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A simple object detector

» Simple but contains some of same basic
elements of many state of the art detectors.

» Based on boosting which makes all the
stages of the training and testing easy to
understand.

Most of the slides are from the ICCV 05 short course
http://people.csail.mit.edu/torralba/shortCourseRLOC/



Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Decision

Background boundary
Where are the screens?

Computer screen

Bag of image patches

In some feature space



Discriminative methods

Nearest neighbor
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10% examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005

Neural networks
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LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines and Kernels

Guyon, Vapnik
Heisele, Serre, Poggio, 2001

Conditional Random Fields

McCallum, Freitag, Pereira 2000
Kumar, Hebert 2003




Formulation

classification
. M N

AN+1 XN+2 -+ XN+M

Features x = Xj
Labels y= -1 ? ? ?
~— —— — - ~ ~
Training data: each image patch is labeled Test data

as containing the object or background

e Classification function

g — F(ZU) Where F(aj‘) belongs to some family of functions

« Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)



Overview of section

» Object detection with classifiers

* Boosting
— Gentle boosting
— Weak detectors
— Object model
— Object detection



A simple object detector with Boosting

ple object detecto boo g ozilla efo

Fle Edt View Go Bookmarks Tools Help

A simple object detector
with boosting

ICCV 2005 short courses on
Recognizing and Learning Object Categories

Boosting provides a simple framework to develop robust object d jon algorith This set of functions provide a minimal set to
build an object detection algorithm. It is entirely written on Matlab in order to make it easily accesible as a teaching tool. Therefore,
it is not appropriate for building real-time applications.

Setup

Download the code and datasets
Download the LabelMe toolbox

Unzip both files. Modify the paths in initpath m
Modify the folder paths in paramaters.m to point to the locations of the images and annotations.

Description of the functions

Initialization
initpath m - Initializes the matlab path. You should run this command when you start the Matlab session.
paremeters.m - Contains parameters to configure the classifiers and the database.

Boosting tools
demoGentleBoost.m - simple demo of gentleBoost using stumps on two dimensions

Scripts

createDatabases.m - creates the training and test database using the LabelMe database.

createDictionary.m - creates a dictionary of filtered patches from the target object.

computeFeatures.m - precomputes the features of all images and stores the feature outputs on the center of the target object and on a
sparse set of locations from the background.

trainDetector.m - creates the training and test database using the LabelMe database

runDetector.m - runs the detector on test images

Features and weak detectors
convCrossConv.m - Weak detector: computes template matching with a localized patch in object centered coordinates.

Detector
singleScaleBoostedDetector.m - runs the strong classifier on an image at a single scale and outputs bounding boxes and scores.

LabelMe toolbox
LabelMe - Describes the utility functions used to ipulate the datat

|

Done

http://people.csail.mit.edu/torralba/iccv2005/

Download
* Toolbox for manipulating dataset

* Code and dataset

Matlab code
» Gentle boosting

» Object detector using a part based model

Dataset with cars and computer monitors

Detector output
Input image with ground truth Boosting margin Thresholded output targets=1, correct=1, false alarms=0




Why boosting?

* A simple algorithm for learning robust classifiers
— Freund & Shapire, 1995

— Friedman, Hastie, Tibshhirani, 1998

* Provides efficient algorithm for sparse visual
feature selection

— Tieu & Viola, 2000
— Viola & Jones, 2003

 Easy to implement, not requires external
optimization tools.

For a description of several methods:
Friedman, J. H., Hastie, T. and Tibshirani, R.
Additive Logistic Regression: a Statistical View of Boosting. 1998



Boosting

» Defines a classifier using an additive model:

1{({{3) = 0{‘1]%1(56) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features

vector



Boosting

» Defines a classifier using an additive model:

1{({{3) = 0{‘1]%1(93) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features
vector

* We need to define a family of weak classifiers

fk (CU) from a family of weak classifiers



Boosting

It is a sequential procedure:
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Toy example

Weak learners from the family of lines
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Toy example
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This one seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.



Toy example

Each data point has

@ @
O O O O ' aclass label:
@
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We update the weights:

Wy W, exp{-y, Hy}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
Ytz{ e
-1©)

We update the weights:

Wy W, exp{-y, Hy}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
_| 1@
o {-1 ©)

@ We update the weights:

Wy W, exp{-y, Hy}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
Ytz{ e
-1 (O

@ O We update the weights:

Wy W, exp{-y, Hy}

We set a new problem for which the previous weak classifier performs at chance again



Toy example
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The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers.



