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What 1s a good representation for
1image analysis?
* Fourier transform domain tells you

“what” (textural properties), but not “where”.

 Pixel domain representation tells you
“where” (pixel location), but not “what”.

* Want an 1image representation that gives you
a local description of 1mage events—what 1s
happening where.



The image through the Gaussian
window

B Too much




The image through the Gaussian
window

B Too much
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The image through the Gaussian
window

h(xy)=e " <ggm
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The image through the Gaussian
window

x2 +y2
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hry)=e ' <l
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The image through the Gaussian
window

x2 +y2

_ <
hry)=e ' <l

8 Too much

Too little

Probably still too little...
...but hard enough for now




Analysis of local frequency

Fourier basis:

J2mmugx
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Analysis of local frequency

Fourier basis:

J2mmugx
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Gabor wavelet:

x2+y2

P(x,y)=e 2 2™




Analysis of local frequency

Fourier basis:

J2mmugx

€

Gabor wavelet:
x2 +y2

Y(x,y)=e 2 /2™

We can look at the real and imaginary parts:
_x2+y2

Y.(x,y)=e ES COS(Zonx)

X2+y2

Y (x,y)=e 2 sin(2muyx)




Gabor wavelets

_x2+y2
Y. (x,y)=e 2 cos(2mu,x)

uy,=0



Gabor wavelets

_x2+y2
Y. (x,y)=e 2 cos(2mu,x)

u,=0



Gabor wavelets

)C2+y2

Y. (x,y) = e cos(27u,x)

u,=0




Gabor wavelets




Gabor wavelets

)C2+y2

Y. (x,y)=e 2 cos(2mu,x)

Y. (x,y) = e sin(2mtox)



Gabor wavelets

=e 2 sin(2muyx)

Y (x,y)
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Structure Operations 2D Fourier Plane

s RAS
World e
Optics Low-pass spatial filtecing
Sampling, more low-pass
Photoreceptor fitering, temporal lowbandpass
Array fiitenng, & filtering, gain control,

response compresson

Spatictemporal bandpass

LGN Cells filtering, A fitering, multiple
paralled ropresentations

st.z233s

Simple cells: orientabon,
phase, motion, banocular
disparity, & A filterng

Primary Visual Cortical
Neurons:
Simple & Complex

Complex colis: no phase
fitering (contrast energy
getection)

FIGURE 1 Schematic overview of the processang doae by the early visual system, On the left, are some of the major
structures 10 be discussed; in the middle, are some of the major operations done at the associsted structure; in the righs,
are the 2-D Fourier representations of the world, retinal image, and sensitivities typical of a ganglion and cortical cell.
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2D Receptive Field

2D Gebor Function
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Fig. 5. Top row: illustrations of empirical 2-D receptive field profiles

measured by J. P. Jones and L. A. Palmer (personal communication) in
simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor

elementary function for each ncuron, described by (10). Bottom row:

residual error of the fit, indistinguishable from random error in the Chi-

squared sense for 97 percent of the cells studied.
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Outline

Quadrature phase
Oriented filters
Motion analysis
Image pyramids



Quadrature filter pairs

A quadrature filter 1s a complex filter whose real part 1s related to its
imaginary part via a Hilbert transform along a particular axis through
origin of the frequency domain.
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Contrast invariance!



























How quadrature pair filters work

T

B
(a) Frequenby response df even filter, G
(real)

f,

ﬁw’ - :——i' + -

f

(b) Frequency response of odd filter, H
(imaginary)

Figure 3-5: Frequency content of two bandpass Tilters i e
phase hlter, called 6 text, and (b odd phase hilter, /1. P
tHustrate relative sie of regions the Trequeney doman See Fig, 36 fo
calculation of the [requency content of the coeregy measure i
two hilters,



How quadrature pair filters work
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(@) Fourier transform of G*G
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(b) Fourier transform of H'H
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(¢) Fourier transformof G'G + H'H
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John Daugman, http://www.cl.cam.ac.uk/~jgd1000/

Gabor filter measurements for iris recognition code

AL R U N R LR LR ST L IR |
S L DERL ML B S L N Dl i LU TR LRIl [ BRI RN

L LR B RETRIL M (R h BRI W I mmE RiniE 5 RN IR
UL LU R NI LR LIRS AR [NEEER RN RNl e
L I N RIEERL N RIRRIES TIRLILE i ARRN AR IR B oW
L IRIn (B0 R LR AR R e R RE LR e e
AL LU IR LR R LR LR LI e

ALUESINL DL LR R BN Rl I .

