Lecture 15
Object recognition 1
The object
The texture

The object
Instances vs. categories

Instances Find these two toys

Can nail it

Categories Find a bottle:

Can’t do unless you do not care about few errors…
Why do we care about recognition?
Perception of function: We can perceive the 3D shape, texture, material properties, without knowing about objects. But, the concept of category encapsulates also information about what can we do with those objects.

“We therefore include the perception of function as a proper –indeed, crucial- subject for vision science”, from Vision Science, chapter 9, Palmer.
The perception of function

Direct perception (affordances): Gibson

- Flat surface
- Horizontal
- Knee-high
 ...
 ...
 Sittable
 upon

Mediated perception (Categorization)

- Flat surface
- Horizontal
- Knee-high
 ...
 ...
 Chair
 Sittable
 upon

[Diagram of chairs and a bench labeled "Chair" and "Chair?"]
Direct perception

Some aspects of an object function can be perceived directly

- Functional form: Some forms clearly indicate to a function ("sittable-upon", container, cutting device, …)

It does not seem easy to sit-upon this…
Direct perception

Some aspects of an object function can be perceived directly

- Observer relativity: Function is observer dependent
Limitations of Direct Perception

Objects of similar structure might have very different functions.

Not all functions seem to be available from direct visual information only.

The functions are the same at some level of description: we can put things inside in both and somebody will come later to empty them. However, we are not expected to put inside the same kinds of things...
Limitations of Direct Perception
Visual appearance might be a very weak cue to function

Propulsion system
Strong protective surface
Something that looks like a door
Sure, I can travel to space on this object
Object recognition
Is it really so hard?

Find the chair in this image

This is a chair

Output of normalized correlation
Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

My biggest concern while making this slide was:
how do I justify 50 years of research, and this course, if this experiment did work?
Object recognition
Is it really so hard?

Find the chair in this image

A “popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts.” Nivatia & Binford, 1977.
Why is object recognition a hard task?
Challenges 1: view point variation

Michelangelo 1475-1564

Slides: course object recognition
ICCV 2005
Challenges 2: illumination
Challenges 3: occlusion

Magritte, 1957

Slides: course object recognition
ICCV 2005
Challenges 4: scale
Challenges 5: deformation

Slides: course object recognition
ICCV 2005

Xu, Beihong 1943
Challenges 6: intra-class variation
Challenges 7: background clutter

Which level of categorization is the right one?

Car is an object composed of:
- a few doors,
- four wheels (not all visible at all times),
- a roof,
- front lights,
- windshield

If you are thinking in buying a car, you might want to be a bit more specific about your categorization.
Entry-level categories
(Jolicoeur, Gluck, Kosslyn 1984)

• Typical member of a basic-level category are categorized at the expected level.
• Atypical members tend to be classified at a subordinate level.

A bird
An ostrich
Creation of new categories

A new class can borrow information from similar categories
Object recognition
Is it really so hard?

Yes, object recognition is hard…
(or at least it seems so for now…)
So, let’s make the problem simpler: Block world

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b) A blocks world scene. c) Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

Nice framework to develop fancy math, but too far from reality…

Binford and generalized cylinders

Fig. 3. The representation of objects by assemblies of generalized cylinders. a) Thomas Binford. b) A range image of a doll. c) The resulting set of generalized cylinders. (b) and c) are taken from Agin [1] with permission.)
Binford and generalized cylinders

(a) Cross section. (b) Sweeping rule.

(c) True cylinder (d) Generalized cylinder
Recognition by components

Irving Biederman
Recognition by components

The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons \((N = 36)\), can be derived from contrasts of five readily detectable properties of edges in a two-dimensional image: curvature, collinearity, symmetry, parallelism, and cotermination.

The “contribution lies in its proposal for a particular vocabulary of components derived from perceptual mechanisms and its account of how an arrangement of these components can access a representation of an object in memory.”
A do-it-yourself example

1) We know that this object is nothing we know
2) We can split this objects into parts that everybody will agree
3) We can see how it resembles something familiar: “a hot dog cart”

“The naive realism that emerges in descriptions of nonsense objects may be reflecting the workings of a representational system by which objects are identified.”
Hypothesis

• Hypothesis: there is a small number of geometric components that constitute the primitive elements of the object recognition system (like letters to form words).

• “The particular properties of edges that are postulated to be relevant to the generation of the volumetric primitives have the desirable properties that they are invariant over changes in orientation and can be determined from just a few points on each edge.”