Boosting

 Different cost functions and minimization
algorithms result is various flavors of

Boosting

* In this demo, | will use gentleBoosting: it is
simple to implement and numerically
stable.



Overview of section

» Object detection with classifiers

* Boosting
— Gentle boosting
— Weak detectors
— Object model
— Object detection



Boosting

Boosting fits the additive model
F(x) = fi1(x) + fo(x) + fa(x) + ...

by minimizing the exponential loss

N
_ —ytF'(zt)
J(F) t; e S

Training samples

The exponential loss is a differentiable upper bound to the misclassification error.



Exponential loss

Squared error

LOSS 4 . | | " g ‘l |
Misclassification error |

N
Squared error | J — Z [yt _ F(Zlft)]z
t=1

Exponential loss |

Exponential loss

N
J — Z o~ YtF (z)
t=1
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yF(x) = margin



Boosting

Sequential procedure. At each step we add

F(z) — F(z) + fm(x)

to minimize the residual loss

N
(<b3<1) = argmin t; J (y<, F(fc{) + f(xt; @)

Parameters Desired output  input
weak classifier

For more details: Friedman, Hastie, Tibshirani. “Additive Logistic Regression: a Statistical View of Boosting” (1998)



gentleBoosting

At each iteration:
We chose fm (x) that minimizes the cost:

N
J(F 4+ fm) = Z o Yt(F(z¢)+fm(xt))
t=1

Instead of doing exact optimization, gentle
Boosting minimizes a Taylor approximation of

the error:

N . :
B At each iterations we
J(F) X Z & th(xt)'(yt — fm($t))2 just need to solve a
t=1 weighted least squares
T problem

Weights at this iteration

For more details: Friedman, Hastie, Tibshirani. “Additive Logistic Regression: a Statistical View of Boosting” (1998)



Weak classifiers

* The input is a set of weighted training

samples (Xx,y,w)

* Regression stumps: simple but commonly

used in object detection.

fm(x) = alzy, < 0] 4 blxy, > 0]

Four parameters: [a, b, 0, k]

a=E,(y [x< 6])

£ (x)

A'm

b=E,(y [x> 6])

0



gentleBoosting.m

function classifier = gentleBoost(x, y, Nrounds)

for m = 1:Nrounds

v

fm = selectBestWeakClassifier(x, y, w);

w=w.*exp(-y.* fm);

v

% store parameters of fm in classifier

end

v

Initialize weights w = 1

Solve weighted least-squares

Re-weight training samples



Demo gentleBoosting

Demo using Gentle boost and stumps with hand selected 2D data:

> demoGentleBoost.m

) Simple object detector with boosting - Mozilla Firefox
Ele Edit Vew Go Bookmarks Tools Heb

A simple object detector
with boosting

ICCV 2005 short courses on
Recognizing and Learning Object Categories

Boosting provides a simple framework to develop robust object detection algorithms. This set of functions provide a minimal set to
build an object detection algorithm. It is entirely written on Matlab in order to make it easily accesible as a teaching tool. Therefore,
it is not appropriate for building real-time applications.

Setup

Download the code and datasets
Download the LabelMe toolbox

Unzip both files. Modify the paths in initpath.m
Modify the folder paths in paramaters.m to point to the locations of the images and annotations

Description of the functions

Tnitialization
initpath m - Initializes the matlab path. You should run this command when you start the Matlab session.
paremeters m - Contains parameters to configure the classifiers and the database.

Boosting tools
demoGentleBoost.m - simple demo of gentleBoost using stumps on two dimensions

Scripts

createDatabases.m - creates the training and test database using the LabelMe database.

createDictionary.m - creates a dictionary of filtered patches from the target object.

computeFeatures.m - precomputes the features of all images and stores the feature outputs on the center of the target object and on a
sparse set of locations from the background.

trainDetector.m - creates the training and test database using the LabelMe database

runDetector.m - runs the detector on test images

Features and weak detectors
convCrossConv.m - Weak detector: computes template matching with a localized patch in object centered coordinates.

Detector
singleScaleBoostedDetector.m - runs the strong classifier on an image at a single scale and outputs bounding boxes and scores.

LabelMe toolbox
LabelMe - Describes the utility functions used to manipulate the database

Done.




