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Lecture 5
Statistical Image Models

COMPUTER
VISION



What are we tuned to?

The visual system is tuned to process structures
typically found in the world.



The visual system seems to be tuned to a set of images:

Demo inspired from D. Field



Remember these images



Did you saw this image?




Remember these images

Test 2



Did you saw this image?




Visual Worlds



Visual Worlds
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Visual Worlds




Separating images into components







Separating images into components




to components

N

Ing Images

Separat




Noise on the image
VS.
noise in the world
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The noise in the world, it is called texture by its friends






Separating images into components







Separating images into components







Prototypical vision problem

Observe some product of two numbers, say 1.0
What were those two numbers?
le, 1 =ab. Find aandb.

Compare this with the prototypical graphics
problem: here are two numbers; what is their
product?
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1=ab

hyperbola of feasible solutions
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Bayesian approach

Want to calculate: max P(a,b|y=1)
a,

Bayes rule

Use P(a, b | y=1) £ k P(y=1]a, b) P(a, b)

/ \

Posterior probability Likelihood function Prior probability



Bayesian approach
Use Pa, b | y=1) =k Py=1|a, b) P(a, b)
Likelihood function 4

Prior probability

If a>0, b>0

=0 otherwise
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To appear in: Handbook of Video and Image Processing, 2nd edition
ed. Alan Bovik, (©Academic Press, 2005.

4.7 Statistical Modeling of Photographic Images

Eero P. Simoncelli

New York University
January 18, 2005




Statistical modeling of images




Statistical modeling of images

Assumptions:
 Independence: All pixels are independent.
« Stationarity: The distribution of pixel intensities does not depend on image location.

p(I) = | [ p(I(z, 9))
\




P =110 Eivting the model
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Pixel intensity



Sampling new images
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p(I(z,y))

100 200

p@) = | [ p((z,9))

| Sample



Sampling new images

p@) = | [ p((z,9))

p(I(z,y))

100 200

Sample



The importance of distribution of
Intensities

p(L(z.y)) \\\ p(l(z,y)) N

Intensity, I 20 0 Intensity.I 4




Statistical modeling of images




Statistical modeling of images

C(Ax, Ay) =p|I(x + Ax,y + Ay), I(z,y)]
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Dead leaves models

Introduced in the 60’s by Matheron (67) and popularized by Ruderman (97)

From Lee, Mumford and Huang 2001



Fourier Characteristics of Images

0.0 B 1

0.0 1.0 2.0

Log,,spatial frequency (cycles/picture)

Fig. 8. Amplitude spectra for the six images A-F, averaged across
all orientations. The spectra have been shifted up for clarity. On
these log-log coordinates the spectra fall off by a factor of roughly
1/f (a slope of -1). Therefore the power spectra fall off as 1/
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Power spectra
fall off as

I(v)| ~

D. J. Field, "Relations between the statistics of natural images and
the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987)

o]

Low spatial frequencies

Spectra

High

spatial
frequencies
Vertical
Vy
. . Horizontal
Ve N\ High SF
Low SF



Fourier Characteristics of Images

Vx

Spectra
Field (87)

N
%

Natural scenes
(6000 images)

yE
\rvx

Man-made scenes
(6000 images)

Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412.



Randomizing the phase




Contrast Sensitivity Function

Blackmore & Campbell (1969)

Maximum sensitivity
~ bcycles / degree of visual angle

0.1 1 10 ] 100
Low Spatial frequency (cycles/degree) High



Laplacian

a b

An illusion by Vasarely, left, and a bandpass filtered version, right.

http://web.mit.edu/persci/people/adelson/publications/gazzan.dir/vasarely.html



Gaussian model

We want a distribution that captures the correlation structure typical of natural images.

Let C be the covariance matrix of the imag: co ¢ Co e
Cn—1 € Cq o
1 E
P(I) — €XP (—EITC_II) ) = Cn—1 €0 C1
N2 B .,
€1
| 1 e Cr—1 o |

Stationarity assumption: Symmetrical circulant matrix

Diagonalization of circulant matrices: C = EDE"

The eigenvectors are the Fourier basis
The eigenvalues are the squared magnitude of the Fourier coefficients

A 2 1
D= | I(v)| ~ Top




Sampling new images

_ Lreet
p(I) = exp ( i'c I)

Sample



Sampling new images

Note: The average of many hair images will not give a distribution for hair images.
I believe we will get clouds again...
This representation does not encode other correlations like:

“all hairs should follow a similar orientation”



