Structure of net graphically illustrates assumption of conditional

independence across pixels.

Slide by James Coughlan



Experimental Results

Estimate of most probable
camera orientation given
image, rendered in terms of
the corresponding orienta-
tions of x and y lines (drawn
in black).

Note how the x lines align
with the sides of buildings
that are visible and facing
left. The y lines align with
the other visible sides
facing right.

Slide by James Coughlan
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Outlier detection

Input 1mage:

Slide by James Coughlan

Outliers detected



x lines 1 red
y lines in green
z lines in blue




The importance of the horizon line



Distance from the horizon line

This flower appears smaller and nearer
to the horizon; therefore it is farther

This flower appears larger and further
from the horizon; therefore it is closer

« Based on the tendency of
objects to appear nearer the
horizon line with greater
distance to the horizon.

* Objects approach the horizon
line with greater distance from
the viewer. The base of a
nearer column will appear
lower against its background
floor and further from the
horizon line. Conversely, the
base of a more distant column
will appear higher against the
same floor, and thus nearer to
the horizon line.




Moon illusion




Relative height

The object closer to the horizon Is perceived
as farther away, and the object further
from the horizon is perceived as closer

If you know camera parameters: height of
the camera, then we know real depth



At which elevation has been taken this picture?
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Comparing heights

Vanishing
Point

* Y \




Measuring height




Computing vanishing points (from lines)

Intersect p,g, with p,g,

v=(p1 X q1) X (P2 X q2)
Least squares version

« Better to use more than two lines and compute the “closest” point of
intersection

« See notes by Bob Collins for one good way of doing this:
— http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt



http://www-2.cs.cmu.edu/afs/cs/user/rcollins/www/home.html
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

C H

/round plane

9

Compute H from image measurements
* Need more than vanishing points to do this



Ty,

Measuring height

(v X tg) X (r x b)
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Measuring height

vanishing line (horizon)

What if the point on the ground plane b, is not known?
« Here the guy is standing on the box
— « Use one side of the box to help find b, as shown above ™~

X NN N



What if v, Is not infinity?




The cross ratio

A Projective Invariant

« Something that does not change under projective transformations
(including perspective projection)

The cross-ratio of 4 collinear points

™
PS_P1H34_P2 p—| "
"z
P3 - Pz ‘ I:)4 - Pl 1
[P —Ps[ [P, =P
Can permute the point ordering |P. =P, || [Py — Psf

» 41 = 24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry




Measuring height

> T-Bll—R| _H
[R=B|[--T] R

scene Cross ratio

t-bflv.-r| H
R (reference point) HI’—bH HVZ —tH - R

R Image cross ratio

\\\W*. 4
B (hdttom of object)

ground plane

4 T (top of object)

O

scene points representedas P = image points as p=|Yy
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N < X
1 |
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Measuring height
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Measuring heights in real photos

Problem: How tall is
this person?




Assessing geometric accuracy

Problem:
Are the heights of the two groups of people
consistent with each other?

s e Measuring relative heights
Flagellazione di Cristo,

c.1460, Urbino



Single-View Metrology

Complete 3D reconstructions from
single views



Texture Gradient



Texture Gradient

FIGURE 8.27 FIGURE 8.28
Texture gradients provide information about depth. (Frank Texture discontinuity signals the pre
Siteman/Stock, Boston.) COrner. i

© Frank Sitman/Stock Boston

A Witkin. Recovering Surface Shape and Orientation from Texture (1981)



reference ortentalion

Texture Gradient
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Texture Gradient