Flavors of boosting

AdaBoost (Freund and Shapire, 1995)
Real AdaBoost (Friedman et al, 1998)
LogitBoost (Friedman et al, 1998)
Gentle AdaBoost (Friedman et al, 1998)
BrownBoosting (Freund, 2000)
FloatBoost (Li et al, 2002)



Overview of section

» Object detection with classifiers

* Boosting
— Gentle boosting
— Weak detectors
— Object model
— Object detection



From images to features:
Weak detectors

We will now define a family of visual
features that can be used as weak
classifiers ("weak detectors”)

et . e - N

Takes image as input and the output is binary response.
The output is a weak detector.




Object recognition
Is it really so hard?

Find the chair in this image

But what if we use smaller patches? Just a part of the chair?



Parts

But what if we use smaller patches? Just a part of the chair?

5 b

Find a chair in this image




Weak detectors

Textures of textures
Tieu and Viola, CVPR 2000. One of the first papers to use boosting for vision.

Gije= Y % fil lo*f;l o=/

: input image
pixels

input image
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Every combination of three filters
generates a different feature

This gives thousands of features. Boosting selects a sparse subset, so computations
on test time are very efficient. Boosting also avoids overfitting to some extend.



Weak detectors

Haar filters and integral image
Viola and Jones, ICCV 2001

The average intensity in the
block is computed with four
sums independently of the
block size.



Edge fragments

J. Shotton, A. Blake, R. Cipolla.
Multi-Scale Categorical Object Recognition
Using Contour Fragments. In [EEE Trans. on
PAMI, 30(7):1270-1281, July 2008.
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Fig. 1.

Object recognition using contour fragments. Our innate

biological vision system is able to interpret spatially arranged local

fragments of contour to recognize the objects present. In this work

we

show that an automatic computer vision system can also successfully

exploit the cue of contour for object recognition.
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Weak detectors

Other weak detectors:

« Carmichael, Hebert 2004

* Yuille, Snow, Nitzbert, 1998
 Amit, Geman 1998

« Papageorgiou, Poggio, 2000
* Heisele, Serre, Poggio, 2001
« Agarwal, Awan, Roth, 2004

* Schneiderman, Kanade 2004



Weak detectors

Part based: similar to part-based generative
models. We create weak detectors by
using parts and voting for the object center
location

“ = N

) %
P /?‘\ /. N
= -
Screen model

Car model

These features are used for the detector on the course web site.



Weak detectors

First we collect a set of part templates from a set of training
objects.

Vidal-Naquet, Uliman (2003)

._’




Weak detectors

We now define a family of “weak detectors” as:
hi(l,z,y) = [I ® P] * g;

.

lhl(la x, y) > 0

i1

me

Better than chance




Weak detectors

We can do a better job using filtered images hloo) = (% £ & P 0

. & =

Still a weak detector
but better than before




Training

First we evaluate all the N features on all the training images.

Feature 1

Feature N

-a)-z| I8

Then, we sample the feature outputs on the object center and at random
locations in the background:

v

5 X s 0 o --
2| ] =
22 &2
= | 3 = | 3
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gentleBoosting.m

function classifier = gentleBoost(x, y, Nrounds)

for m = 1:Nrounds

v

fm = selectBestWeakClassifier(x, y, w);

w=w.*exp(-y.* fm);

v

% store parameters of fm in classifier

end

v

Initialize weights w = 1

Solve weighted least-squares

Re-weight training samples



Representation and object model

Selected features for the screen detector
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Representation and object model

Selected features for the car detector

B—

10

100




Overview of section

» Object detection with classifiers

* Boosting
— Gentle boosting
— Weak detectors
— Object model
— Object detection



Object model

o Votlng =
d
\ N

Invariance: search strategy

Here, invariance in translation and scale is achieved by the search strategy: the
classifier is evaluated at all locations (by translating the image) and at all scales

(by scaling the image in small steps).

The search cost can be reduced using a cascade.



Example: screen detection

Feature




Example: screen detection

Feature Thresholded
output

Weak ‘detector’
Produces many false alarms.



Example: screen detection

Feature Thresholded Strong classifier
at iteration 1




Example: screen detection

Feature Thresholded Strong
output classifier

Second weak ‘detector’

Produces a different set of
false alarms.



