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Lecture 13
Image features

With some slides from
Darya Frolova, Denis Simakov, David Lowe, Bill Freeman



Finding the “same” thing across images

Categories Find a bottle: Instances Find these two objects

Can’t do Can nail it
unless you do not
care about few errors...



Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affi ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.



But where is that point?



Building a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003






Uses for feature point detectors and
descriptors In computer vision and
graphics.

— Image alignment and building panoramas
— 3D reconstruction

— Motion tracking

— Object recognition

— Indexing and database retrieval

— Robot navigation

— ... other



Selecting Good Features

 What’s a “good feature™?

— Satisfies brightness constancy—Ilooks the same in both
Images

— Has sufficient texture variation

— Does not have too much texture variation

— Corresponds to a “real” surface patch—see below:

Bad feature

Right
eye view

Left eye
view

Good feature

— Does not deform too much over time



Ild a panorama?

How do we bu

images

)

» We need to match (align




Matching with Features

Detect feature points in both images




Matching with Features

Detect feature points in both images

Find corresponding pairs




Matching with Features

Detect feature points in both images
*Find corresponding pairs

*Use these matching pairs to align images - the
required mapping Is called a homography.




Matching with Features

 Problem 1:

— Detect the same point independently in both

Images
counter-example:
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We need a repeatable detector




Matching with Features

 Problem 2:

— For each point correctly recognize the
corresponding one

We need a reliable and distinctive descriptor




Building a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003



Preview

» Detector: detect same scene points independently In
both images

* Descriptor: encode local neighboring window

— Note how scale & rotation of window are the same in both
Image (but computed independently)

» Correspondence: find most similar descriptor in other
Image D

Note: here viewpoint is different,
not panorama (they show off)




Outline

 Feature point detection
— Harris corner detector

— finding a characteristic scale: DoG or
Laplacian of Gaussian

» Local image description
— SIFT features

17



Harris corner detector
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C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988
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http://www.wisdom.weizmann.ac.il/~deniss/vision spring04/files/InvariantFeatures.ppt

The Basic Idea

« We should easily localize the point by looking
through a small window

 Shifting a window In any direction should give
a large change In pixels intensities in window

— makes location precisely define
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Corner Detector: Basic ldea

\ >;=l#\ X
R l
“flat” region: “edge”: “corner”:
no change in all no change along significant change
directions the edge direction in all directions
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Harris Detector: Mathematics

Window-averaged squared change of intensity
Induced by shifting the image data by [u«,v]:

E(u,v) = Ew(x,y)[](x+u,y+v)—](x,y)]2

X,y \
Window Shifted
function intensity

Window functionw(x,y)= | |

(Intensity)

1 in window, O outside Gaussian
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Taylor series approximation to shifted image gives
quadratic form for error as function of image shifts.

E(u,v)= 2 w(x, V) (x,y)+ul  +vI - I(x, )]’

= E w(x, y)ul  + v[_t__]?'

X, )

[T I.1 1/u
=(u v)Ywx,p)| "~ 7 ( ]
Z I I.\r I_v ]1 I_L' |
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Harris Detector: Mathematics

Expanding I(X,y) In a Taylor series expansion, we have, for small
shifts [u,V], a quadratic approximation to the error surface between
a patch and itself, shifted by [u,V]:

E(u,v) = [u,v] M

where M Is a 2 X 2 matrix computed from image derivatives:

[ 1]
_ X Xy
M—;W()C,y) ]x]y ]i

M is often called structure tensor
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Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v) = [u,v] M

Ellipse E(u,v) = const

Iso-contour of the squay€
error, E(u,v)
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V

i 1 i , — eigenvalues of M

direction of the
fastest change

direction of the
slowest change
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Selecting Good Features

Image patch
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Image patch

Selecting Good Features
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Selecting Good Features

Image patch

|

(contrast auto-scaled)

(vertical scale exaggerated rezla“ti"ve to previous plots)
small| ,, small |,
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. Image points using
~eigenvalues of M:

...W.,,wmv.wwu....m.L...u.....W...,W...w,v.q.u..w....qw...w
Darya Frolova, Denis Simakov The Weizmann Institute of Science

Harris Detector: Mathematics

Classification of I 2
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Harris Detector: Mathematics

Measure of corner response:

R =det M — k(traceM)2

det M =AM,
trace M =\ + A,

(k —empirical constant, £ = 0.04-0.06)

(Shi-Tomasi variation: use min(A1,A2) instead of R)
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Darya Frolova, Denis Simakov The Weizmann Institute of Science

Harris Detector: Mathematics
L,

R depends only on
eigenvalues of M

* R is large for a corner

* R IS negative with large
magnitude for an edge

* |R| i1s small for a flat
region
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Harris Detector

* The Algorithm:

— Find points with large corner response function
R (R > threshold)

— Take the points of local maxima of R



f Science
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Darya Frolova, Denis Simakov The Weizmann Institute o

Harris corner detector algorithm

Compute image gradients Ix ly for all pixels
For each pixel

— Compute a7 = 3 w(x, ) b
& 11, I

by looping over neighbors X,y
— compute R=detM - k(traceM)2

Find points with large corner response function
R (R > threshold)

Take the points of locally maximum R as the

detected feature poINts e, pixels where R is biggefZhan for all
the 4 or 8 neighbors).
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Harris Detector: Workflow
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Harris Detector: Worktlow
Compute corner response R
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Harris Detector: Workflow
Find points with large corner response: R>threshold
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Harris Detector: Workflow
Take only the points of local maxima of R
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Harris Detector: Workflow
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Analysis of Harris corner
detector Invariance properties

« Geometry
— rotation
— scale

* Photometry
— Intensity change

38



Evaluation plots are from this paper

*& International Journal of Computer Vision 37(2), 151-172, 2000
© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Evaluation of Interest Point Detectors

CORDELIA SCHMID, ROGER MOHR AND CHRISTIAN BAUCKHAGE
INRIA Rhone-Alpes, 655 av. de 'Europe, 38330 Montbonnot, France

Cordelia.Schmidi@inrialpes.fr

Abstract. Many different low-level feature detectors exist and it is widely agreed that the evaluation of detectors
is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information
content. Repeatability rate evaluates the geometric stability under different transformations. Information content
measures the distinctiveness of features. Different interest point detectors are compared using these two criteria.
We determine which detector gives the best results and show that it satisfies the criteria well.



Models of Image Change

« Geometry

— Rotation [ -;’
— Similarity (rotation + uniform scale) = -

— Affine (scale dependent on direction) - A
valid for: orthographic camera, locally planar
object

* Photometry
— Affine intensity change (/1 a I + b) -




Harris Detector: Some Properties

Rotation Invariance?




Harris Detector: Some Properties

e Rotation Invariance

™ ||‘ A
7 S

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation

Eigen analysis allows us to work in the canonical frame of the
linear form.



Rotation Invariant Detection

ImpHarris: derivatives are computed more
precisely by replacing the [-2 -1 0 1 2] mask with

Harris COrner Detector derivatives of a Gaussian (sigma = 1).
Y Impﬂgmz _i_ i
1 -
g | LTl T
E
]
= 06 |
2
o
04 |
02 F
0

0 20 40 g0 80 100 120 140 160 180
rotation angle in degrees

This gives us rotation invariant detection, but we’ Il need
to do more to ensure a rotation invariant descriptor...

C.Schmid et.al. “Evaluation of Interest Point Detectors”. 1JCV 2000



Harris Detector: Some Properties

* Invariance to image intensity change?



Darya Frolova, Denis Simakov The Weizmann Institute of Science

Harris Detector: Some Properties

- Partial invariance to additive and multiplicative
Intensity changes

R A
S threshold

v Only derivatives are used => invariance
to intensity shift /1 7+ b

v Intensity scaling: /1 a I fine, except for the threshold
that’ s used to specify when R is large enough.

R+
AN

A
NN

x (image coordinate} x (image coordinate}
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Harris Detector: Some Properties

* Invariant to image scale?

Image zoomed image
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Harris Detector: Some Properties

* Not Invariant to image scale!