• Limitation: “The modeling has been limited to concrete entities with specified boundaries.” (count nouns) – this limitation is shared by many modern object detection algorithms.
Constraints on possible models of recognition

1) Access to the mental representation of an object should not be dependent on absolute judgments of quantitative detail.

2) The information that is the basis of recognition should be relatively invariant with respect to orientation and modest degradation.

3) Partial matches should be computable. A theory of object interpretation should have some principled means for computing a match for occluded, partial, or new exemplars of a given category.
Stages of processing

“Parsing is performed, primarily at concave regions, simultaneously with a detection of nonaccidental properties.”
Non accidental properties

Certain properties of edges in a two-dimensional image are taken by the visual system as strong evidence that the edges in the three-dimensional world contain those same properties.

Non accidental properties, (Witkin & Tenenbaum, 1983): Rarely be produced by accidental alignments of viewpoint and object features and consequently are generally unaffected by slight variations in viewpoint.
Examples:

- Colinearity
- Smoothness
- Symmetry
- Parallelism
- Cotermination

Figure 4. Five nonaccidental relations. (From Figure 5.2, *Perceptual organization and visual recognition* [p. 77] by David Lowe. Unpublished doctoral dissertation, Stanford University. Adapted by permission.)
The high speed and accuracy of determining a given nonaccidental relation (e.g., whether some pattern is symmetrical) should be contrasted with performance in making absolute quantitative judgments of variations in a single physical attribute, such as length of a segment or degree of tilt or curvature.

Object recognition is performed by humans in around 100ms.
"If contours are deleted at a vertex they can be restored, as long as there is no accidental filling-in. The greater disruption from vertex deletion is expected on the basis of their importance as diagnostic image features for the components."
"From variation over only two or three levels in the nonaccidental relations of four attributes of generalized cylinders, a set of 36 GEONS can be generated."

Geons represent a restricted form of generalized cylinders.
More GEONS

<table>
<thead>
<tr>
<th>Geon</th>
<th>Edge</th>
<th>Symmetry</th>
<th>Size</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rot & Ref ++</td>
<td>Ref & Asymm-</td>
<td>Constant ++</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Figure 7. Proposed partial set of volumetric primitives (geons) derived from differences in nonaccidental properties.

<table>
<thead>
<tr>
<th>Geon</th>
<th>Edge</th>
<th>Symmetry</th>
<th>Size</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rot & Ref ++</td>
<td>Ref & Asymm-</td>
<td>Constant ++</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>+</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>+</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 9. Geons with curved axis and straight or curved cross sections. (Determining the shape of the cross section, particularly if straight, might require attention.)
Objects and their geons
Scenes and geons

Mezzanotte & Biederman
Supercuadrics

Introduced in computer vision by A. Pentland, 1986.
What is missing?

The notion of geometric structure.

Although they were aware of it, the previous works put more emphasis on defining the primitive elements than modeling their geometric relationships.
The importance of spatial arrangement

Figure 3. Different arrangements of the same components can produce different objects.
Parts and Structure approaches

With a different perspective, these models focused more on the geometry than on defining the constituent elements:

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Felzenszwalb & Huttenlocher ’00, ’04
- Crandall & Huttenlocher ’05, ’06
- Leibe & Schiele ’03, ’04
- Many papers since 2000

Figure from [Fischler & Elschlager 73]
Representation

- Object as set of parts
 - Generative representation

- Model:
 - Relative locations between parts
 - Appearance of part

- Issues:
 - How to model location
 - How to represent appearance
 - Sparse or dense (pixels or regions)
 - How to handle occlusion/clutter

We will discuss these models more in depth later
But, despite promising initial results... things did not work out so well (lack of data, processing power, lack of reliable methods for low-level and mid-level vision)

Instead, a different way of thinking about object detection started making some progress: learning based approaches and classifiers, which ignored low and mid-level vision.

Maybe the time is here to come back to some of the earlier models, more grounded in intuitions about visual perception.
Neocognitron
Fukushima (1980). Hierarchical multilayered neural network

S-cells work as feature-extracting cells. They resemble simple cells of the primary visual cortex in their response.