Example: screen detection

Feature Thresholded Strong
output output classifier

Strong classifier
at iteration 2



Example: screen detection

Feature Thresholded Strong
output classifier

Strong classifier
at iteration 10



Example: screen detection

Feature Thresholded Strong
classifier

Adding
features

Final
classification

Strong classifier
at iteration 200




Maximal suppression

Detect local maximum of the response. We are only allowed detecting each
object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final
performance.



Evaluation

When do we have a correct
detection?

Is this correct?

Area intersection
Area union

« ROC
* Precision-recall

>0.5



ROC and Precision-Recall

Detection
rate

1.1: classification: test1: motorbikes

1

Oxford (0.432)

UoCTTI (0.346)

— IRISA (0.318)
Darmstadt (0.301)
INRIA_PlusClass (0.294)
INRIA_Normal (0.265)
TKK (0.184)

————MPI_Center (0.172)

————MPI_ESSOL (0.120)
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False alarm rate Recall

Plots from PASCAL competition



Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones.pdf/viola01robust.pdf



What is novel about this
approach?

Feature set (... is huge about 16,000,000
features)

Efficient feature selection using AdaBoost
New image representation: Integral Image

Cascaded Classifier for rapid detection
— Hierarchy of Attentional Filters

What is new is the combination of these ideas.
This yields the fastest known face detector for
gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”
Similar to Haar wavelets
Differences between

sums of pixels in
adjacent rectangles

e { H 609>,

otherwise

160,000x100 =16,000,000

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Integral Image

« Define the Integral Image

I'(x,y) = EI(X'ay')
y?;

* Any rectangular sum can be
computed in constant time:

D=1+4-(2+3)
=A+(A+B+C+D)-(A+C+ A+ B)

=D
* Rectangle features can be

computed as differences
between rectangles




Huge “Library” of Filters
= o @
— ) ] i —
SRR e | ] =

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Example Classifier for Face
Detection

A classifier with 200 rectangle features was learned using
AdaBoost

95% correct detection on test set with 1 in 14084
false pOSItlveS ROGC curve br 200 faaturs classifisr

! ! T ! ! ! ! ! ! T

Not quite competitive. %
Need to add more features, al
but then that slows it down. 8 ool
—IBLL 00 U SO SO N T B _

[07:2Y | I P P PR P PR RN e e feeieas .
- e : : H R : : H : :
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- . : : : : : : : : :
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faks positiva rate x 107

ROC curve for 200 feature classifier
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Fast and accurate classifier using

« (Cascade

IMAGE >
SUB-WINDOW

a cascade

Fleuret and Geman 2001, Viola and Jones 2001
« Given a nested set of classifier hypothesis classes

T
—» Classifier 2
|F j

NON-FACE

l

NON-FACE

% False Pos

50

@Vf

% Detection

50

F

NON-FACE

FACE




Cascaded Classifier

IMAGE 50% 20% 20 Foat 2%
E— —> —> eatures———»
SUB-WINDOW FACE

lF lF lF

NON-FACE NON-FACE NON-FACE

A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)

— using data from previous stage.

A 20 feature classifier achieve 100% detection rate
with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A Real-time Face Detection
System

Training faces: 4916 face images (24 x 24
pixels) plus vertical flips for a total of 9832
faces

from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium |ll, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Output of Face Detector on Test
Images

J UDYBATS '

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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150 200 250 300 350

100

50

Fleuret and Geman 2001



Cascade of classifiers

* Perhaps, enough efficiency can overcome
combinatorics...

Fleuret and Geman 2001



Edge based descriptors



Edge based descriptors
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J. Shotton, A. Blake, R. Cipolla. PAMI 2008.

Opelt, Pinz-, Zis-s-erman, ECCV 2006



Edges and chamfer distance
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Gavrila, Philomin, ICCV 1999



Edges and chamfer distance

Template

Gavrila, Philomin, ICCV 1999



Chamfer distance

Aeham fer(X) = Z min || (u + x) — v||2
veEL

uck Find closest edge location after
T displacement x

Sum over pixels on the
edge template F

E = edge map of the image



Chamfer distance

Edges Distance transform

DT(E) = Function that assigns
to each pixel the distance to the
nearest edge.

Using the distance transform, the Chamfer distance can be written as a convolution



Edges and chamfer distance




Distance transform

Edges



Distance transform

1101234 ]3]2
110112133 ]2]1
11011232110
1]0]011 ]2 ]1]0]1
211 (2]1]0]1]2
31212121 ]0]1]2
413 13[2]1]0]1]2
514141312 ]1]0]1
Edges Distance transform

(with Manhattan distance)




Efficient computation of DT

P = set of edge pixels.