o 9‘0 |W!\01?01]0

0 0 20 %)‘0 ﬂ)qp 70

~ Y —- - . —— ’
00 o 02 03 04 0©5 06 o7 08 09 10


http://www.cl.cam.ac.uk/~jgd1000/
http://www.cl.cam.ac.uk/~jgd1000/

Iris code

Iris codes are compared using Hamming distance

John Daugman Images from http://cnx.org/content/m12493/latest/



Setting the Bits in an IrisCode

hp =11f Rejpf‘oe"‘“(‘“'ﬂe'('““’)’/"’e'(0‘"¢)’/‘921(P,¢)Pdlﬁ¢ 20
hp, =0 if Reije-M‘o-ﬁ)e—(m— )’/u’e—(ﬂo—ﬂ’m’](p’(&)mm <
Aron =1 iflm]pj;e"“‘“"'ﬂe'(""")’/"’e'(“"’)’mzl(p,¢)pdpd¢ >0

A, =0 ifImLLe"“’“"""’e'(’""’)’/"’e'(‘°‘¢)’/‘9’I(p,¢)pdpd¢ <

Phase-Quadrant Iris Demodulation Code

[0, 0] [1,0]

John Daugman, http://www.cl.cam.ac.uk/~jgd1000/
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* Oriented filters

Outline

19



Oriented edges

* Nowadays, it 1s the most important feature.

22



Gabor wavelet:
X2 +y2

P(x,y)=e 2 el

Tuning filter orientation:

x'=cos(a)x + sin(a)y

y'=-=sin(a)x + cos(a)y



Gabor wavelet:
X2 +y2

P(x,y)=e 2 el

Tuning filter orientation:

x'=cos(a)x + sin(a)y

y'==sin(a)x + cos(a)y
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Simple example

“Steerability”-- the ability to synthesize a filter of any orientation from a linear
combination of filters at fixed orientations.

G, =cos(0)G, +sin(0)G,,

Q° Synthesized 30°
Response: Taken from:
W. Freeman, T. Adelson, “The Design
and Use of Sterrable Filters”, IEEE
RaW Image Trans. Patt, Anal. and Machlne Intell.,

vol 13, #9, pp 891-900, Sept 1991



Steerable filters

Derivatives of a Gaussian:

x2+y2

iy’ _Oh(x,y) -y 5 _—
_h(xy) xS B ()= - e <

7 20 y &y 2.7_[04

h (x,
() ox 2710

An arbitrary orientation can be computed as a linear combination of those two
basis functions:
h,(x,y) =cos(a)h (x,y) + sin(a)h,(x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.



Steerable filters

Derivatives of a Gaussian:

_Oh(xy) _ -x
ox 27O 8

h.(x,y)

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

h,(x,y) =cos(a)h (x,y)+ sin(@)h (x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Freeman & Adelson 92



[ Gain
r U'f(ei maps

Summing Adaptively
junction filtered image

U >
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g
Xfe
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T
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Fig. 3. Steerable filter system block diagram. A bank of dedicated filters
process the image. Their outputs are multiplied by a set of gain maps that
adaptively control the orientation of the synthesized filter.



Steering theorem

Change from Cartesian to polar coordinates
f(x,y) H(r,0)

A convolution kernel can be written using Fourier series in polar
angle as: N

f(rq (D} f— Z (l"‘;r)eirlrf>

I ,'\'v

Theorem: Let T be the number of nonzero coefficients a_(1).
Then, the function f can be steer with T functions.



Steering theorem for polynomials
f(x,y) = W(r) P(x,y)

Theorem 3: et f(z.y) = W(r)Px(z,y). where W(r)

is an arbitrary windowing function, and Py{x.y) is an Nth
order polynomial in  and y, whose coefficients may depend
on r. Linear combinations of 2N + 1 basis functions are
sufficient to synthesize f(z,y) = W(r)Px(z,y) rotated to
any angle. Equation (10) gives the interpolation functions
k;(8).1f Py(z.y) contains only even [odd] order terms (terms
z"y™ for n + m even [odd]), then N + 1 basis functions are
sufficient, and (10) can be modified to contain only the even
[odd] numbered rows (counting from zero) of the lefi-hand
side column vector and the right-hand side matrix.

For an Nth order polynomial with even symmetry N+1 basis
functions are sufficient.



Steerability

A . e .
Important example is 214 derivative of Gaussian % = (4% = 2)e~" ) (_Laplacian):
p P P

("'Zu (-_"'2 b ("'ZC

Figure 16: X-Y separable basis filters for (72, listed in Tables 3 and 4.

Gza = 0.9213(22% = 1)e™ ") [ L (0) = cos?(0)
Gz = 1.843zye~"+v") k(@) = —2cos(f)sin(d)
Ga. = 0.9213(2y2 = 1)e=="+°) | k(f) = sin?(6)

Table 3: X-Y separable basis set and interpolation functions for second derivative of Gaussian. To
create a second derivative of a Gaussian rotated along to an angle é, use: (,;g = (ka(@) Goa + Kki(0) G,
+ kA8) GG2.). The minus sign in k(@) selects the direction of pasitive 6 to be counter-clockwise.

