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Vision: a multi-stage network
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What is an image”?

In a (8-bit) greyscale image each picture element has an assigned intensity that
ranges from 0 to 255. A grey scale image is what people normally call a black and
white image, but the name emphasizes that such an image will also include many
shades of grey.

254

255 165

Each pixel has a value from 0 (black) to 255 (white). The possible range of the pixel
values depend on the colour depth of the image, here 8 bit = 256 tones or greyscales.

A normal greyscale image has 8 bit colour depth = 256 greyscales. A "true colour”

image has 24 bit colour depth = 8 x 8 x 8 bits = 256 x 256 x 256 colours = ~16
million colours.



A random visual world:
Noise Image
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noise=rand(100,100); noiseld=noise(:):
‘\ imagesc(noise) size(noise1d)

colormap(gray(256)) Figure; hist(noise1d)



A prior-based world:
Gaussian Noise

Gaussian noise

‘ randomgenerator = randn(10000,1); randomimage - randn(100,‘|00);
hist(randomgenerator, 100); imagesc(randomimage);

colormap(gray(256))



Random noise and Gaussian noise
are White noise

e \White noise is a source of
random numbers, uniformly
distributed with no correlation
whatsoever between
successive numbers (pixels).

8 8 8 3 8 8 5 8 8 3
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e \White noise is never the same
twice

* In some applications (e.g.
generating textures in
computer graphics), pseudo-
random noise is desirable

8 83 8 38 8 5 84 8 3
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Properties of Noise

e Noise is stationary: its statistical
character is translationally invariant.

Stationarity is the property of a random
process which guarantees that its
statistical properties, such as the mean
value, its moments and variance, will not
change over time or space.

A stationary process is one whose
probability distribution is the same at all
times/location.

e Noise is isotropic: its statistical character
should be rotationally invariant. A noise
is is said to have rotational invariance if
its value does not change when arbitrary
rotations are applied to it

Isotropy is uniformity in all directions.
Precise definitions depend on the
subject area. The word is made up from
Greek iso (equal) and tropos (direction).




Why is noise image an
important concept ?




Inceptionism: Reconstructing what a neural
network “imagines”

image/texture synthesis, image regeneration

optimize
with prior

How does a deep learning network see a “banana”? Start with a random noise
image, then gradually tweak the image towards what the neural net considers a
banana. It works “well enough” if we impose a prior constraint that the image should
have similar statistics to natural images, such as neighboring pixels needing to be
correlated.

http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html



Slide from Zisserman/Vedaldi Simonyan, Vedaldi, Zisserman, ICLR 2014



What happens it you start from a
different noise image?

Slide from Zisserman/Vedaldi



I- Points Operators

The simplest kinds of image processing
transforms:

Each output pixel’s value depends only on
the corresponding input pixel value
(brightness, contrast adjustments, color
correction and transformations)



Intensity Transformation
Intensity of gray level transformation function
ﬂ IntensityEqualization/demolntensity.m
Original digital Negative Result: expanding 00 150 0 250 o 50 wWe 150 20 20
mammogram image Intensities in the
range [0.5,0.75] -
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gamma specifies the shape of the curve that maps the intensity.

gamma is less than 1, the mapping is weighted toward higher (b

output values. If gamma is greater than 1, the mapping is weigh
toward lower (darker) output values. [

high_in low_in high_in



Histogram Equalization & Scaling

* Intensity level equalization
process is an image with
increased dynamic range which
will tend to have a higher
contrast.

Input image and its histogram

The process creates an image

whose intensity cover the entire
range [0 1] (or 0-255).

‘ IntensityEqualization/demolntensity.m, Part Il

200 250

Histogram equalized image and its histogram

e Intensity Scaling is a less drastic
intensity transformation that
works for most images

‘ IntensityScaling




For human vision, pixels inversion may change the
entire interpretation of the image ..

Textile, cloth, curtain Forest, watertall
Indoor, close up view  Outdoor, distant view



Image Enhancement

Images courtesy of Tobey Thorn

« Often used to increase the contrast in images that are overly dark or light
« Enhancement algorithms often play to humans’ sensitivity to contrast

« More sophisticated algorithms enhance images in a small neighborhood,
allowing overall better enhancement.