Two pass O(n) algorithm for 1D L; norm

1. Initialize: For all j

D[j] « 1p[]] /1 0'if j is in P, infinity otherwise
2. Forward: For j from 1 up to n-1 iTo
D[] « min(D[],00-1]+1)

3. Backward: For j from n-2 down to 0O [of1
D[j] « min(D[j],D[j+1]+1)

wl0|lxw|0|xw|mw|axw|0|x

x|0]1]|0|1|2(3|0|1

11011(0(1]2]1]0]1

Adapted from D. Huttenlocher



Chamfer distance

dcha:n-z,fe'r(X) — Z min H (u T X) o VHQ =F DT(E)

vel
uck Find closest edge location after
—— displacement x

Sum over pixels on the
edge template F

E = edge map of the image



REAL-TIME OBJECT DETECTION FOR "SMART” VEHICLES
D.M. Gaovrila V. Phiomm

[mage Understanding Systems Clomputer Vision Laboratory

DaimlerChrysler Research University of Maryland
Ulm 89081, Germany College Park. MD 20742, U.S.A.
dariu.gavrila@DaimlerChrysler.com vasiGes.umd.edu




To deal with multiple appearances...
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Issues

Global templates are sensitive to: Constellation of local edge fragments

(5

* Non-rigid deformations



Building a Fragment Dictionary

—
e i N AR R

(~1000 fragments)



Matching Features

» Gaussian weighted oriented chamfer
matching

— aligns features to image

Canny

Opelt, Pinz, Zisserman, ECCV 2006
J. Shotton, A. Blake, R. Cipolla. PAMI 2008.



Matching Features

» Gaussian weighted oriented chamfer
matching

— aligns features to image

Chamfer

Matching

—

feature match score at optimal position

optimal position



Location Sensitive Classification

« Feature match scores make detection simple
» Detection uses a boosted classification function K(c):

M
K(c) = Y amé(v(Fm, E|c) > 0m) + bm

m=1

M number of features weak learner threshold
F_ feature m weak learner confidence
E canny edge map weak learner confidence

object centroid

0-1 indicator function




Object Detection

« Evaluate K(c) for all ¢ gives a
classification map

— confidence as function of
position

object

no object

* Globally thresholded local
maxima give final detections

. idkg prse

&
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35
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classification
map

contours




Learning System

Background
Training Data Test Data
Segmented .
Training Data - k() [DetectlonJ

Object
Detections



Training Data

o Class N
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Unsegmented (40)
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Boosting as Feature Selection

1. Fragment Selection

-> e
A
1000 random 50 discriminative
fragments fragments

2. Model Parameter Estimation
Select g, A\ for each feature

3. Weak-Learner Estimation
Select 6, a, b for each feature



Contour Results
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Contour Results
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Histograms of oriented gradients



Histograms of oriented gradients

Shape context
SIFT, D. Lowe, ICCV 1999 Belongie, Malik, Puzicha, NIPS 2000

Count the number of points
X [T, "™ inside each bin, e.g.:
/ N\
AR B % /
- " T - - 'S o
=N
T— ) o T ¥ b
> O e Y
o | AN e e | *\\ b, 2
\‘ i S B o a4 7" { o Niue .
NG a e S i .. < Count = 10
e . §
Image gradients Keypoint descriptor N~ N % Compact representation

of distribution of points
relative to each point




Image features:
Histograms of oriented gradients (HOG)

Bin gradients from 8x8 pixel neighborhoods into 9
orientations

(Dalal & Triggs CVPR 05)

Source: Deva Ramanan
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image

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhone-Alps, 655 avenue de 1'Europe, Montbonnot 38334, France

{Navneet.Dalal,Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Normalize

—>» gamma &

colour

>

Compute
gradients

Weighted vote
into spatial &
orientation cells

Contrast normalize
over overlapping
spatial blocks

Collect HOG’s
over detection
window

—>

Linear
SVM

Person /
—3» non—person
classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.



Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I’Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Input _, Normalize Compute Weighted vote Contrast normalize Collect HOG’s Li Person /
image S gradients —» | into spatial & »| over overlapping |~/ over detection —>» S{?ﬁ‘r —>» non—person
colour orientation cells spatial blocks window classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.