Taken from: W. Freeman, T. Adelson, “The Design and Use of Steerable Filters”, IEEE Trans. Patt, Anal. and Machine Intell., vol 13, #9, pp 891-900, Sept 1991 29



Two equivalent basis

These two basis can use to steer 2™ order Gaussian derivatives

(a) Gy Basis Set

f N »

' E - (¢) Gy X-Y Separable Basis Set




Approximated quadrature filters for 2" order Gaussian derivatives

(this approximation requires 4 basis to be steerable)

(d) H, Basis Set

(e¢) Hy Amplitude Spectra

(f) Hy X-Y Separable Basis Set




Second directional derivative of a Gaussian and its quadrature
pair

(a) Original image

(b) real component of fil-
tered image

T T

(c) imaginary component
of filtered image

(¢) sum of the squares of
(b) and (c)




Orientation analysis

W
l. '
-4 P o

{C)

(a)

(b) (d) (f)
Fig. 9. Test images of (a) vertical line and (b) intersecting lines; (¢) and (d)
orented energy as a function of angle at the centers of test images (i) and (b).
Oriented energy was measured using the (G5, Hy quadrature steerzble pair,
(e) and (1) polar plots of (¢) and (d)



Orientation analysis

(b) (d)

Fig. 9. Test images of {

High resolution in

orientation requires

many oriented filters
| -7 as basis (high order

et , — gaussian
~[\V 7 derivatives).
(r)

(a) vertical line and (b) inter secting lines; (<) and (d)

onented energy as a function of angle at the centers of 1est images (i) and (b).

Oriented energy was measured using the 7y,

(e) and () polar plots of (¢) and (d)

H quadraure steerzble pair,
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Fig. 8. (a) Original image of Einstein; (b) orientation map of (a) made using
the lowest order terms in a Fourier series expansion for the oriented energy

as measured with (G3 and H-. Table XI gives the formulas for these terms.



B . A A

ek de s . Qc><><%>o<>q’>
g SN 8
(c) (d)

Fig. 10. Measures of orientation derived from Gy and H steerable filier out-
puts: (a) Input image for orientation analysis: (b) angular average of oriented
energy as measured by G4, H4 quadrature pair. This is an oriented features
detector; () conventional measure of orientation: dominant orientation piotted
at each point. No dominant orientation is found at the line ntersection or
corners; (d) oriented energy as a function of angle, shown as a polar plot for
a sampling of points in the image (2). Note the multiple orientations found at
intersection points of lines or edges and at corners, shown by the Horets there.



A contour detector

36



edge detector

output

R

A contour detector
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edge detector

output

R

Local
energy

A contour detector

3 o A
VAN g VvV
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A contour detector

edge detector 2o me’ 3 A
output Local 3\ 4 V

energy

Phase ~ 90
Phase ~ 0
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Figure 3-9: The problem with using energy measures to analyze a structure
of multiple orientations. and how to solve it {part two). {a) Cross image (the
sum of IFig. 3-8 (a) and (c¢)). The oriented energy (b) of the cross is not the
sum of the energies of the horizontal and vertical lines, Fig. 3-8 {b) and (d).
due to an effect analogous to optical interference. Many of the florets do not
show the two orientations which are present; several show angularly uniform
responses. lor comparison. (¢) shows the sum of energies Fig. 3-8 {(b) and
(d). Floret polar plot of energies after spatial blurring, (d). are predicted to
remove interference effects, as described in text. Note that the energy local
maxima correspond to image structure orientations. These florets are nearly
identical to the sum of blurred energies of the horizontal and vertical lines. (e).
showing that superposition nearly holds. (The agreement is not exact because
the low-pass filter used for the blurring was not perfect).
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Figure 2-10: LExample ol a three-dimensional steerable hilter. Surlaces ol
constant value are shown lor the six basis hlters ol a second derivative ol
a three-dimensional Gaussian.  Linear combinations ol these six lilters can
vinthesize the lilter rotated to any orientation in three-space.  Such three-
dimensional steerable Lilters are nselul lor analvsis and enhancement ol motion
~cquences ol volumetric nmage data. such as NIRT or C'1 data. For discussions

[ steerable filters in three or more dimensions, see [59, 55, 33, Mo (Martin

Friedimmann rendered this nnage with the Thimeworld program ).