Color Spaces bbbbb
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ColorTransf tion/SwapColor. l
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Il - Linear Filtering

g [m.n]

f [m,n]

>

Goal: Remove unwanted

>

What can filters do?

sources of variation, and keep

the information relevant for * Smooth or sharpen

whatever task we need to ® Remove noise

solve * |ncrease/decrease image contrast
Approach: Moditfy the pixels * Enhance edges, detect particular
in an image based on some orientations

function of the local

e Detect image regions that match a

neighborhood around each template

pixel



Linear filtering

g [m,n] f [m.n]
_— > >

For a general linear system, each output is a linear combination of all the input

values: f[m,n]= Zh[m,n,k,l]g[k,l]

In matrix form:
f=Hg

H is usually called the kernel Operation is called
convolution

Convolutional (Linear) Filtering
Operations that are spatially invariant




g [m,n] f[m,n]
—

Rectangular Filter (box)

smoothing by averaging

glm,n] flm,n]

How does convolution work?
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What does it do?
* Replaces each pixel with an average of its neighborhood
* Achieve smoothing effect (remove sharp features)



Smoothing by Averaging

‘ Convolution\ConvolutionAverage.m

50 100 150 200 250 50 100 150 200 250

With a kernel of 20 x 20. This image is blur: you arrive at the blurry image by
blurring some pixels together.
This image contains the “low spatial frequency” information



Impulse

Filtered

Original (no change)



Original Shifted left
By 1 pixel



Smoothing with a Gaussian

 Smoothing with an y | £2 4y2
average actually doesn't s 5 '
compare at all well with a -
defocused lens

e Most obvious difference
is that a single point of
light viewed in a
defocused lens looks like
a fuzzy b|ob; but the A Gaussian gives a good model of a fuzzy
averaging process would blob
give a little square.




Gaussian filter

‘ Convolution\GaussianFiltering.m




Smoothing by Averaging




Smoothing with a Gaussian

No more “ringing” effect




uman vision: fovea and periphery

c M AO Some properties of image encoding like blurring,
Al IXT,?SATI R color representation set the stage for what is
FFI'U'CON available to the neural system
C!'T
|

Camera Human: Acuity decreases with eccentricity



Human vision: Receptive fields
size scale with eccentricity
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Freeman & Simoncelli (2011)



80 millions tiny images
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256 pixels 64 pixels 32 pixels 16 pixels b i % " 32 pixels 16 pixels

A. Torralba, R. Fergus, W.T. Freeman. PAMI 2008 Torralba (2009). How many pixels make an image?



Derivatives (contours)

‘ Convolution\Highpassfilterm The result is "Signed 7

(see exercise for different orientations)

hk=[-1 0 1];

hk=[1 0 -1];




darker is negative,
lighter is positive,

mid grey is zero.

N

\




‘\ Convolution\Highpassfilterm

o kernel 1 =

O 1 O

1T -4 1

o0 What is the
difference

between the two

e Kernel 2 = kernels ?

1 1 1

1 -8 1

1 1 1

100 200 300 400 500 600 700 600 900

The Laplacian operator is implemented as a convolution between an image and a kernel (shown here)



‘\ Convolution\Highpassfilterm

e kernel 1 =
o 1 O
1T -4 1
o 1 O

100 200 300 400 500 600 700 80D 900

e Kernel 2 =
T 1 1
1T -8 1
T 1 1

100 200 300 400 500 600 700 600 900

What can the laplacien filter be used for ? Image sharpening

In image convolution, the kernel is
centered on each pixel in turn, and
the pixel value is replaced by the
sum of the kernel multiplied by the
image values. In this particular
kernel we are using here, we are
counting the contributions of the
diagonal pixels as well as the
orthogonal pixels in the filter
operation.
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‘ Convolution\Highpassfilter.m
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‘ Convolution\Highpassfilter.m



Filtering on the web

e http://www.html5rocks.com/ * http://setosa.io/ev/image-
en/tutorials/canvas/ kernels/
imagefilters/

To cap off our journey into convolution, here's a little toy for you to play with: A
custom 3x3 convolution filter! Yay!