A~
, )

All points will be
classified as edges

Corner !
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Harris Detector: Some Properties

 Quality of Harris detector for different scale
changes

Repeatability rate:

# correspondences
# possible correspondences

Darya Fﬂolova, Denis Simakov The Weizmann Institute of Science

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000
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Harris Detector: Some Properties

 Quality of Harris detector for different scale
changes

1

Harris ——
ImpHarris --+---

Repeatability rate: A
# correspondences
# possible correspondences

06

repeatability rate

04 r

02

‘\+_-_—--""_'__+“"\.__\_\
e
_@k\'\_‘g_ I
_—e,__‘___“'“-rf
1 1 e

1 15 2 25 3 35 4 45
scale factor

,,v,w.w.wu....m.L...M.....u. - -
Darya FrIoIova, Denis Simakov The Weizmann Institute of Science

C.Schmid et.al. “Evaluation of Interest Point Detectors”. 1JCV 2000
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Scale Invariant Detection

 Consider regions (e.g. circles) of different sizes
around a point

* Regions of corresponding sizes will look the same
In both Images

The features look the same to
these two operators.

——
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Scale Invariant Detection

» The problem: how do we choose corresponding
circles independently in each image?

» Do objects in the image have a characteristic
scale that we can identify?
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Scale Invariant Detection

e Solution:

— Design a function on the region (circle), which 1s “scale
invariant” (the same for corresponding regions, even 1f
they are at different scales)

Example: average intensity. For corresponding
regions (even of different sizes) it will be the same.

— For a point in one image, we can consider it as a function of
region size (circle radius)

Image 1 foa Image 2

scale = 1/2
/\ =) /\

g »

region size region size



« Common approach:

Scale Invariant Detection

Take a local maximum of this function

Observation: region size, for which the maximum is achieved,

should be invariant to image scale.

Important: this scale invariant region size is
found in each image independently!

Image 1

»

S;

region size

scale = 1/2
>

>

Image 2

»

S2 region size



Scale Invariant Detection

* A “good” function for scale detection:
has one stable sharp peak

[Tarm U= Vi =

region size region size region size

« For usual images: a good function would be a
one which responds to contrast (sharp local
Intensity change)



Detection over scale

Requires a method to repeatably select points in
location and scale:

« The only reasonable scale-space kernel is a Gaussian
(Koenderink, 1984, Lindeberg, 1994)

« An efficient choice is to detect peaks in the difference of
Gaussian pyramid (Burt & Adelson, 1983; Crowley &
Parker, 1984 — but examining more scales)

 Difference-of-Gaussian with constant ratio of scales is a
close approximation to Lindeberg’s scale-normalized
Laplacian (can be shown from the heat diffusion
equation)



Darya Frolova, Denis Simakov The Weizmann Institute of Science

Scale Invariant Detection

 Functions for determining scale _

Kernels:

(Laplacian: 2nd derivative of Gaussian)

(Difference of Gaussians)

where Gaussian

Note: both kernels are invariant to
scale and rotation
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Scale Invariant Detectors

scale

» Harris-Laplaciant >

Find local maximum of: -

— Harris corner detector in

space (image coordinates) / P

— Laplacian in scale ] Harris [

=
(] Larﬁian ]

— [Darya Frolova, Denis Simakov The Weizmann Institute of Science

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”.

ICCV 2001
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Laplacian of Gaussian for selection of
characteristic scale

http://www.robots.ox.ac.uk/~vqa/research/affine/det eval files/mikolajczyk ijcv2004.pdf

97 1100 S0 S 0 3 0 e S e | l T T T T T T 3,4nnll;lltv!ll S I P T T T T T
2.0 10.1 19, 2.0 3.89
srale

1S
scale

Figure 1. Example of characteristic scales. The top row shows two images taken with different focal lengths. The bottom row shows the
response Fyorm(X, o,) over scales where Fjor, is the normalized LoG (cf. Eq. (3)). The characteristic scales are 10.1 and 3.89 for the left and
right image, respectively. The ratio of scales corresponds to the scale factor (2.5) between the two images. The radius of displayed regions in
the top row is equal to 3 times the characteristic scale.
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Scale Invariant Detectors

. . scale
» Harris-Laplaciant >

Find local maximum of:
: % _ PN
— Harris corner detector In

space (image coordinates) / P

— Laplacian in scale

DoG [ 1 Laplacian

In detailed experimental comparisons, Mikolajezyk (2002) found that the maxima
and minima of 02V @ produce the most stable image features compared to a range of other D DOG D
possible image functions, such as the gradient, Hessian, or Harris corner function.

3 [ Harris [
£ * SIFT (Lowe)? scale =
| = . .