* Motion analysis

Outline

33



The space time volume
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The space time volume




The space time volume




The space time volume

t




The space time volume

Static objects- vertical lines

Moving objects slanted’lines, slope ~ motion velocity



Motion signals in space-time

space-time spatio-temporal Fourier

domain transform domain

W

S

A t
time // W
< >
>
space
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Motion signals in space-time

space-time spatio-temporal Fourier

domain transform domain

, A
A
time // OR
< >
>
space

¢ note locus of energy
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Motion signals in space-time

space-time spatio-temporal Fourier
domain transform domain
W, T
A
time .
< >
>
space
: sSpace ¢ note locus of energy
spatio- >
temporal
fFi)Iters time / cos phase filter
‘ power in
" frequency
v domain

’ sin phase filter 45



Evidence for filter-based
analysis of motion in the human
visual system

46



Approximation to a square wave using
a sequence of odd harmonics

1.5

1.0 , \

0.5 / \ l

0.0} ' ,
~0.5} /
~1.0} S I S —
~13.0 0.5 1.0 1.5 2.0

Using Fourier series we can write an ideal square wave as an infinite series of the form

1 | 1 |
Tsquare(l) = = (sin(‘.Z:frff ) + 5 sin(67 ft) + £ sin(107ft) + - ) .

http://en.wikipedia.org/wiki/Square_wave


http://en.wikipedia.org/wiki/Square_wave
http://en.wikipedia.org/wiki/Square_wave

Space-time picture of translating
square wave

space




Space-time picture of translating
square wave

space sin(w x)

time ’
Frrrry
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Translating Square Wave (phase advances by 90 degrees each time step)

50




Translating Fluted Square Wave (phase of lowest remaining sinusoidal
component advances by 270 degrees (-90) each time step)

51




* Image pyramids

Outline

49



Local image representations




Local image representations

A pixel
¢ [r’g’b]




Local image representations

A pixel
¢ [r’g’b]

An image patch




Local image representations

A pixel
¢ [r’g’b]

An image patch

ERESSRESS  Gabor filter
% pair in quadrature

J.G.Daugman, “Two dimensional spectral analysis of cortical receptive field profiles,” Vision Res., vol.20.pp.847-856.1980

L. Wiskott, J-M. Fellous, N. Kuiger, C. Malsburg, “Face Recognition by Elastic Bunch Graph Matching”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.19(7), July 1997, pp. 775-779.



Local image representations

A pixel
o [r’g’b]

An image patch

Gabor filter
pair in quadrature Gabor jet

V1 sketch:
hypercolumns

[/

V-

J.G.Daugman, “Two dimensional spectral analysis of cortical receptive field profiles,” Vision Res., vol.20.pp.847-856.1980

L. Wiskott, J-M. Fellous, N. Kuiger, C. Malsburg, “Face Recognition by Elastic Bunch Graph Matching”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol.19(7), July 1997, pp. 775-779.
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Image pyramids

Gaussian pyramid
Laplacian pyramid

Wavelet/QMF pyramid
Steerable pyramid

68



Image pyramids

Gaussian pyramid
Laplacian pyramid
Wavelet/QMF pyramid
Steerable pyramid

56



The Gaussian pyramid

* Smooth with gaussians, because
— a gaussian®gaussian=another gaussian

* (Gaussians are low pass filters, so
representation is redundant.

6%



The computational advantage of pyramids

GAUSSIAN PYRAMID

B . ® 9
a
| .%j\ | B
- - B - & \o\o - ® dy
g, = IMAGE

g. = REDUCE [g, ]

Fig 1. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.

58
http://www-bcs.mit.edu/people/adelson/pub pdfs/pyramid83.pdf

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31.NO. 4, APRIL 1953


http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

GAUSSIAN PYRAMID

B e .

0 1 2 3 4 S

Fig. 4. First six levels of the Gaussian pyramid for the "Lady” image The onginal image, level 0, meusures 257 by 257 pixels and each
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

59
http://www-bcs.mit.edu/people/adelson/pub pdfs/pyramid83.pdf IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31. NO. 4, APRIL 1953



http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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x, = Gx,

Convolution and subsampling as a matrix multiply (1-d case)
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(Normalization constant of 1/16 omitted for visual clarity.)



Next pyramid level

6

1

4

0O 0 0 O 0 O

1

0O 0 0 O

4
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The combined effect of the two pyramid

levels
x, = G,Gx,
G?_Gl =
1 4 10 20 31 40 44 40 31 20 10 4 1 0 O 0 O O 0O O
O 0 O 0 1 4 10 20 31 40 44 40 31 20 10 4 1 O 0 O
O O O 0 0O O 0O O 1 4 10 20 31 40 44 40 30 16 4 O
O O O 0 0O O 0O O 0O O 0 O 1 4 10 20 25 16 4 O
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0.4

h4(x)

0.2

h,()

0.1

NA(x)