0 -1 0

1 9 1

0 -1 0
e

2 0 -2
1 0 -1

Run the above filter on the image

Thanks to Lea Verou and Jon Gjengset



1. Fourier Transform

Fourier analysis is a method by which any two dimensional luminance image can be
analyzed into the sum of a set of sinusoidal gratings that differ in spatial frequency,

orientation, amplitude and phase.

| Salvadc!:l Dali |
““Gala Contenliplat/ng the e
Mediterranean Sea, which at 30 l‘;;
meters becomes the portrait of
Abraham Lincoln”, 1976




Sinusoidal gratings as the “primitives” of an image

A nice set of basis: Teases away fast vs. slow changes in the image.




Sinusoidal gratings as the “primitives” of an image

il

Discrete Fourier Transform 13

& imagesc(log(abs(fftshift(fft2(im))))); Slide from A. Efros



A basic element:
a sinusoid with a
frequency along a
direction, with
alternating dark
and light in a
certain direction.

—m'(ux +vy)

3 (ux-{- vy )










Intensity Image

Fourier Image

Fourier analysis in images

A




Two examples of image
synthesis with Fourier basis

First: randomly sample the Fourier
coefficients of an image and reconstruct

from those.

Second: sample Fourier coefficients in
descending order of amplitude.




Range [0.000108, 0.0267]

#2

Range [0, 1]
Dims [256, 256]

#1

Dims [256, 256]
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#1: Range [0, 1]
Dims [2586, 256]

#2: Range [4.79e-007, 0.503]
Dims [256, 256)



50

#1: Range [0, 1] #2: Range [8.5e-0086, 1.7]
Dims [256, 256] Dims [256, 256]



82

82

#1: Range [0, 1] #2: Range [3.85e-007, 2.21]
Dims [256, 256] Dims [256, 256]



136

136

#1: Range [0, 1] #2: Range [8.25e-0086, 3.48]
Dims [256, 256) Dims [256, 256)



282

282

#1: Range [0, 1] #2: Range [1.39e-005, 5.88]
Dims [256, 256] Dims [256, 256]



538

538

#1: Range [0, 1] #2: Range [6.17e-006, 8.4]
Dims [256, 256] Dims [256, 256]



#1: Range [0, 1] #2: Range [9.99e-005, 15]
Dims [256, 256] Dims [256, 256]



#1: Range [0, 1] #2: Range [8.7e-005, 19]
Dims [256, 256] Dims [256, 256]



4052.

#1: Range [0, 1] #2: Range [0.0005586, 37.7]
Dims [256, 256] Dims [256, 256]



#1: Range [0, 1] #2: Range [0.00032, 64.5]
Dims [256, 256] Dims [256, 256]



#1: Range [0, 1] #2: Range [0.000231, 91.1]
Dims [258, 256] Dims [258, 256]



#1: Range [0, 1] #2: Range [0.00108, 146]
Dims [256, 256] Dims [256, 256]
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#1: Range [0, 1]

#2: Range [0.00758, 294]
Dims [256, 256]

Dims [256, 256]



65536.

65536.

#1: Range [0.5, 1.5] #2: Range [4.43e-015, 255]
Dims [256, 256] Dims [256, 256]



Two examples of image
synthesis with Fourier basis

First: randomly sample the Fourier
coefficients of an image and reconstruct

from those.