* Filter outputs

e Textons



IEEE TRANSACTIONS ON PATTERN ANALY SIS AND MACHINL INTELLIGEMNCE, W(H. 17, MO, 4 APRIL 1995

Shape from Texture Using
Local Spectral Moments

Boaz I. Super, Member, IEEE, and Alan C. Bovik, Senior Member, IEEE

Abstract—We present a non-feature-based solution to the
problem of computing the shape of curved surfaces from texture
information. First, the use of local spatial-frequency spectra and
their moments to describe texture is discussed and motivated, A
new, more accurate method for measuring the local spatial-
frequency moments of an image texture using Gabor elementary
functions and their derivatives is presented. Also described is a
technique for separating shading from texture information, which
makes the shape-from-texture algorithm robust to the shading
effects found in real imagery. Second, a detailed model for the
projection of local spectra and spectral moments of any surface
reflectance patterns (not just textures) is developed. Third, the
conditions under which the projection model can be solved for the
orientation of the surface at each point are explored. Unlike ear-
lier non-feature-based, curved surface shape-from-texture ap-
proaches, the assumption that the surface texture is isotropic is
not required; surface texture homogeneity can be assumed in-
stead. The algorithm’s ability to operate on anisotropic and non-
deterministic textures, and on both smooth- and rough-textured
surfaces, is demonstrated.

Index Items—Shape from texture, shape recovery, surface ori-
entation, moments, wavelet, spatial frequency, Gabor functions,
texture, projection.
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PLANAR SURFACE ORIENTATION FROM TEXTURE

SPATIAL FREQUENCIES

BOAZ J. SUPER*t and ALAN C. BOVIK



Assumptions:

Smooth closed surface
Homogeneous texture
(sometimes, isotropic texture)



Texture description
Use filter outputs to measure local spatial frequency.

Image Spatial Frequency

100 A

cycles/image

0.5 1.0
X

(a) (b)

Fig. 2. {a) Cylinder with sinusoidal grating wxiure, (b) Horzontal component of image spatial frequency on center cross-section of (q).



Texture projection
Assume orthographic projection.

Fig. 5. Top row: real part of Gabor filter with radial frequency of 12 cy-
clesfimage, and a texture patch. Bottom row: hack-projections of Emhﬂr filter
and texture patch onto a plane with orientation (o,7) = (607,457).
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Box 1. Summary of algorithm

. Convolve the image with Gabor functions and
their partial derivatives, and smooth the filter
output amplitudes (to reduce noise) by convoly-
ing them with a Gaussian.

. Select the Gabor filter h, with the largest ampli-
tude output at each point.

. Compute the (signed) instantaneous frequency
u;{x;) at each point using equation (6).

. Sample (g, 7)-space, backprojecting u,(x;) to com-
pute u(x;) using equation (20). Compute the
variance V. ofuy(x,). Coarse-to-fine sampling in
multiple stages may be used.

. Output the values of (s, 7) for which V, ,is a
minimum.




Recovering shape and irradiance maps from rich dense texton fields

Anthony Lobay and D.A. Forsyth
CVPR 04

Figure 3: On the left, a view of a model in a spotted dress. In the center left, a textured view of the reconstruction obtained
using our method. This reconstruction used 1200 texton instances, in 8 clusters. Note the relatively fine detail that was
obtained by the reconstruction, including the two main folds in the skirt (indicated with arrows). Typically, rendering
texture on top of the view produces a better looking surface, so we show the surface without texturing on the center right;
arrows indicate the reconstructed folds in the geometry. Notice that the fold in the skirt is well represented. The smoothing
term is generally good at resolving normal ambiguities, but patches of surface that are not well connected to the main
body can be subjected to a concave-convex ambiguity, as has happened to part of the skirt’s bodice here. On the right, the
irradiance map estimated using our method.



Texture description
Non-occluded textons, and approximated as flat.
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The two pleces of the solution

If we knew the transformations If we knew the texton
and contrast

* We can find the textons Recover the transformation

* We can find the local by transforming the texton
Intensity contrast to match each local patch.

By minimization of:

2
Ni |l ATy — 1 ||

A

contrast



Expectation Maximization (EM): a solution to
chicken-and-egg problems

101




Model fitting example
Fitting two lines to observed data

102



Fitting two lines: on the one hand...

X e Linel

Line 2

If we knew
which points
went with which
lines, we’d be
back at the
single line-
fitting problem,
twice.