Orientation Voting

=~ — Overlapping Blocks
— [101] = G,

Input Image Gradient Image ~
- = Local Normalization




HOG
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SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H ( I ) — Z A Ym k ( I, Tm )

m=1

Where {X.,, ¥,,}, form =1 .. .M, are the training data with x_, being
the input feature vector and y, = +1,-1 the class label. k(x, x,,,) is the kernel and
it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, x,,) = x" X,
« Radial basis function: k(x, x,,) = exp(—|x — x.,|/0?).
« Histogram intersection: k(x,x,,) = sum,(min(x(i), X,,(i)))



Linear SVM
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f(x)=(w.x+b)



Scanning-window templates

Dalal and Triggs CVPR05 (HOG)

Papageorgiou and Poggio ICIP99 (wavelets)

w = weights for orientation and spatial bins \
w-x >0

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Source: Deva Ramanan



How to interpret positive and negative weights?

w-x>0
(Wpos = Wneg)'X > 0

Wpos'X = Wheg'X

i -
ied  (EAIEL
3 e o v :
Pedestrian | {+ 1. Lo | Pedestrian
§ fekd & ~~T1=Zbackground
p e ‘*' 2 ‘ ! e B S
41 14 1 Lree ~ vl template
<4 IX "- | emeners |
hg i : PN Sepe ¥
4 A Y ¥ S g |
'%W’ . ' | .
S .

Wpos,Wneg = Weighted average of positive, negative support vectors
Right approach is to compete pedestrian, pillar, doorway... models

Background class is hard to model - easier to penalize particular vertical
edges

Source: Deva Ramanan



Histograms of oriented gradients
Dalal & Trigs, 2006

1— Not a person

e & e

[“i{ » . person
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Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.



Constellation models

Source: short course on object recognition. Fergus, Fei-fei, Torralba



Representation

* Object as set of parts
— Generative representation

 Model:
— Relative locations between parts
— Appearance of part

e |ssues:
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]



History of Parts and Structure
approaches

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, ’00, 03, ‘04, ‘05
Felzenszwalb & Huttenlocher ‘00, '04
Crandall & Huttenlocher 05, '06

Leibe & Schiele 03, '04

MOUTH

Many papers since 2000



The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the
following. Given some description of a visual object, find that object
in an actual photograph. Part of the solution to this problem is the
specification of a descriptive scheme, and a metric on which to base
the decision of “goodness” of matching or detection.

We offer a combined descriptive scheme and decision metric
which is general, intuitively satisfying, and which has led to promis-
ing experimental results. We also present an algorithm which takes
the above descriptions, together with a matrix representing the in-
tensities of the actual photograph, and then finds the described
object in the matrix. The algorithm uses a procedure similar to
dynamic programming in order to cut down on the vast amount of
computation otherwise necessary.

One desirable feature of the approach is its generality. A new
programming system does not need to be written for every new
description; instead, one just specifies descriptions in terms of a
certain set of primitives and parameters.

There are many areas of application: scene analysis and descrip-
tion, map matching for navigation and guidance, optical tracking,

Manuscript received November 30, 1971; revised May 22, 1972,
and August 21, 1972, b
The authors are with the Lockheed Palo Alto Research Labora-

;2?(')'4 Lockheed Missiles & Space Company, Inc., Palo Alto, Calif.

stereo compilation, and image change detection. In fact, the ability
to describe, match, and register scenes is basic for almost any

image processing task.

Index Terms—Dynamic
picture description, picture 1
tation.
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Fig. 4. Examples of image-matching experiments using faces. (a) Successful embedding under coherent noise.



Sparse representation

+ Computationally tractable (10° pixels > 107 -- 102 parts)
+ Generative representation of class

+ Avoid modeling global variability

+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes



Structure models

Voting models Constellation models Deformable models

~

« Many patches (>100) * Few parts (~6) * No parts




Region operators

— Local maxima of
Interest operator 7
function LMMIL

— Can give scale/ I\
orientation invariance e )

MultiScale Harris Difference-of-Gaussian Saliency
Figures from [Kadir, Zisserman and Brady 04]



The correspondence problem

 Model with P parts
« Image with N possible assignments for each part
» Consider mapping to be 1-1

« NP combinations!!!




Different connectivity structures

Fergus et al. '03 Crandall et al. ‘05 Crandall et al. ‘05 Felzenszwalb‘&
Fei-Fei et al. ‘03 Fergus et al. '05 randal et al. Huttenlocher ‘00
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How much does shape help?