C-cells, which resembles complex cells in the visual cortex, are inserted in the network to allow for positional errors in the features of the stimulus. The input connections of C-cells, which come from S-cells of the preceding layer, are fixed and invariable. Each C-cell receives excitatory input connections from a group of S-cells that extract the same feature, but from slightly different positions. The C-cell responds if at least one of these S-cells yield an output.
Neocognitron

Learning is done greedily for each layer
The output neurons share all the intermediate levels

Le Cun et al, 98
Face detection and the success of learning based approaches

- Graded Learning for Object Detection - Fleuret, Geman (1999)
- Robust Real-time Object Detection - Viola, Jones (2001)
-
• The representation and matching of pictorial structures Fischler, Elschlager (1973)
• Graded Learning for Object Detection - Fleuret, Geman (1999)
• Robust Real-time Object Detection - Viola, Jones (2001)
• Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, Mukherjee, Poggio (2001)
•
Distribution-Based Face Detector

- Learn face and nonface models from examples [Sung and Poggio 95]
- Cluster and project the examples to a lower dimensional space using Gaussian distributions and PCA
- Detect faces using distance metric to face and nonface clusters
Distribution-Based Face Detector

- Learn face and nonface models from examples [Sung and Poggio 95]

Training Database
1000+ Real, 3000+ VIRTUAL
50,000+ Non-Face Pattern
Neural Network-Based Face Detector

- Train a set of multilayer perceptrons and arbitrate a decision among all outputs [Rowley et al. 98]
for other objects in various subsets.

Finally, in defense of limited goals, nobody has yet demonstrated that objects from even one generic class under constrained poses can be rapidly detected without errors in complex, natural scenes; visual selection by humans occurs within two hundred milliseconds and is virtually perfect.

Acknowledgements: We are grateful to Yali Amit for many suggestions during a
Faces everywhere

http://www.marcofolio.net/imagedump/faces_everywhere_15_images_8_illusions.html
Rapid Object Detection Using a Boosted Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:
Face detection

[Face priority AE] When a bright part of the face is too bright
Families of recognition algorithms

Bag of words models
Csurka, Dance, Fan, Willamowski, and Bray 2004
Sivic, Russell, Freeman, Zisserman, ICCV 2005

Voting models
Viola and Jones, ICCV 2001
Heisele, Poggio, et. al., NIPS 01
Schneiderman, Kanade 2004
Vidal-Naquet, Ullman 2003

Shape matching
Deformable models
Berg, Berg, Malik, 2005
Cootes, Edwards, Taylor, 2001

Constellation models
Fischler and Elschlager, 1973
Burl, Leung, and Perona, 1995
Weber, Welling, and Perona, 2000
Fergus, Perona, & Zisserman, CVPR 2003

Rigid template models
Sirovich and Kirby 1987
Turk, Pentland, 1991
Dalal & Triggs, 2006
A simple object detector

• Simple but contains some of same basic elements of many state of the art detectors.
• Based on boosting which makes all the stages of the training and testing easy to understand.

Most of the slides are from the ICCV 05 short course
http://people.csail.mit.edu/torralba/shortCourseRLOC/
Discriminative vs. generative

- Generative model
 (The artist)

- Discriminative model
 (The lousy painter)

- Classification function

\[
\text{label} = F_{\text{Zebra}}(\text{Data})
\]
Discriminative methods

Object detection and recognition is formulated as a classification problem. The image is partitioned into a set of overlapping windows … and a decision is taken at each window about if it contains a target object or not.
Discriminative methods

- Nearest neighbor
 - 10^6 examples
 - Shakhnarovich, Viola, Darrell 2003
 - Berg, Berg, Malik 2005
 - ... [Image]

- Neural networks
 - LeCun, Bottou, Bengio, Haffner 1998
 - Rowley, Baluja, Kanade 1998
 - ... [Diagram]

- Support Vector Machines and Kernels
 - Guyon, Vapnik
 - Heisele, Serre, Poggio, 2001
 - ... [Image]

- Conditional Random Fields
 - McCallum, Freitag, Pereira 2000
 - Kumar, Hebert 2003
 - ... [Diagram]
Formulation

- **Formulation**: binary classification

\[x = x_1, x_2, x_3, \ldots, x_N, x_{N+1}, x_{N+2}, \ldots, x_{N+M} \]

\[y = -1, +1, -1, -1, ?, ?, ? \]

Training data: each image patch is labeled as containing the object or background

Test data

- **Classification function**

\[\hat{y} = F(x) \]

Where \(F(x) \) belongs to some family of functions

- **Minimize misclassification error**

(Not that simple: we need some guarantees that there will be generalization)
Overview of section

• Object detection with classifiers

• **Boosting**
 – Gentle boosting
 – Weak detectors
 – Object model
 – Object detection
A simple object detector with Boosting

Download

- Toolbox for manipulating dataset
- Code and dataset

Matlab code

- Gentle boosting
- Object detector using a part based model

Dataset with cars and computer monitors

http://people.csail.mit.edu/torralba/iccv2005/
Why boosting?