103



Maximum likelihood estimation for the
slope of a single line

model: Y = aX + w .
where w ~ N(u=0,0 = 1). i

r o e
I

Data likelihood for point n:

P(Xn, Ynla) = cexp[—(Yn — aXn)?/2]

Maximum likelihood estimate:
G = arg mgxp(Yl, ...y Ypla) = a;rgmgxz —d(Yn;a)?/2

where d(Yn;a) = |Yn — a Xy

En YﬂXﬂ
>on Xn

104

gives regression formula a =



Fitting two lines, on the other hand...

We could figure
out the probabllity
that any point
came from either
line if we just
knew the two
equations for the
two lines.

105



MLE with hidden/latent variables:
Expectation Maximisation

General problem:
y=(Y1,...,YN); 0 =1(a1,a2); z=1(21,---,2N)

data parameters hidden variables

For MLE, want to maximise the log likelihood

The sum over z v = arg Maxg log p(ym)

inside the log gives a — ard maxa lo 210
complicated 9 o 109>, p(y, 2|0)

expression for the ML
solution.
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Maximizing the log likelihood of the data

if you knew the z, labels for each sample n:

6=argmax , » &z, =Dlog p(y, |z, =1,0)+ &z, =2)log p(y, |z, =2,6)
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Maximizing the log likelihood of the data

if you knew the z, labels for each sample n:

6=argmax , » &z, =Dlog p(y, |z, =1,0)+ &z, =2)log p(y, |z, =2,6)

In the EM algorithm, we replace those known labels with their
expectation under the current algorithm parameters. So

Eldz, =))]=p(z,=i|y.0,,)

Call that quantity _ a(n)

—a;x,)* /2

o p(y |z, =1,0,,,)0ce
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Maximizing gives

And then for the estimate of the line parameters, we have

é: argrninezal(n)(yn o al'xn )2 + aZ(n)(yn B azxn)z

and maximising that gives

2 a(my,x,

a.

2 ax;
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EM fitting to two lines

with al(n) oC e_(yn_aixn )2 /2
"E-step”
e a,(n)+a,(n)=1 T
repeat
Regression becomes:
a.\n X
5 2 o

Zn ai(n)xi
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Experiments: EM fitting to two lines

(from a tutorial by Yair Weiss, http://www.cs.huji.ac.il/~yweiss/tutorials.html)
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EM

EM iterations
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Shading

Based on 3 dimensional

modeling of objects in
light, shade and
shadows.

Perception of depth through shading alone is always
subject to the concave/convex inversion. The pattern
shown can be perceived as stairsteps receding
towards the top and lighted from above, or as an
overhanging structure lighted from below.



Reflectance map

\ p=dZ/dx
A .
\\\g/ V
Horn, 1986 y : ; ‘
: < qs e e istribution function is the ratio of Figure 10-13. The reflectance map is a plot of brightness as a function of
Figure 10-7. The bidirectional reflectance dpribatan surface orientation. Here it is shown as a contour map in gradient space. In the

adis ) as view irecti to the : ; s s
the l:d(lldIlCO of .the surfd.ce pa.tch e viewed frox.n th.e du;(‘tlon (Ge, @e) case of a Lambertian surface under point-source illumination, the contours turn
irradiance resulting from illumination from the direction (6;, ¢;). out to be nested conic sections. The maximum of R(p,q) occurs at the point

(p,q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
L(b,.9.)

along the line on the left side of the contour map.
L6, 4,)

BRDF = f(6,.9,.0..4.) =



Linear shape from shading

Lambertian point source

1+ +
R(p,q) =k —F—= pﬁ’f%qz 2
JI+ 9" +q* 1+ pl +4.

15t order Taylor

series abou
4 OR(p.g) OR(p,q)

p=¢=0 R K, P q
6}7 p=0,g=0 6q p=0.g=0
=k,(I1+p,p+q,9)
A close form solution can be obtained using the Fourier transform (Pentland 88)

O .
o= 22, y) > Fz (Wi, ws) (—iwn) Pentland 88
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Learning based methods

* User recognition to learn structure of the world from
labeled examples




Label Geometric Classes

« Goal: learn labeling of image into 7 Geometric Classes:

 Support (ground)
« Vertical

— Planar: facing Left (€),.Center ( ), Right (=)

— Non-planar: Solid (X), Porous or wiry (O)
" Sky Slides by Efros




What cues to use?