 Crandall, Felzenszwalb, Huttenlocher CVPR’05
« Shape variance increases with increasing model complexity
* Do get some benefit from shape

XAl

1 [ garT . ~
: (a) Airplane, 1-fan
09 ;
o 08
g -»
207 \aa
B
8 06
:
F 05 ; .
t| = = = No structure] :
04 ' 1-fan : . .
. : _ | —2_fan (b) Airplane, 2-fan
0.3 . : 4 . i
0.2 0.3 0.4 05 0.6 0.7

False positive rate



Some class-specific graphs

* Articulated motion
— People
— Animals

« Special parameterisations
— Limb angles

ot

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05]



Dense layout of parts
Layout CRF: Winn & Shotton, CVPR ‘06

e

Part labels (color-coded)




How to model location?

« Explicit: Probability density functions
* Implicit: Voting scheme

 |nvariance

— Translation

— Scaling - <>
— Similarity/affine

— Viewpoint



Explicit shape model

Cartesian
— E.g. Gaussian distribution
— Parameters of model, u and

— Independence corresponds to zeros in X

— Burl et al. '96, Weber et al. ‘00, Fergus et al. ‘03

1
2
p=|"3
Y1
Polar v
. Y3
— Convenient for
invariance to
rotation .
‘/“’"
\
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Mikolajczyk et al., CVPR ‘06




Implicit shape model

» Use Hough space voting to find object
* Leibe and Schiele '03,'05

Learning

 Learn appearance codebook

— Cluster over interest points on '
training images

« Learn spatial distributions
— Match codebook to training images

— Record matching positions on object
— Centroid is given

Recognition  Interest Points Matched Codebook
Entries

e E

y y
Q@
®
) i S
%@x 74
y
° o

>4
v
@

X X
Spatial occurrence distributions

Probabilistic




Deformable Template Matching

l——

Templéte | Query

Formulate problem as Integer Quadratic Programming
O(NF) in general
Use approximations that allow P=50 and N=2550 in <2 secs




Multiple view points

‘O\Uiewpoints
..input 0° 3
i .
| objegrs 3 |
model E l l i l E
(codebook, . :
links) %%\ j~a %
Hoiem, Rother, Winn, 3D LayoutCRF for $hotm|as, Fegrar:!, :_elbea LV
Multi-View Object Class Recognition and Guy le_?_ars, dc I\I/(Ia T’t’. ?/n 'Obafm {
Segmentation, CVPR ‘07 ool. fowards Mulli-view Ubjec

Class Detection, CVPR 06



Representation of appearance

* Needs to handle intra-class variation
— Task is no longer matching of
descriptors
— Implicit variation (VQ to get discrete
appearance)

— Explicit model of appearance (e.qg.
Gaussians in SIFT space)

« Dependency structure

— Often assume each part’s
appearance is independent

— Common to assume
independence with location




Representation of appearance

* |nvariance needs to match that of
shape model

* |Insensitive to small shifts in
translation/scale
— Compensate for jitter of features
—e.g. SIFT

* |llumination invariance
— Normalize out




Appearance representation

« SIFT  Decision trees
— , [Lepetit and Fua CVPR 2005]
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Background clutter

* Explicit model

— Generative model for clutter as well as foreground
object

« Use a sub-window

— At correct position,
no clutter is present




Demo Web Page

2 A simple parts and structure object detector - Microsoft Internet Explorer, provided by Insight Broadband

File Edit View Favorites Tools Help

@Back - d |ﬂ @ h /‘j) Search \‘,‘/‘}(Favorites e} ({:2' L_;' v _J ﬁ ‘3
Address @ http:/fpeople.csail. mit.eduffergusficcv2005/partsstructure. html
Google-’reserve "beijing hotel" VI |Cl search ~ §@ Ehiooblocked ¥ Check ~ "X Autolink v | suorl @ options &[G reserve [§

A simple parts and structure object detector

ICCY 2005 short courses on
Recognizing and Learning Object Categories

An intuitive way to represent objects is as a collection of distinctrve parts. Such schemes raodel both the relative positions of the parts as well as their appearance,
gIving a sparse representation that captures the essence of the object.