Second: sample Fourier coefficients in
descending order ot amplitude.
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Figure 5 E]@

File Edit Wew Insert Tools Desktop Window Help

DedE& h RAN® € 08B 50

#1: Range [0, 1] #2: Range [0.237, 0.545]
Dims [256, 256] Dims [256, 256]

Now, an analogous sequence of images, but selecting Fourier
components in descending order of magnitude.
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Figure 6 E]@

File Edit Wew Insert Tools Desktop Window Help N

D& h RAN® € 08 80

#1: Range [0, 1] #2: Range [0.106, 0.676]
Dims [256, 256] Dims [256, 256]




Figure 7

BEX

File Edit Wew Insert Tools Desktop Window Help

D& h RAN® € 08 80

#1: Range [0, 1] #2: Range [5.04e-008, 0.788]

Dims [256, 256]

Dims [256, 256]
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BEX

File Edit Wew Insert Tools Desktop Window Help

D& h RAN® € 08 80

l
#1: Range [0, 1] #2: Range [2.62e-005, 0.934]

Dims [256, 256]

Dims [256, 256]
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Figure 9 E]@

File Edit Wew Insert Tools Desktop Window Help N

D& h RAN® € 08 80

33

#1: Range [0, 1] #2: Range [5.05e-005, 1.09]
Dims [256, 256] Dims [256, 256]
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Figure 10 g@

File Edit Wew Insert Tools Desktop Window Help N

D& hh RAN® € 08 80

#1: Range [0, 1] #2: Range [8.78e-0086, 1.22]
Dims [256, 256] Dims [256, 256]
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Figure 11

=/t

File Edit Wew Insert Tools Desktop Window Help

DEeEE K RAMS® E

#1: Range [0, 1]
Dims [256, 256]

O0E

= [

129

#2: Range [4.79-005, 1.27]
Dims [256, 256]
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Figure 12

=/t

File Edit Wew Insert Tools Desktop Window Help

Ded& h RAO® ¥ 0E

#1: Range [0, 1]
Dims [256, 256]

= [

A#Q: Range [4.2e-005, 1.28]
Dims [256, 256]
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Figure 13 g@

File Edit Wew Insert Tools Desktop Window Help N

DedE& h RAN® € 08B 50

#1: Range [0, 1] #2: Range [1.76e-005, 1.26]
Dims [256, 256] Dims [256, 256]
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Figure 14
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File Edit Wew Insert Tools Desktop Window Help N

DedE& h RAN® € 08B 50

#1: Range [0, 1]
Dims [256, 256]

#2: Range [2.24e-005, 1.24]
Dims [256, 256]
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Figure 15
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File Edit Wew Insert Tools Desktop Window Help

DEeEE K RAMS® E

#1: Range [0, 1]
Dims [256, 256]

O0E

= [

2049

#2: Range [0.000347, 1.27]
Dims [258, 256]
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Figure 16
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File Edit Wew Insert Tools Desktop Window Help

DEeEE K RAMS® E

#1: Range [0, 1]
Dims [256, 256]

O0E

= [

#2: Range [0.000592, 1.23]
Dims [258, 256]
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Figure 17
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File Edit Wew Insert Tools Desktop Window Help N

DedE& h RAN® € 08B 50

#1: Range [0, 1]
Dims [256, 256]

#2: Range [0.00296, 1.17]
Dims [256, 256]
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Figure 18

BE

File Edit Wiew

Insert Tools Desktop Window Help

DEEE& h RAN® &

#1: Range [0, 1]
Dims [256, 256]

O0E

= [

#2: Range [0.000365, 1.1]
Dims [258, 256]
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Figure 19 Q@

File Edit View Insert Tools Deskiop Window Help N

DedE& h RAN® € 08B 50

32769

#1° Range [0, 1] #2° Range [0.0246, 1.03]
Dirns [256, 256] Dims [258, 256]
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(- Figure 20

M=%

File Edit View Insert Tools Deskiop Window Help

Ded& h RQAN® € 0E 50

#1: Range [0.5, 1.5] #2
Dims [256, 256)

- Range [0.028, 1]
Dims [256, 256]




Fourier Transform

e Fourier transform of a real Magnitude Phase
function is complex

— difficult to plot, visualize

— instead, we can think of the
phase and magnitude of the
transform

e The magnitude of natural images
can often be quite similar, one to
another. But magnitude encodes
statistics of orientation at all
spatial scales.

e The phase carry the information of
where the image contours are, by
specifying how the phases of the
sinusoids must line up in order to
create the observed contours and
edges.