& Find local maximum

E (nf_tmzmum) of: o PN
¢ — Difference of Gaussians in Y e
¢ space and scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to 1JCV 2004
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Scale-space example: 3 bumps of different widths.

pumps: 5, 49, 15 wide

g

1-d bumps

[ 1] 1

f I bl ] i Ll | ] [ | ]
20 40 60 a0 100 120 140 160 180 200

Range [0, 1]
Dirns [50, 200]

1

display as an
Image

| [=
blur with @ |
Gaussians of « ==
increasing |
width = ,\

“IA Range [0, 251]
maorm e S)ACE  m— Dims [0, 200]




Gausslian and difference-of-Gaussian filters
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The bumps, filtered by difference-of-
Gaussian filters

bumps: =, 9, 1% wide

o0 I

| |
20 40 G0 &0 100 120 140 160 180 200
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The bumps, filtered by difference-of-
Gaussian filters

bumps: =, 9, 1% wide

L B Y I
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cross-sections along red lines plotted next sbitle



Scales of peak responses are proportional to bump width (the characteristic scale of each bump):
[1.7,3,5.2] ./ [5,9,15] =0.3400 0.3333 0.3467

dog, sigma = 1.7 respanse o first bumpp, 5 wide, over scals
015 ' T T 0.2 T . T T
01¢ - 01% L _
005 . a 01k
0 ' 0.05 |
_DDS 1 1 1 1 |:|
0 20 40 GO 80 100 0
dog, sigma = 3
0.03 T T 0.08
0.02 T 0.06 |
0ot b|:|_|:|4 5
0 T 0.0z b
-0.01 . ' ' . 0
o 20 40 60 =0 100 0
w10 dodg, sigma = 5.2
10 ; ; ; 0.04
c | 0.03 -
0.02
0 C
0.01
-3 t t t t mn 1 ] ] ]
1] 20 40 G0 a0 100 , burmps: 5, 9, 15 vide 4n &0

Diff of Gauss filter giving peak response | 5 = 9 15

| |

1 1
20 =) (a1l a0 100 120 140 160 180 200




dog, sigma = 1.7

0.1%
0.1
0.05 | 5 9 15
: YAY
-0.05 : : s .
0 20 40 60 30 100
dog, sigma = 3
0.03 . ,
0.02 ¢ ﬁ
0.01 5 9 15
AV
'DD1 1 1 1 1
0 20 40 G0 80 100
® 10 dog, sigma = 5.2
10 ; :
9 15

20 40 G0 20 100

Scales of peak responses are proportional
to bump width (the characteristic scale of
each bump):

[1.7,3,5.2] ./[5, 9, 15] = 0.3400

0.3333 0.3467

Note that the max response filters each
has the same relationship to the bump that
it favors (the zero crossings of the filter
are about at the bump edges). So the
scale space analysis correctly picks out
the “characteristic scale” for each of the
bumps.

More generally, this happens for the
features of the images we analyze.
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Scale Invariant Detectors

» Experimental evaluation of detectors
w.r.t. scale change

1 I T
: —e— Harris-Laplacian
0.9} =#— S|FT (Lowe)
o : —— Harris
+— 08 :
g (O :
Repeatability rate: . |
E 0.7}~
# correspondences :@ 06 g
# possible correspondences 3 f
% 05 ;
0.4+
RS ?
02F ;
0.1 | . -
g@@?&%’\ % 15 2 25 3 35 4 45

scale

=~ Darya Frolova, Denis Simakov The Weizmann Institute of Science

.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
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Repeatability vs number of scales sampled per octave

100 I , ,
73
> 60 |
E
4]
©
40 ¢
D
v

Matching location and scale —
20 ¢ Nearest descriptor in database
0 | | | 4 4 4
1 2 3 4 5 6 7 8
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David G. Lowe, "Distinctive image features from scale-invariant keypoints,” International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110
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Darya Frolova, Denis Simakov The Weizmann Institute of Science

Some details of key point localization
over scale and space

Detect maxima and minima of
difference-of-Gaussian in scale
space

Fit a quadratic to surrounding
values for sub-pixel and sub-scale
Interpolation (Brown & Lowe,
2002)

Taylor expansion around point:

Offset of extremum (use finite
differences for derivatives):
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http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

Scale and Rotation Invariant
Detection: Summary

* Given: two images of the same scene with a large
scale difference and/or rotation between them

« Goal: find the same interest points independently
In each Image

e Solution: search for maxima of suitable functions
In scale and In space (over the image). Also, find
characteristic orientation.