L%
>

h 4x)

i . : \
: :
IV 0—'" 1 1 H_l
0o 1 2
o e
| e
[ o i
— —
— 1 1 |
0 2 4
[ Fr"- -"!-.
——d-r ! 1 }‘.r——-
0 4 8
0 ,1pp0-1
SPATIAL POSITION (x)

Fig. 2. The equivalent weighting functions /& (x) for nodes n levels 1, 2. 3,
and infinity of the Gaussian pyramid. Note that axis scales have been

adjusted by factors of 2 1o aid comparison Here the parameter a of the

generating  kernel

is 0.4, and the resulting equivalent

weighting

functions closely resemble the Gaussian probability density functions.

http://www-bcs.mit.edu/people/adelson/pub pdfs/pyramid83.pdf
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IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31.NO. 4, APRIL 1953


http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Gaussian pyramids used for

* up- or down- sampling 1images.
* Multi-resolution 1image analysis

— Look for an object over various spatial scales

— Coarse-to-fine 1mage processing: form blur
estimate or the motion analysis on very low-
resolution image, upsample and repeat. Often a
successful strategy for avoiding local minima 1n
complicated estimation tasks.
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1-d Gaussian pyramid matrix, for [1 4 6 4 1] low-pass filter

full-band 1mage,
highest resolution

lower-resolution
image

lowest resolution gg ™
image I
h— ”




Image pyramids

Gaussian
Laplacian
Wavelet/QMF

Steerable pyramid
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The Laplacian Pyramid

* Synthesis

— Compute the difference between upsampled
Gaussian pyramid level and Gaussian pyramid
level.

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other level.
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Laplacian pyramid algorithm

69



Laplacian pyramid algorithm
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X

{—

Laplacian pyramid algorithm

G1x1
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X

{—

Laplacian pyramid algorithm

G1x1
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm




Upsampling

V, = ng3 Insert zeros between pixels, then
apply a low-pass filter, [1 4 6 4 1]
}73 = 6 1 0 0
4 4 0 O
1 6 1 0
0 4 4 0
0 1 6 1
0 0 4 4
0O 0 1 6
0O 0 0 4
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Showing, at full resolution, the information captured at each level
of a Gaussian (top) and Laplacian (bottom) pyramid.

Fag & Fase Rar devads of the Gavssan and Laphcan pymmed Gawssan syages, wpper rom, were obdamedy expandeg pavamed amas (kg 4)
through Gumassim st apohboa. Fadh kevd ofthe Laphcnin pysumnd 15 the di flemence batween the cormespoadng and next bagha kevels of the
Cayvesssan poriemd

71
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http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Laplacian pyramid reconstruction algorithm:
recover X, from L,, L,, L; and x,

G# 1s the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
L1=(I-F1Gl)xl
L2=(I-F2G2)x2
L3=(I-F3G3)x3

x2 =Gl x1

x3 =G2 x2

x4 = G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3=L3+F3 x4
x2=L2+F2x3
xl =L1+FI1 x2
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Laplacian pyramid reconstruction algorithm:
recover X, from L, L,, L; and g;

X




/A /A IS A= N

L7 =\ <=\,
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212 256
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128 64 32 16 8
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& Gausstan pyramid







1-d Laplacian pyramid matrix, for [1 4 6 4 1] low-pass filter

high frequencies

mid-band

frequencies

low frequencies
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Laplacian pyramid applications

e Texture synthesis
* Image compression
* Noise removal

7



Image blending




Szeliski, Computer Vision, 2010

(a)

(d)

)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) © 1983 ACM.
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Image blending

Build Laplacian pyramid for both images: LA, LB
Build Gaussian pyramid for mask: G

Build a combined Laplacian pyramid: L(j) = G(j) LA(j)

(1-G(j)) LB(j)
Collapse L to obtain the blended image s



Image pyramids

Gaussian
Laplacian

Wavelet/QMF
Steerable pyramid

81



Linear transforms

transformed image _ _
\F=(1ff‘ >f=U_1F

Linear transform '

Vectorized image

Note: not all important transforms need to have an inverse



Pixels

O[O0 |O |k

O[O~ |O

O |[O|O

R [O|O |O

Linear transforms

sl



Linear transforms

Pixels
1 /0 (0|0
O|1|01]0
U:
O|0|1]0
O |0 |0 |1
Derivative
1|-1]/0 |0
0|1 |-1]0
U:
O10 1|1 |-1
O |0 (0|1

sl



Pixels

O[O0 |O |k

O[O~ |O

O |[O|O

R [O|O |O

Derivative

1

-1

1

0

0
0
0

0

Linear transforms

U=

sl



t

F=Uf

Linear transforms

Pixels

1

0(0 |0

1

0(0 |0

| i i
| o
| o
—| o o
I
D)
olol| F| «
ol 7| «| o
ol 7|l -] o] o
=
——
o|lH|o|lo| o
=
| -
% I
D)




sl
Il

Uf
Linear transforms

Pixels
1 (0 (0|0
0|10 |0
U=
0|0 |1 (O
0|10 |0 |1
Derivative Integration
11-1]0]0 11 (1|1
Of(11(-1/0 ol11l11 11
U= U-1=
O |0 (1 (-1 olol1 11
000 |1 0|0 |0 |1