This siraple derao illustrates the concepts behind many such "parts and structure” approaches. For siraplicity, training is raanually guided with the user hand-clicking
on the distinctive parts of a few training irmages. & siraple raodel is then built for use in recogration. Two different recognition approaches are provided: one relying
on feature points [1]; the other using the efficient methods of Felzenswalb and Hutterdocher [2].

The code consists of IMatlab scripts {(which should run under both Windows and Linux). The Iraage Processing toolbox is required. The code is for teachingjresearch
purposes only. If you find a bug, please eraail me at fergus where csail point rait point edu.

Download

Download the code and datasets (24 Idbiytes)

Operation of code

To run the deraos:

1 TTrmack the 7in file inta a newr divectorr (e o hame mesmamesidemne’

€]

4 Start A Microsoft Ou... Q3 A simple part... | 3§ ICCY2005_t... &8 1cCv2005. L. %8 1CCv2005_rob fa Papers
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Demo (4

ROC Curve, Area: 0.85186 OpP: 0.75789

Image: 26 Best match score: -3.0031 Image: 43 Best match score: -6.602

Precision




Object Detection with Discriminatively Trained
Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Abstract—We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able
to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While
deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the
PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-
sensitive approach for data-mining hard negative examples with a formalism we call /atent SVM. A latent SVM is a reformulation of
MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is

specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive
examples and optimizing the latent SVM objective function.

Index Terms—Object Recognition, Deformable Models, Pictorial Structures, Discriminative Training, Latent SVM
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PASCAL Visual Object Challenge
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5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table
dog horse motorbike person plant sheep sofa train tv

Source: Deva Ramanan



5 years of PASCAL people detection

50

37.5
average

precision 25

1% to 45% in 5 years

Discriminative mixtures of star models 2007-2010 Felzenszwalb,
McAllester, Ramanan CVPR 2008
Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2009

Source: Deva Ramanan



Deformable part models

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan



Feature pyramid

ge pyramid
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Scoring function
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Source: Deva Ramanan



Scoring function
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score(x,z) == w; ¢ (X, Z)

X = image

zi = (Xi,Yi)
z = {z1,22...}

part template
scores

Source: Deva Ramanan



Scoring function

.1.:}. -
I X obod
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score(X,z

X = image

zi = (Xi,Yi)
z = {z1,22...}

part template pring deformation model
scores

E = relational graph

Source: Deva Ramanan



Scoring function
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score(X,z

X = image

zi = (Xi,Yi)
z = {z1,22...}

part template spring deformation model
scores

Score is linear in local templates wi and spring parameters wi;

score(x,z) = w - d(x, z)

Source: Deva Ramanan



Inference: max score(x,z)

Felzenszwalb & Huttenlocher 05

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent

Source: Deva Ramanan



Classification

£ (x)>0
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[ atent-variable classification

£ (x)>0

fw(x)=m§x S(x,2)

=mgx w - D(X, z)




Latent SVMs
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Given positive and negative training windows {xn}

L(w) = |lw]|*+ ) max(0,1— fu(za)) + > max(0,1+ fu(zn))
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falz = max w - ®(z, 2)

L(w) is “almost” convex

Source: Deva Ramanan



Latent SVMs

"

Given positive and negative training windows {xn}

L(w) = ||’ + ) max(0,1 - fu{za)) + > max(0,1+ fu(an))

nepos neneg
w-D(z..2,)

Tl = max w - bz, 2)

L(w) is convex if we fix latent values for positives

Source: Deva Ramanan



Coordinate descent

1) Given positive part locations, learn w with a convex program

w = argmin L(w) with fixed {z,:n € pos}

w

2) Given w, estimate part locations on positives

zn = argmaxw - ®(x,,2) Vn € pos

Z

The above steps perform coordinate descent on a joint loss

Source: Deva Ramanan



Treat ground-truth labels
as partially latent

Allows for “cleaning up” of noisy labels
(in ) during iterative learning

Source: Deva Ramanan



Initialization

Learn root filter with SVM

Initialize part filters to regions in
root filter with lots of energy

:

Source: Deva Ramanan



Example models
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Source: Deva Ramanan



Example models
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Example models
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e

Source: Deva Ramanan



class: person, year 2006
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—+—1 Root (0.24)

2 Root (0.24)

-1 Root+Parts (0.38)
—e—2 Root+Parts (0.37) R
—v—2 Root+Parts+BB (0.39)(

Other tricks:
*Mining hard negative examples
*Noisy annotations
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