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Recap on Deep Learning

Data Augmentation Helps
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Multiple model averaging helps
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Deeper is Better

Fine-tuning is good with limited data

Object Detection

R-CNN: chmm with CNN features
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Pixel Labeling through Deconvolution
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Overview

Understanding Deep Networks / DeepArt
Feature Inversion, inverting text, neural style transfer,

Learning with Sequences
Recurrent Neural Networks, LSTMs, Image Captioning

Transfer in Deep Learning

Domain Adaptation, Multi-task Learning, Domain Confusion

Some Applications

Face Recognition, Action Recognition



Understanding Deep Networks
Feature Visualization & Inversion



Major Criticisms on Neural Networks

Black Box g 2 7
't works but why? NPASS =l

Harder to Analyze
Non convex objective with millions of parameters

We don't have a ...
deep understanding of the method,
strong control over the learning mechanism.
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Visualization / Inversion



HOGgles:
Visualizing Object Detection Features

(a) Human Vision (b) HOG Vision

Person

C. Vondrick, A. Khosla, T. Malisiewicz, A. Torralba. "HOGgles: Visualizing Object Detection Features”, ICCV’13



Emerging Object Detectors
in Scene CNNS

Buildings Indoor objects Furniture Outdoor objects
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OBJECT DETECTORS EMERGE IN DEEP SCENE CNNS, Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, ICLR 2015
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Visualizing and Understanding
Convolutional Networks

corners & edge/color conjunctions objects with pose variations

similar textures Object parts (dog -face, bird-legs)

Visualizing and Understanding Convolutional Networks, Matthew, D. Zeiler and Rob Fergus, ECCV’'14



Deep Inside Convolutional Networks:
Visualizing Image Classification Models

What are these objects?

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Karen Simonyan Andrea Vedaldi Andrew Zisserman, ICLR 2014



Deep Inside Convolutional Networks:
Visualizing Image Classification Models

d(x)
Optimized using gradient descent,
D« goose initialized with the zero image. Gradients are

computed using Back-propagation.
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Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Karen Simonyan Andrea Vedaldi Andrew Zisserman, ICLR 2014



Understanding Deep Image Representations
by Inverting Them
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A common hypothesis is that representations collapse irrelevant differences in images
(e.g. illumination or viewpoint), so that ® should not be uniquely invertible.

Understanding Deep Image Representations by Inverting Them, Aravindh Mahendran, Andrea Vedaldi, CVPR 2015



Understanding Deep Image Representations
by Inverting Them

1% . Through reconstruction we obtain insights

£(®(x), o) = [[®(x) — ol Into the invariances captured by the
' representation.




Understanding Deep Image Representations
by Inverting Them

€(2(x), Do) = [|®(x) — ol|?

Ra(x) = [x|g

Rys(x) =) ((l‘i.jﬂ — 2i5)° + (Tig1, — Iij)z)
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Regularization is important
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Inverting Convolutional Networks
with Convolutional Networks

CONVI CONV2 CONV3 CONV4 CONVS FC6
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Inverting Convolutional Networks with Convolutional Networks, Alexey Dosovitskiy Thomas Brox, arXiv 2015



Deep Dream

optimize
with prior

Anemone Fish Banana Parachute Screw

http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html



Deep Dream

Horizon Leaves
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Towers & Pagodas Buildings Birds & Iects

http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html



Deep Dream

Simply feed the network an arbitrary image or photo and let the network analyze the picture. We then pick a
layer and ask the network to enhance whatever it detected. Each layer of the network deals with features at
a different level of abstraction, so the complexity of features we generate depends on which layer we
choose to enhance. For example, lower layers tend to produce strokes or simple ornament-like patterns,
because those layers are sensitive to basic features such as edges and their orientations.

http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html



Deep Dream

If we apply the algorithm iteratively on its own outputs and apply some
zooming after each iteration, we get an endless stream of new impressions,
exploring the set of things the network knows about.



A Neural Algorithm of Artistic Style

combining the content of one image with the style of another
Image using convolutional neural networks.

A Neural Algorithm of Artistic Style, Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, arXiv 2015



A Neural Algorithm of Artistic Style

A Neural Algorithm of Artistic Style, Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, arXiv 2015



Deep Neural Networks are Easily Foo
High Confidence Predictions for Unrecogniza

ed

ole Images

State-of-the-art DNNs can recognize ) But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects
Input

\

~ Guitar Penguin |

.......

Guitar Penguin
98.90% 99.99%

Mutation

Evolved images / \

= ¥
“ 2 T ‘ o
(¥
e 3 % s Evolutionary Crossover
- .
z ‘\Q ’) Algorithm
e /X
S .
o )

NN a \./
‘ ) ‘ - 99.99% 99.99% Label and Score

Selection

NN TEeET
obelisk comic book  medicine slot car wheel computer hand blower

F_A— Y

S0 O 0F

chest keyboard vacuum accordion screwdriver photocopier strawberry tile roof ski mask
- - P L
ey [ e P
m m W iy -
/\ ‘M\ k R m ‘—
MY ) ——
AT : o A -'SA —

assault rifle stethoscope digital clock soccer ball bagel pinwheel crossword punching bag  four-poster
puzzle chameleon

sea snake hair slide nematode  school bus panpipe traffic

light

Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, Anh Nguyen, Jason Yosinski, Jeff Clune, CVPR 2015



Learning with Sequences



Sequences are everywhere ...