- No locality for reconstruction
- Needs boundary



Haar transform

The simplest set of functions:

1 |1
U= U-1=
1 |-1

sl



Haar transform

The simplest set of functions:

sl

1 |1 0.5 (0.5
U= U-1=

1 |-1 0.5 | -0.5




Haar transform

The simplest set of functions:

sl

1 |1 0.5 [ 0.5

U= U-1=
1 |-1 0.5 [-0.5

To code a signal, repeat at several locations:

U= %




The simplest set of functions:

Haar transform

sl

1 1 0.5 | 0.5
U= U-1=
1 |-1 0.5 |-0.5
To code a signal, repeat at several locations:
1 |1 1 |1
1 11 1 |-1
1|1 1
1 |-1 -1
U= 1|1 U= % 1
1 |-1 -1
1|1 1
1 |-1 -1




Haar transform

sl



Haar transform

Reordering rows

>

sl



Haar transform

Reordering rows

>

sl

uf



Haar transform

Reordering rows

>

—

F=Uf
Low pass
High pass

1



Haar transform

1 (-1 Reordering rows

>

1

Apply the same decomposition to the Low pass component:

—

F=Uf

Low pass
High pass



Haar transform

Reordering rows

>
r 4

1

Apply the same decomposition to the Low pass component:

1

1

—

F=Uf

Low pass
High pass



Haar transform

Reordering rows

>

1

1 (1 1

1

—

F=Uf
Low pass
High pass

1



Haar transform

Reordering rows

>

1

1 (1 1

1

—

F=Uf
Low pass
High pass

1



Haar transform

Reordering rows

>
r 4

1

1 (1 1

1

—

F=Uf
Low pass
High pass

1

1

-1




Haar transform

1 |1 Reordering rows

—

F=Uf

Low pass

High pass

1

1

And repeat the same operation to the low pass component, until length 1.



Haar transform

Reordering rows

—

F=Uf

Low pass

)

High pass

1

1

1

1

-1

1

1

1

1

1

1

1

1

-1

-1

And repeat the same operation to the low pass component, until length 1.
Note: each subband is sub-sampled and has aliased signal components.



Haar transform

The entire process can be written as a single matrix:

1 11 |1 [1 1l |1 |1 | ——> Average

- ——> Multiscale derivatives

89
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Haar transform

90

B!



Haar transform

1 11 |1 |1 |1 |1
1 |1 |-1 |-1 |-1 |-1
-1 -1

0.125]0.125| 0.25 0
0.125]0.125| 0.25 0
0.125]0.125(-0.25 0
0.125]0.125(-0.25 0
0.125]-0.125| O 0.25
0.125(-0.125| O 0.25
0.125(-0.125| O -0.25
0.125(-0.125| O -0.25

90

uf



Haar transform

1 0.125]0.125

0.25

-1 0.125]0.125

0.25

0.125]0.125

-0.25

0.125]0.125

-0.25

0.125]-0.125

0.25

0.125]-0.125

0.25

0.125]-0.125

-0.25

0.125]-0.125

-0.25

Properties:

» Orthogonal decomposition
* Perfect reconstruction

* Critically sampled

90

uf



2D Haar transform

Basic elements: 1|1 1| -1




2D Haar transform

Basic elements: 1|1 1| -1

1 1|1 § ( Low pass
11011 ]= >W2|> - f E:E P
1 1 1 N y,

--------
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2D Haar transform

_ 1 1
Basic elements: 1|1 1| -1
1 -1
1 11 Low pass
1|1 |= >V2 > P
1 1 1

el )
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2D Haar transform

_ 1 1
Basic elements: 1|1 1| -1
1 -1
1 11 Low pass
1|1 |= >V2 > P
1 1 1

el )
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2D Haar transform

_ 1 1
Basic elements: 1|1 1| -1
1 -1
1 11 Low pass
1|1 |= >V2 > P
1 1 1
1 1 -1
1|-1]|= >\N2 >

2

— N\
I
Hw

94



2D Haar transform

_ 1 1
Basic elements: 111 1]-1
1 -1
1 1|1 Low pass
1|11 |~=
1 11
1 1] 1 High pass
1|-1]|= vertical
1 1 |-1
High pass
! 111 | = 1)1 horizontal
-1 -1 -1
1 - :
1|-1|= e High pass
-1 101 diagonal




2D Haar transform

Sketch of the Fourier transform
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2D Haar transform

Sketch of the Fourier transform
|

Horizontal low pass,
Vertical low-pass

Horizontal high
pass, vertical
low-pass

Horizontal low
pass, vertical
— high-pass

Horizontal high
pass, vertical
high pass
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©.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Pyramid cascade

Figure 4.12: I[dealized diagram of the partition of the frequency plane
resulting from a 4-level pyramid cascade of separable 2-band filters. The
top plot represents the frequency spectrum of the original image, with axes
ranging from —x to x. This is divided into four subbands at the next

level, On each subsequent level, the lowpass subban@3outlined in bold) is

subdivided further.