• A simple algorithm for learning robust classifiers
 – Freund & Shapire, 1995
 – Friedman, Hastie, Tibshhirani, 1998

• Provides efficient algorithm for sparse visual feature selection
 – Tieu & Viola, 2000
 – Viola & Jones, 2003

• Easy to implement, not requires external optimization tools.

For a description of several methods:
Friedman, J. H., Hastie, T. and Tibshirani, R.
Additive Logistic Regression: a Statistical View of Boosting. 1998
Boosting

• Defines a classifier using an additive model:

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]
Boosting

• Defines a classifier using an additive model:

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]

• We need to define a family of weak classifiers

\[f_k(x) \] from a family of weak classifiers
Boosting

• It is a sequential procedure:

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\bullet) \\
-1 & (\circ)
\end{cases} \]

and a weight:

\[w_t = 1 \]
Toy example

Weak learners from the family of lines

Each data point has a class label:

\[y_t = \begin{cases}
+1 & \text{if red} \\
-1 & \text{if blue}
\end{cases} \]

and a weight:

\[w_t = 1 \]

\[h \Rightarrow p(\text{error}) = 0.5 \text{ it is at chance} \]
Toy example

Each data point has a class label:

\[
y_t = \begin{cases}
+1 (\circ) \\
-1 (\bullet)
\end{cases}
\]

and a weight:

\[w_t = 1\]

This one seems to be the best

This is a **weak classifier**: It performs slightly better than chance.
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

$$y_t = \begin{cases}
 +1 \ (\circ) \\
 -1 \ (\otimes)
\end{cases}$$

We update the weights:

$$w_t \leftarrow w_t \exp\{-y_t H_t\}$$

We set a new problem for which the previous weak classifier performs at chance again.
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
 +1 \ (\bigcirc) & \text{if } H_t(x) > 0 \\
 -1 \ (\bigcirc) & \text{if } H_t(x) \leq 0
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
+1 (\circ) \\
-1 (\text{○})
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
Toy example

Each data point has a class label:
\[y_t = \begin{cases}
+1 \ (\circ) \\
-1 \ (\bigcirc)
\end{cases} \]

We update the weights:
\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]

We set a new problem for which the previous weak classifier performs at chance again.
The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.
Boosting

• Different cost functions and minimization algorithms result in various flavors of Boosting

• In this demo, I will use gentleBoosting: it is simple to implement and numerically stable.
Overview of section

- Object detection with classifiers

- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection
Boosting

Boosting fits the additive model

\[F(x) = f_1(x) + f_2(x) + f_3(x) + \ldots \]

by minimizing the exponential loss

\[J(F) = \sum_{t=1}^{N} e^{-y_t F(x_t)} \]

Training samples

The exponential loss is a differentiable upper bound to the misclassification error.
Exponential loss

\[J = \sum_{t=1}^{N} [y_t - F(x_t)]^2 \]

\[J = \sum_{t=1}^{N} e^{-y_tF(x_t)} \]
Boosting

Sequential procedure. At each step we add

$$F(x) \leftarrow F(x) + f_m(x)$$

to minimize the residual loss

$$(\phi_m) = \arg \min_{\phi} \sum_{t=1}^{N} J(y_i, F(x_t) + f(x_t; \phi))$$

Parameters
weak classifier

Desired output
input

gentleBoosting

• At each iteration:

We chose $f_m(x)$ that minimizes the cost:

$$J(F + f_m) = \sum_{t=1}^{N} e^{-y_t(F(x_t) + f_m(x_t))}$$

Instead of doing exact optimization, gentle Boosting minimizes a Taylor approximation of the error:

$$J(F) \propto \sum_{t=1}^{N} e^{-y_tF(x_t)} (y_t - f_m(x_t))^2$$

Weights at this iteration

At each iterations we just need to solve a weighted least squares problem

Weak classifiers

- The input is a set of weighted training samples \((x, y, w)\)

- Regression stumps: simple but commonly used in object detection.

\[
f_m(x) = a[x_k < \theta] + b[x_k \geq \theta]
\]

Four parameters: \([a, b, \theta, k]\)

\[
b = E_w(y [x > \theta])
\]

\[
a = E_w(y [x < \theta])
\]

\[
\theta
\]
function classifier = gentleBoost(x, y, Nrounds)

...

for m = 1:Nrounds

 fm = selectBestWeakClassifier(x, y, w);

 w = w .* exp(- y .* fm);

 % store parameters of fm in classifier

 ...

end

Initialize weights \(w = 1 \)
Solve weighted least-squares
Re-weight training samples
Demo gentleBoosting

Demo using Gentle boost and stumps with hand selected 2D data:

> demoGentleBoost.m
Flavors of boosting

- AdaBoost (Freund and Shapire, 1995)
- Real AdaBoost (Friedman et al, 1998)
- LogitBoost (Friedman et al, 1998)
- Gentle AdaBoost (Friedman et al, 1998)
- BrownBoosting (Freund, 2000)
- FloatBoost (Li et al, 2002)
- ...
Overview of section

• Object detection with classifiers

• Boosting
 – Gentle boosting
 – Weak detectors
 – Object model
 – Object detection
From images to features: Weak detectors

We will now define a family of visual features that can be used as weak classifiers ("weak detectors")

\[h_i(I, x, y) \]

Takes image as input and the output is binary response. The output is a weak detector.
Object recognition
Is it really so hard?

Find the chair in this image

But what if we use smaller patches? Just a part of the chair?
Parts
But what if we use smaller patches? Just a part of the chair?

Find a chair in this image

Seems to fire on legs… not so bad
Weak detectors

Textures of textures
Tieu and Viola, CVPR 2000. One of the first papers to use boosting for vision.

\[g_{i,j,k} = \sum_{\text{pixels}} |I \ast f_i| \downarrow_2 * f_j \downarrow_2 * f_k \]

Every combination of three filters generates a different feature.

This gives thousands of features. Boosting selects a sparse subset, so computations on test time are very efficient. Boosting also avoids overfitting to some extend.
Weak detectors

Haar filters and integral image
Viola and Jones, ICCV 2001

The average intensity in the block is computed with four sums independently of the block size.
Edge fragments

Opelt, Pinz, Zisserman, ECCV 2006

Fig. 1. **Object recognition using contour fragments.** Our innate biological vision system is able to interpret spatially arranged local fragments of contour to recognize the objects present. In this work we show that an automatic computer vision system can also successfully exploit the cue of contour for object recognition.
Weak detectors

Other weak detectors:
• Carmichael, Hebert 2004
• Yuille, Snow, Nitzbert, 1998
• Amit, Geman 1998
• Papageorgiou, Poggio, 2000
• Heisele, Serre, Poggio, 2001
• Agarwal, Awan, Roth, 2004
• Schneiderman, Kanade 2004
• …
Weak detectors

Part based: similar to part-based generative models. We create weak detectors by using parts and voting for the object center location.

These features are used for the detector on the course web site.
Weak detectors

First we collect a set of part templates from a set of training objects.

Vidal-Naquet, Ullman (2003)
We now define a family of “weak detectors” as:

\[h_i(I, x, y) = [I \otimes P_i] * g_i \]

Better than chance
Weak detectors

We can do a better job using filtered images

\[h_i(I, x, y) = [I \ast f_i \odot P_i] \ast g_i \]

Still a weak detector but better than before
Training

First we evaluate all the N features on all the training images.

Feature 1

\[
\begin{bmatrix}
\ast & * \\
\ast & * \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\ast & * \\
\ast & * \\
\end{bmatrix}
\]

Then, we sample the feature outputs on the object center and at random locations in the background:

\[
\begin{bmatrix}
1 & 2 & 3 & \cdots & N
\end{bmatrix}
\]

Positive Training Vectors

\[
\begin{bmatrix}
1 & 2 & 3 & \cdots & N
\end{bmatrix}
\]

Negative Training Vectors

\[
\begin{bmatrix}
1 & 2 & 3 & \cdots & N
\end{bmatrix}
\]
Representation and object model

Selected features for the screen detector

Lousy painter
Representation and object model

Selected features for the car detector

1 2 3 4 10 100
Overview of section

• Object detection with classifiers

• Boosting
 – Gentle boosting
 – Weak detectors
 – Object model
 – Object detection
Here, invariance in translation and scale is achieved by the search strategy: the classifier is evaluated at all locations (by translating the image) and at all scales (by scaling the image in small steps).

The search cost can be reduced using a cascade.
Example: screen detection

Feature output
Example: screen detection

Feature output → Thresholded output

Weak ‘detector’
Produces many false alarms.
Example: screen detection

- Feature output
- Thresholded output
- Strong classifier at iteration 1
Example: screen detection

Feature output → Thresholded output → Strong classifier

Second weak ‘detector’
Produces a different set of false alarms.
Example: screen detection

Feature output → Thresholded output → Strong classifier

Strong classifier at iteration 2
Example: screen detection
Example: screen detection

Feature output → Thresholded output → Strong classifier

Adding features

Strong classifier at iteration 200

Final classification
Maximal suppression

Detect local maximum of the response. We are only allowed detecting each object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final performance.