7'07‘66;/7/ M/é/ —))  FOREIGN MINISTER.

—)  THE SOUND OF

G=2 =0 ag=1 a=3 az=4 Gg=2 a;=5
= bringen sie bitte das auto zuriick
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= please return the car



Even where you might not expect a sequence...

Vision Language A grou_p of people
Deep CNN Generating shopplng at an
RNN outdoor market.

o ->
- @ There are many
vegetables at the

fruit stand.
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How do we model sequences?

one to one one to many

Input: No Input: No
sequence sequence
Output: No Output:
sequence
Sequence
Example: ,
“standard” Examplg.
e s Im2Caption
classification
/
regression
problems

many to one

Input: Sequence

Output: No
sequence

Example: sentence
classification,
multiple-choice
question answering

many to many many to many

Input: Sequence
Output: Sequence
Example: machine translation, video

captioning, open-ended question
answering, video question answering

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Recurrent Neural Networks (RNNs)

(h)
W=n

In the above diagram, a chunk of neural network, A, looks at some input x; and outputs a value

h;. A loop allows information to be passed from one step of the network to the next.



Recurrent Neural Networks (RNNs)
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An unrolled recurrent neural network.
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A recurrent neural network can be thought of as multiple copies of the same
network, each passing a message to a successor



Recurrent Neural Networks (RNNs)
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When the gap between the relevant information and the place that it's needed is small,
RNNs can learn to use the past information
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Long-term dependencies - hard to model!
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But there are also cases where we need more context.
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From plain RNNs to LSTMs

(LSTM: Long Short Term Memory Networks)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



From plain RNNs to LSTMs

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

(LSTM: Long Short Term Memory Networks)



LSTMs Step by Step: Memory

Cell State / Memory

Y
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The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates



L STMs Step by Step: Forget Gate

Should we continue to remember this “bit” of information or not?

ft = 0'(VVf°[ht_1,£l;'t] + bf)

The first step in our LSTM is to decide what information we're going to throw
away from the cell state. This decision is made by a sigmoid layer called the
“forget gate layer.”



LSTMs Step by Step: Input Gate

Should we update this “bit” of information or not? If so, with what?

it =0 (Wi-lhi—1,2¢] + b;)
Cy = tanh(We-[hi—1, 2] + be)

The next step is to decide what new information we're going to store in the cell state. This
has two parts. First, a sigmoid layer called the "“input gate layer” decides which values
we'll update. Next, a tanh layer creates a vector of new candidate values, C,, that could be

added to the state.



LSTMs Step by Step: Memory Update

Decide what will be kept in the cell state/memory

Forget that Memorize this
f’T i’( '($ Ci = fe % Ci—1 + 14 x Cy
/1



LSTMs Step by Step: Output Gate

Should we output this “bit” of information?

Ly
|

O(Wo [ht—lawt] T bo)
o¢ x tanh (C})
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|

This output will be based on our cell state, but will be a filtered version. First, we run a
sigmoid layer which decides what parts of the cell state we're going to output. Then, we
put the cell state through tanh (to push the values to be between —1 and 1) and multiply
it by the output of the sigmoid gate, so that we only output the parts we decided to.



Complete LSTM - A pretty sophisticated cell
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Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy



Show and Tell: A Neural Image Caption Generator

Vision Language | |A group of people
Deep CNN Generating shopping at an
RNN outdoor market.

-
O
— Q There are many

vegetables at the
fruit stand.

Show and Tell: A Neural Image Caption Generator, Vinyals et. al., CVPR 2015



Show and Tell: A Neural Image Caption Generator

A person riding a
motorcycle on a dirt road.
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Show and Tell: A Neural Image Caption Generator, Vinyals et. al., CVPR 2015



Image Caption Generator Results

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road. X frisbee

Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
fighting over the puck food and drinks.

&

A herd of elephants walking

A close up of a cat laying
on a couch.

acrossad

https://pdollar.wordpress.com/2015/01/21/image-captioning/ Show and Tell: A Neural Image Caption Generator, Vinyals et. al., CVPR 2015



Aligning Books and Movies
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Describing movie clips via the book: a shot from the movie and its corresponding
paragraph (plus one before and after) from the book.

Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, Zhu et.al., ICCV 2015



Domain Adaptation & Multi-task Learning in
Deep Convolutional Networks



Unsupervised Domain Adaptation by Backpropagation
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class label y
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forwardprop

The approach promotes the emergence of “deep” features that are ...
(i) discriminative for the main learning task on the source domain,
(ii) invariant with respect to the shift between the domains

Unsupervised Domain Adaptation by Backpropagation, Yaroslav Ganin, Victor Lempitsky, ICML 2015



Unsupervised Domain Adaptation by Backpropagation

MNIST SYN NUMBERS
SOURCE ,E 8 ‘
TARGET 1 ﬂ 8 ? Sl
MNIST-M SVHN
MNIST — MNIST-M: top feature extractor layer SYN NUMBERS — SVHN: last hidden layer of the label predictor
& P

; Ji . S
)"*—g ' Nﬁ

(a) Non-adapted (b) Adapted (a) Non-adapted (b) Adapted

Unsupervised Domain Adaptation by Backpropagation, Yaroslav Ganin, Victor Lempitsky, ICML 2015



Deep Domain Adaptation for Describing People Based on
Fine-Grained Clothing Attributes

Fine-Grained Attribute Mining

Shopping Domain

+Type
« Jacket
Down Jacket

-Denim Jacket
« Color '
«Green
‘Apple Green
Fluorescent Green

Pattern

i,

Describing People in Deep Domain Adaptation
Unconstrained Photos Network (DDAN)
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A deep domain adaptation method to bridge
the gap between images crawled from online
shopping stores and unconstrained photos.

2. Selective Regicn
Proposals (~100)

4. NIN Model 5. loU Prediction

3. Warped Region

1. Input image

° Source domain

Multi-label
attributes

RCNN & W

roron - Yoot

detection

Target domain
fs,t) = || Xs — Xif| x A (s, 1)

Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing Attributes, Qiang Chen et.al., CVPR15



Deep Domain Adaptation for Describing People Based on
Fine-Grained Clothing Attributes

v
11‘
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Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing Attributes, Qiang Chen et.al., CVPR15



Simultaneous Deep Transter Across Domains and Tasks
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Simultaneous Deep Transfer Across Domains and Tasks, Eric Tzeng et.al., ICCV 2015



Face Recognition with
Deep Convolutional Networks



Facial Landmark Detection by

Deep Multi-task Learning
2 Y

TCDCN

% wearing glasses X X \ X

: smiling X \ X X X X X

E gender female male female female male male female
5 pose right profile frontal frontal left frontal frontal  right profile

Improving facial landmark detection robustness
through multi-task learning.

Facial Landmark Detection by Deep Multi-task Learning, Zhang et. al., ECCV 2014



Facial Landmark Detection by
Deep Multi-task Learning

shared feature

convolution: 5x5  convolution: 3x3 convolution: 3x3 . -me> landm'ark
max-pooling: 2x2 max-pooling: 2x2  max-pooling: 2x2  convolution: 2x2 detection
[Jogiati i ;> related
fully Task 1

-l

logisti : D related
18x18x16 8x8x48 3x3x64 22x64 100 Task T

input feature extraction multi-task estimation

Improving facial landmark detection robustness
through multi-task learning.

Facial Landmark Detection by Deep Multi-task Learning, Zhang et. al., ECCV 2014



DeepFace: Closing the Gap to Human-Level Performance in
Face Veritication

The recognition accuracy is approaching
to human performance for face verification

REPRESENTATION
SFC labels

C1: M2: C3: L4: LS: L6: F7: F8
Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

DeepFace: Closing the Gap to Human-Level Performance in Face Verification, Taigman et.al., CVPR 2014



Action Recognition with
Deep Convolutional Networks



Large-scale Video Classification
with Convolutional Neural Networks

f
OVea stfeam

27 4

Multi-resolution CNN architecture. Input frames are fed into two separate streams of
processing: a context stream that models low-resolution image and a fovea stream that
processes high-resolution center crop. Both streams consist of alternating convolution

(red), normalization (green) and pooling (blue) layers. Both streams converge to two

fully connected layers (yellow)

Large-scale Video Classification with Convolutional Neural Networks, Karpathy et.al., CVPR 2014



Large-scale Video Classification
with Convolutional Neural Networks

N
track cycling (sport)
cycling longboarding ultimate (sport)
track cycling half marathon decathlon bikejoring aggressive inline skating hurling
road bicycle racing mnning hurdles hamcss racing frecstyle scootering flag football
marathon marathon pentathlon sKijoring frecboard (skateboard) association football

ultramarathon inline speed skating sprint (running) carting sandboarding nugby sevens

‘

iclemark skiing

arcna football reining
demolition derby snowboarding whitewater kayaking indoor american football barrel racing
monster truck telemark skiing rafting arcna football rodeo
mud bogging pordic skiing kayaking canadian football reining
MOtOCTOSS ski touring anocing amcrican football cowboy action shooting eight-ball
grand prix motorcycle racing skijoring adventure racing women's lacrosse bull riding straight pool

Large-scale Video Classification with Convolutional Neural Networks, Karpathy et.al., CVPR 2014



Two-Stream Convolutional Networks for Action Recognition

still frame

Spatial stream
ConvNet

»
~
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video

Temporal stream
ConvNet

multi-frame optical flow

Two-Stream Convolutional Networks for Action Recognition in Videos, Karen Simonyan, Andrew Zisserman, NIPS 2014