Wavelet/QMF representation

Same number of pixels!
99



Good and bad features of wavelet/

QMF filters

e Bad:
— Aliased subbands

— Non-oriented diagonal subband

e Good:

— Not overcomplete (so same number of
coefficients as image pixels).

— Good for image compression (JPEG 2000).

— Separable computation, so it’s fast.



What is wrong with orthonormal basis?

Input

Decomposition
coefficients



What is wrong with orthonormal basis?

(shifted by one pixel)

Input Wy -.,,Tl.

Decomposition
coefficients |

(d) (h)

The representation is not translation invariant. It is not stable.:



Shifttable transforms

The representation has to be stable under typical transformations that undergo
visual objects:

Translation
Rotation

Scaling

Shiftability under space translations corresponds to lack of aliasing.

http://www.cns.nyu.edu/pub/eero/simoncelli9ft:+eprint.pdf



Image pyramids

Gaussian
Laplacian
Wavelet/QMF

Steerable pyramid
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Steerable Pyramid

I

AN ~— .

105 59
Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Low pass
residual

2 Level decomposition
of white circle example:

Subbands




shown below

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as

Decomposition

Reconstruction

By(<) >
Byl >
Big) >
L) H2 —0 >

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html



Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as
shown below

Decomposition Reconstruction
n Byl > Byfea)
= Bqi<) > Byiea) =
— i) > Bides) |
— Li{w) H 2l I >=1 2T = Ly} =

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html



Steerable Pvramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as
shown below

Decomposition Reconstruction
Byl > Bgle)

H By > Byl
— Byl > Byie) [
— Ly~ = 2| Byf-<o) ©! > Byf) 2T 1 Life) =

| Bais) S > B 8

- By Q > Biges) |

— Ly(<a) = 2| ——O > 2T 1 Lile) =

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html



Dy

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with £ = 4. Frequency axes range from
7 to w. The basis functions are related by
translations, dilations and rofations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf
http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf

' (|)y

My
But we need to get
rid of the corner
regions before
starting the
recursive circular
filtering

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 4. Frequency axes range from
-7 to w. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf
http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf

Filter Kernels

Coarsest scalen

|
~r S

Image

Finest scale

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

There is also a high pass residual... 109
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Dog or cat?
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Steerable pyramids

* Good:
— Oriented subbands

— Non-aliased subbands
— Steerable filters

— Used for: noise removal, texture analysis and synthesis,
super-resolution, shading/paint discrimination.

* Bad:

— Overcomplete

— Have one high frequency residual subband, required in
order to form a circular region of analysis in frequency
from a square region of support in frequency.



Laplacian Pyramid | Dyadic QMF/Wavelet | Steerable Pyramid
self-inverting (tight frame) || no ves yes
overcompleteness 1/3 1 tk/3
aliasing in subbands perhaps ves no
rotated orientation bands no only on hex lattice [9] | ves

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

htto://WWW.CNS. NVU. fin/eero/simoncelliosh pdf Simoncelli and Freeman, ICIP 19955


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf
http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf

 Summary of pyramid representations



Image pyramids

Gaussian

Laplacian

Wavelet/QMF

Steerable pyramid



Image pyramids

\ //'-")\ Progressively blurred and
\ ‘;Q subsampled versions of the

image. Adds scale invariance
to fixed-size algorithms.

7
=)

Gaussian .

Laplacian

Wavelet/QMF

Steerable pyramid
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Image pyramids
=\ //‘3\\ Progressively blurred and
. =" subsampled versions of the

image. Adds scale invariance

Gaussian to fixed-size algorithms.
Shows the information added in
Gaussian pyramid at each

La placian spatial scale. Useful for noise
reduction & coding.

Wavelet/QMF

Steerable pyramid

117



Image pyramids

}’// \ ///,..3\\ Progressively blurred and
=)' subsampled versions of the
' ‘ image. Adds scale invariance

to fixed-size algorithms.

Gaussian

‘Gﬁ ’ -

Shows the information added in
Gaussian pyramid at each
spatial scale. Useful for noise

Laplacian
reduction & coding.

Bandpassed representation, complete, but with
aliasing and some non-oriented subbands.