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth






This is the
magnitude
transform
of the
cheetah pic




This is the
phase
transform
of the
cheetah pic
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This is the
magnitude
transform
of the zebra

pic
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Phase and Magnitude

Demonstration

— Take two pictures, swap the phase transforms, compute the inverse -
what does the result look like?




Reconstruction
with zebra
phase, cheetah
magnitude




Reconstruction
with cheetah
phase, zebra
magnitude




Randomizing the phase




How to interpret a Fourier
Spectrum

Vertical orientation Low spatial frequencies

45 deg.

Horizontal
orientation

High spatial frequencies

fx in cycles/image

Log power spectrum



Which Fourier for which image?

100

50

50

100

SR e g e

eassSE mﬁmm_w

(96w 15d sapako) 'y

ool -
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100

(Bew 1ad sajoho) 'y

100[

50 100

0o

fx (cycles per image)

50

100

100

50

50

1, (oycles per image)

fx(cycles/image pixel size) fx(cycles/image pixel size)

fx(cycles/image pixel size)



Some bizarre things in nature ...

Cow skin



Use of Fourier Spectrum : Filtering

Low pass Filter

Fourier space

*




Low and High Pass fi\tering




The Convolution Theorem

— The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[A]

— The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
inverse Fourier transforms

F'[gh]=F'[g]+F '[A]

— Convolution in spatial domain is equivalent to
multiplication in frequency domain!



Places2: Demo

Predicted scene
categories®:
barndoor (0.398). waterfall - block
(0.142). waterfall - plunge (0.125),

bamboo forest (0.07). waterfall - fan
(0.056)

categories®:

barndoor (0.25). ice shelf (0.097).
childs room (0.074), clothing store
(0.061), bow window - indoor (0.058)



Additional Slides



Principles of Spatial Convolution

The linear operation consists in
multiplying each pixel in the
neighborhood by a
corresponding coefficient and
summing the results to obtain a
response at each point (x,y)

\\[ mage origin

FIGURE 3.13

The mechanics of
linear spatial
filtering. The
magnified drawing
shows a 3x 3 filter
mask and the
corresponding
image
neighborhood
directly under

it. The image
neighborhood is
shown displaced
out from under

the mask for ease

If the neighborhood iS a Size wi-1-1) | w(-10) | w-11 'I of readability.
(m,n), nm coefficients are e/ T
required l R T e

X

w(l,-1) w(1.0) w(l,1)

The coefficients are arranged as /2% PN [P ) i S —

a matrix called filter, mask, filter
mask, kernel, template

Example mask

The figure illustrates the |
mechanics of linear spatial ,
filtering: it consists in moving the N
center of the filter mask, w, from -~
point to point in an image f.

00
0
0

o -0

-1
0



Convolution is correlation with a rotated filter mask

See the pdf on stellar Explaining_Convolution.pdf

FIGURE 3.14 Correlation Convolution
[llustration of
one-dimensional o~ Origin f -~ Origin f
correlation and (a) 00010000 00010000 (i)
convolution.
(b) 0001 O0O0O0O0 00010000 (i)

12320
L Starting position alignment
— Zero paddingﬁ

c) O00D00D0DO0D1TO0O0DD0DD I() 000
12320

0000000 T1TO0OO0O00O0O0O0O0 (k)
]

ra

(doOO0O0OO0D0ODOO1I000D0DO00DO00O0
12320

0000000100000 00O0 (D

L Position after one shift

(e)OO0ODO00DO0DO0OTO0000DO0O0O00O0
12320

1 00 (m)
02321

L Position after four shifts

MH OoO00D00DO0OO0OTOO0OD0D0D0O0O00
12320

0000000 1TO000000O0O0 (n)

02321

.

Final position 4

'full' convolution result
000123200000 (0)

"full' correlation result
(g) 000023210000

'same ' convolution result
01232000 (p)

'same ' correlation result
(h) 00232100



A 2 d correlation and convolution

See the pdf Explaining_Convolution.pdf

~ Origin of f(x, y)

w(x, y)
1 12 3
4 56
789
(a)
TRotalcd w "full' convolution result
9 8 7
6 5 4
32 1
1 23
1 456
789

(f) (2)