Color, texture, image location

Vanishing points, lines

Texture gradient Slides by Efros



Dataset very general

Slides by Efros



The General Case (outdoors)

* Typical outdoor photograph off the Web
— Got 300 images using Google Image Search

7 11 N 11

keyboards: “outdoor”, “scenery”, “urban”, etc.

» Certainly not random samples from world
— 100% horizontal horizon

— 97% pixels belong to 3 classes -- ground, sky,
vertical (gravity)

— Camera axis usually parallel to ground plane
 Still very general dataset!

Slides by Efros



Let’'s use many weak cues

 Material

* Image Location

* Perspective

SURFACE CUES

Location and Shape

L1.
L2.
L3.
L4.
L
Lé.

Lh

Location: normalized x and vy, mean

Location: norm. x and y, 10t* and 90" petl

Location: norm. y wrt estimated horizon, 10*", 90" petl

Location: whether segment is above, below, or straddles estimated horizon
Shape: number of superpixels in segment

Shape: normalized area in image

Color

Cl1.
C2.
C3.
C4.

RGB values: mean

HSV values: C1 in HSV space
Hue: histogram (5 bins)
Saturation: histogram (3 bins)

Texture

T1.
T2.

LM filters: mean abs response (15 filters)
LM filters: hist. of maximum responses (15 bins)

Perspective

Pl.
P2.
P3.
P4.
Ps.
pé.
P7.
Ps.
P9.

P10.
P11.
P12.
P13.

P14

Long Lines: (num line pixels)/sqrt(area)

Long Lines: % of nearly parallel pairs of lines

Line Intersections: hist. over 8 orientations, entropy

Line Intersections: % right of center

Line Intersections: % above center

Line Intersections: % far from center at 8 orientations

Line Intersections: % very far from center at 8 orientations

Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)

Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)

Vanishing Points: percent of total line pixels with vertical VP membership

Vanishing Points: x-pos of horizontal VP - segment center (0 if none)

Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center

Vanishing Points: segment bounds wrt horizontal VP

. Gradient: x. y center of gradient mag. wrt. image cenfgs . 4
U




Need Spatial Support

.| 50x50 Patch
50x50 Patch

|
||

Color Texture Perspective Color Texture Perspective

Slides by Efros



Image Segmentation

* Naive ldea #1: segment the image

— Chicken & Egg problem
* Naive ldea #2: multiple segmentations

w===¥

— Decide later which segments are good sjdes by Efros



Estimating surfaces from segments

« We want to know:

P(good segment | data)

— If so, what Is the surface label?

P(label | good segment, data)

 Learn these likelihoods from
training iImages
— we use Boosted Decision Trees

Slides by Efros



Boosted Decision Trees

Ye

No
Many Long
Lines?
Yes No

Very High
Vanishing
Point?

Yes

Ground Vertical Sky

Iy

Slides by Efros



Labeling Segments

For each segment:

- Get P(good segment | data) P(label | good segment, data)

Slides by Efros



Image Labeling

Labeled Segmentations

Labeled Pixels
Slides by Efros



V-Left V-Center V-Right V-Porous V-Solid



Labeling Results

Input image Ground Truth Our Result
Slides by Efros




Labeling Results
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Input image Ground Truth Our Result
Slides by Efros



Labeling Results

Input image Ground Truth Our Result
Slides by Efros



Labeling Results

Input image Ground Truth Our Result
Slides by Efros



Labeling Results

Ll

Input image Ground Truth Our Result
Slides by Efros



Labeling Results

Our Result
Slides by Efros




Labeling Results

AUG 18 2001

© Tony Northrup; www.northrup.org

Input image Ground Truth Our Result
Slides by Efros




Some Failures

Input image Ground Truth Our Result
Slides by Efros



Catastrophic Failures

Input image Ground Truth Our Result
Slides by Efros



Automatic Photo Popup

Labeled Image Fit Ground-Vertical Form Segments Cut and Fold
Boundary with Line into Polylines
Segments

[Hoiem Efros Hebert 2005]