Wavelet/QMF -

Steerable pyramid

117



Image pyramids

Gaussian
Laplacian
Wavelet/QMF

Steerable pyram (

Progressively blurred and

image. Adds scale invariance
to fixed-size algorithms.

,//A’\\@ subsampled versions of the

Shows the information added in
Gaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

Bandpassed representation, complete, but with
aliasing and some non-oriented subbands.

Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis. But
overcomplete and with HF
residual. 117




Schematic pictures of each matrix
transform

Shown for 1-d images

The matrices for 2-d images are the same idea, but more
complicated, to account for vertical, as well as horizontal,
neighbor relationships.

transformed image
' = [Jf — Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform



Fourier
transform

Fourier bases
are global: each
transform
coefficient
depends on all
pixel locations.

Fourier transform

pixel domain
Image



Fourier transform

imaginary
— *
real
/]
color key
Fourier Fourier bases pixel domain
transform are global: each image
transform
coefficient

depends on all
pixel locations.
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GS;;sriﬁg — pixel image

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur. 0



Gaussian pyramid




Laplacian pyramid

Laplacian
pyramid

|

pixel image

Overcomplete representation.
Transformed pixels represent
bandpassed image information.



Laplacian pyramid

Laplacian

Syramid pixel image

I
=1 =
[N
1 ]

Overcomplete representation.
Transformed pixels represent
bandpassed image information.



Wavelet
pyramid

Wavelet (QMF) transform

Ortho-normal
transform (like
Fourier transform),
but with localized
basis functions.

pixel image
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Wavelet (QMF) transform

Wavelet
pyramid

e

Ortho-normal pixel image
transform (like

Fourier transform),

but with localized

basis functions.
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|r__

Steerable
pyramid

Multiple
orientations<
—al One scale

N\

Multiple
orientations
at the next
scale

the next
scale...

Steerable pyramid

pixel image

Over-complete
representation,
but non-aliased
subbands.
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Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html

Eero P. Simoncelli

Associate Investigator,
Howard Hughes Medical Institute

Associate Professor,
Neural Science and Mathematics,
New York University




Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.htm

Laboratory for Computational Vision
| _Home | People [Research |Publications| Software

Publicly Available Software Packages

« Texture Analysis/Synthesis - Matlab code is available for analyzing and
synthesizing visual textures. README | Contents | Changelog | Source
code (UNIX/PC, gzip'ed tar file)

« EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

« matlabPyrTools - Matlab source code for multi-scale image processing.
Includes tools for building and manipulating Laplacian pyramids,
QMF/MWavelets, and steerable pyramids. Data structures are compatible with
the Matlab wavelet toolbox, but the convolution code (in C) is faster and has
many boundary-handling options. README, Contents, Modification list,
UNIX/PC source or Macintosh source.

« The Steerable Pyramid, an (approximately) translation- and rotation-invariant
multi-scale image decomposition. MatLab (see above) and C
implementations are available.

« Computational Models of cortical neurons. Macintosh program available.
« EPIC - Efficient Pyramid (Wavelet) Image Coder. C source code available.

« OBVIUS [Object-Based Vision & Image Understanding System):
README / Changelog / Doc (225k) / Source Code (2.25M).

e CL-SHELL [Gnu Emacs <-> Common Lisp Interface]:
README / Change Log / Source Code (119k).
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Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.htm

Laboratory for Computational Vision
| _Home | People [Research |Publications| Software

Publicly Available Software Packages

« Texture Analysis/Synthesis - Matlab code is available for analyzing and
synthesizing visual textures. README | Contents | Changelog | Source
code (UNIX/PC, gzip'ed tar file)

« EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

— « matlabPyrTools - Matlab source code for multi-scale image processing.

Includes tools for building and manipulating Laplacian pyramids,
QMF/MWavelets, and steerable pyramids. Data structures are compatible with
the Matlab wavelet toolbox, but the convolution code (in C) is faster and has
many boundary-handling options. README, Contents, Modification list,
UNIX/PC source or Macintosh source.

—_— « The Steerable Pyramid, an (approximately) translation- and rotation-invariant

multi-scale image decomposition. MatLab (see above) and C
implementations are available.

« Computational Models of cortical neurons. Macintosh program available.
« EPIC - Efficient Pyramid (Wavelet) Image Coder. C source code available.

« OBVIUS [Object-Based Vision & Image Understanding System):
README / Changelog / Doc (225k) / Source Code (2.25M).

e CL-SHELL [Gnu Emacs <-> Common Lisp Interface]:
README / Change Log / Source Code (119k).
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Why use these representations?

Handle real-world size variations with a
constant-size vision algorithm.

Remove noise
Analyze texture
Recognize objects
Label image features

mage priors can be specified naturally in
terms of wavelet pyramids.