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over
scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space




Example of keypoint detection

(c)

Figure 12. Robust matching: Harris-Laplace detects 190 and 213 points in the left and right images, respectively (a). 58 points are initially
matched (b). There are 32 inliers to the estimated homography (c), all of which are correct. The estimated scale factor is 4.9 and the estimated
rotation angle is 19 degrees.

http://www.robots.ox.ac.uk/~vgg/research/affine/det eval files/mikolajczyk ijcv2004.pdf



http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf

Outline

 Local image description
— SIFT features
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Recall: Matching with Features

* Problem 1:
— Detect the same point independently in both images
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We need a repeatable detector




Recall: Matching with Features

 Problem 2:

— For each point correctly recognize the
corresponding one

We need a reliable and distinctive descriptor




CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department
University of British Columbia

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT vector formation

« Computed on rotated and scaled version of window
according to computed orientation & scale

— resample the window

« Based on gradients weighted by a Gaussian of
variance half the window (for smooth falloff)

Image gradients



SIFT vector formation

« 4x4 array of gradient orientation histograms
— not really histogram, weighted by magnitude
8 orientations x 4x4 array = 128 dimensions

« Motivation: some sensitivity to spatial layout, but not
too much.

* ¥
| 2F

Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4




Reduce effect of illumination

e 128-dim vector normalized to 1

 Threshold gradient magnitudes to avoid excessive

Influence of high gradients
— after normalization, clamp gradients >0.2
— renormalize

*

¥

K

X

Image gradients Keypoint descriptor



Tuning and evaluating the SIFT
descriptors

Database images were subjected to rotation, scaling, affine stretch,
brightness and contrast changes, and added noise. Feature point
detectors and descriptors were compared before and after the
distortions, and evaluated for:

» Sensitivity to number of histogram orientations
and subregions.

» Stability to noise.
» Stability to affine change.
* Feature distinctiveness 78



Sensitivity to number of histogram orientations
and subregions, n.

-

With 16 orientations
. With 8 orientations -~
With 4 orientations .

8 8 & 8 8

Correct nearest descriptor (%)

1 2 3 4 5

Width n of descriptor (angle 50 deg, noise 4%)
Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000
keypoints as a function of width of the n x n keypoint descriptor and the number of orientations in

each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and
addition of 4% noise.



Feature stability to noise

« Match features after random change in image scale &
orientation, with differing levels of image noise

 Find nearest neighbor in database of 30,000 features
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Feature stability to affine change

« Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

 Find nearest neighbor in database of 30,000 features
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Affine Invariant Descriptors

If a wide range of affi ne invariance is desired, such
as for a surface that is known to be planar, then a simple solution is to adopt the approach of
Pritchard and Heidrich (2003) in which additional SIFT features are generated from 4 affi ne-
transformed versions of the training image corresponding to 60 degree viewpoint changes.
This allows for the use of standard SIFT features with no additional cost when processing
the image to be recognized, but results in an increase in the size of the feature database by a
factor of 3.

Find affine normalized frame A

rotation
1 =

Compute rotational invariant descriptor in this normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003



Distinctiveness of features

 Vary size of database of features, with 30 degree

affine change, 2% Image noise

« Measure % correct for single nearest neighbor match
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Application of invariant local features
to object (instance) recognition.

Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters
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SIFT Features




Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affi ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.



Figure 13: This example shows location recognition within a complex scene. The training images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
is on the upper right. The recognized regions are shown on the lower image. with keypoints shown
as squares and an outer parallelogram showing the boundaries of the training images under the affi ne
transform used for recognition.



SIFT features impact

SIFT feature paper citations:

Distinctive image features from scale-invariant keypointsDG Lowe -
International journal of computer vision, 2004 - Springer
International Journal of Computer Vision 60(2), 91-110, 2004 cc
2004 Kluwer Academic Publishers. Computer Science Department,
University of British Columbia ...Cited by 16232 (google)

A good SIFT features tutorial:

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
By Estrada, Jepson, and Fleet.

The original SIFT paper:
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Now we have

« Well-localized feature points
» Distinctive descriptor

* Now we need to
— match pairs of feature points in different
Images
— Robustly compute homographies
(in the presence of errors/outliers)