Denoising

Decomposition of a noisy image




Denoising

Decomposition of a noisy image

White Gaussian noise:N(0, 5,2)  Natural image
Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

mIaxp(I\In) = max |[p(I,|I) X p(I)

I :
likelihood prior




Denoising

Decomposition of a noisy image

mIaxp(I\In) = mIaX

p(In‘I)

likelihood

— INax

exp(— L, — 1| /o7)

I




Denoising

mIaXp(I\In) — mIaX

p(In‘I)

likelihood

p(I)

prior

— IllaX

exp(—|L, — I /oy)

I

The solution is:

1
exp (§ITCII

)

I =C (C + a%]l) -1 I,, (note this is a linear operation)

This can also be written in the Fourier domain, with C = EDET:

T Aflv[*

I(v) = Y,

L,
Pt oz




Decomposition of a noisy image













Statistical modeling of images
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Observation: Sparse filter response
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Reconstruction from derivatives

F=HG

If we have multiple filter outputs:

If the transformation H is not invertible, we can compute the pseudo-inverse:

G = (HH)' HTF



Reconstruction




Editing the edge image




ing edges

Threshold




Intrinsic images
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Separating images into components







Table 1

The Nature of Edges

Region Intrinsic Edges
Intensities Edze Type Region Types Intrinsic Values
LA L3 D N R X
Constant | Conatant | Occluding A B shadowed EDGE EDGE EOGE
sense unknown RA RB | IA XB
Conatant | Yarying 1 Shadow A shadowed EDGE
B 1lluzinated NB.S RA RB | IA IB
2 A occludes B | A shadowed EOGE EDGE EDGZ EDGE
B 1lluainated DA D3 | NA RA IA
Varving | Varying Inconsistent
with dozain
Constant | Tangency | B occludes A A shadowed EDCE EDCE EDGE EDCE
B {llusinated DA D3 | NB RA RB | IA IB
Yarying | Tangency | B occludes A A B fllu=inated | EDGCE EOGE EOCE ED0CE
DA D2 | KB RB I8 IA
Tangeacy | Tangency Kot seen froa
gencral position

Table 1 catalogs the possible appearances and
interpretations of an edge between two regions,

A and B. H. G.Barrow and J. M. Tenenbaum
In this table, "Constant™ means

constant intensity along the edge, "Tangency”

means that the tangency condition is met, and



RECOVERING INTRINSIC
SCENE CHARACTERISTICS
FROM IMAGES

Technical Note 157

April 1978

By: Harry G. Barrow
J. Martin Tenenbaum
Artificial intellipence Center

The research reported herein was supported by the National Science Foundation, under
NSF Grant No. ENG76-01272.

To appear in Compuier Vigion Systems, A, Hansonand E. Riseman, eds.. tAsademic
Press, New York, in press).
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Forming an Image

@ llluminate the surface to get:

|- <

Surface (Height Map) Shading Image

The shading image is the interaction of the shape
of the surface and the illumination 75

Slide: Marshal Tappen




@ Painting the Surface

»

Scene Image

Add a reflectance pattern to the surface.
Points inside the squares should reflect

76

IeSS I iq ht Slide: Marshal Tappen



Goal

I}nage Shading Image Réflectance
Image

77
Slide: Marshal Tappen



Retinex

E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971

Journal of the

OPTICAL SOCIETY
of AMERICA

VoLuMmE 61, NUMBER 1 Janvary 1971

Lightness and Retinex Theory

Epwmw H. Lawp® anp Jouw J. McCann
Polaroid Corporation, Cambridge, Massacluselts 02139
(Received 8 September 1970)

The reflectance tends to be constant across space except for abrupt changes at the
transitions between objects or pigments. Thus a reflectance change shows itself as
step edge in an image, while illuminance changes gradually over space. By this
argument one can separate reflectance change from illuminance change by taking
spatial derivatives: High derivatives are due to reflectance and low ones are due to
illuminance.



Retinex

Again, we are trying to solve an ill-posed problem:
24= ?x7?

From M. Tappen, PhD



Retinex
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Log Image Intensity
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Log Image Intensity
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Image Column Image Column Image Column

(a) One column from the ob-  (b) The derivative of the plot  (¢) The estimate of the log
served image. from (a). shading From M. Tappen, PhD
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From M. Tappen, PhD









Craik-O'Brien-Cornsweet effect

Luminance

Position






Knill and Kersten's illusion




This illusion highlights
the importance of
scene interpretation.

<«— The effect is gone

<— and it comes back when
the gradient is not explained
by the shape.




