

6.819 / 6.869: Advances in Computer Vision

Image Retrieval:

Retrieval: Information, images, objects, large-scale Website: <u>http://6.869.csail.mit.edu/fa15/</u>

Instructor: Yusuf Aytar

Lecture TR 9:30AM – 11:00AM (Room 34-101)

What is Image Retrieval ? Query User **Retrieval Results** Text Fall in Boston Image Speech

Applications

Art Retrieval

Medical Image Retrieval

Product Image Retrieval (Reviews, other prices etc.)

Fashion Image Retrieval

Information Retrieval

Bag of Words, TF-IDF, Cosine Similarity, Inverted Index

Object Instance Retrieval

Bag of Visual Words, Video Google, Object Instance Retrieval

Fast Object Detection/Retrieval

Fast detection, Part representations, Generalization from exemplar

Large Scale Image Search

KD-trees, Locality Sensitive Hashing, Semantic Hashing, Compact Codes

Information Retrieval

Bag of Words (BOW)

A widely used document representation method

Term Frequency (TF)

Documents					Documents					Dec 4
Lexicon	DOC-1	DOC-2	D0C-3	D0C-4		Lexicon	DOC-1	DOC-2	D0C-3	D0C-4
Bank	1	1	0	0	Normalization	Bank	0.5	0.33	0	0
Loan	1	0	0	3		Loan	0.5	0	0	0.6
Water	0	2	1	1		Water	0	0.66	1	0.2
Farmer	0	0	0	1		Farmer	0	0	0	0.2

Inverse Document Frequency (IDF)

IDF of ith word:
$$idf_i = \log\left(\frac{n}{df_i}\right)$$

The last duel

After quarrelling over a bank loan, two men took part in the last fatal duel staged on Scottish soil. BBC News's James Landale retraces the steps of his ancestor, who made that final challenge.

 $\vec{v}(d_1) =$ Bank Loan Water Farmer tf x idf

Doc-1

Inverted Index

Allows quick lookup of document ids with a particular word

Bag of Words & Object Instance Retrieval

Feature Detectors

Roles of the detector:

- provide invariance to transformations
- reduce the number of descriptors

Popular detectors:

- Maximally Stable Extremal Regions (MSER) Matas, Chum, Urban, Pajdla, "Robust wide-baseline stereo from maximally stable extremal regions", BMVC'02.
- Difference of Gaussians (DoG) Lowe, "Distinctive image features from scale-invariant keypoints", IJCV'04.
- Harris-Affine and Hessian-Affine Mikolajczyk, Schmid, "Scale and affine invariant interest point detectors", IJCV'04.
- \rightarrow See also Mikolajczyk et al., "A comparison of affine region detectors", IJCV'05.

Dense descriptors are also possible

- Mainly for classification → let the classifier decide Leung, Malik, "Representing and recognizing the visual appearance of materials using 3D textons", IJCV'01.
- But also for image/scene/object retrieval Gordo, Rodriguez, Perronnin, Valveny, "Leveraging category-level labels for instance-level image retrieval", CVPR'12.

Feature Descriptors

Description of a patch after orientation/scale/photometric normalization

 \rightarrow 128 dimensions

Most widely-used patch descriptor: SIFT

Lowe, "Distinctive image features from scale-invariant keypoints", IJCV'04.

- 8 orientations of the gradient
- 4x4 spatial grid

Many descriptors derive from SIFT:

More efficient: SURF

Bay, Tuytelaars, Van Gool, "SURF: speeded up robust features", ECCV'06.

More compact: CHOG, DAISY

Chandrasekhar et al, "Compressed histograns of gradients: a low-bit rate descriptor", IJCV'11. Tola, Lepetit, Fua, "DAISY: an efficient dense descriptor applied to wide baseline stereo", TPAMI'10.

With color: color SIFT

Van de Weijer, Schmid, "Coloring local feature extraction", ECCV'06. Burghouts and Geseborek, "Performance evaluation of local colour invariants", CVIU'09.

Video Google Feature Detectors / Descriptors

Harris-Affine & Hessian Affine as the **feature detectors** SIFT as the **feature descriptor**

Video Google: A Text Retrieval Approach to Object Matching in Videos, Josef Sivic and Andrew Zisserman, ICCV 2003

Video Google Bag of Visual Words

Set of SIFT descriptors

Discovering objects and their location in images, Sivic et. al., ICCV 2005 Video Google: A Text Retrieval Approach to Object Matching in Videos, Josef Sivic and Andrew Zisserman, ICCV 2003 http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/presentation.pdf

Video Google

Large scale object instance retrieval

- Find all instances of the query object in a large scale dataset
- Do it instantly (< 1sec), and be robust to scale, viewpoint, lighting, partial occlusion

Video Google

Particular object retrieval - Bag of visual words

Object retrieval with large vocabularies and fast spatial matching, Philbin, Chum, Isard, Sivic, Zisserman, CVPR 2007 Video Google: A Text Retrieval Approach to Object Matching in Videos, Josef Sivic and Andrew Zisserman, ICCV 2003 http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/presentation.pdf

Video Google BOW + Inverted File Indexing score = $\frac{\mathbf{q}^{\mathsf{T}}\mathbf{x}}{||\mathbf{x}||}$

Spatial Verification

1. Image Query

2. Initial Retrieval Set

3. Spatial Verification

Object retrieval with large vocabularies and fast spatial matching, Philbin, Chum, Isard, Sivic, Zisserman, CVPR 2007

Query Expansion

Results

Spatial verification

Query image

New results

New query

Query Expansion

Query Image

Retrieved image

Originally not retrieved

Query Expansion

Video Google - Object Instance Retrieval

videogoogle

Exploring Charade

Viewing frame 29300

Overview Explore shots Prev Animate DivX Stream Thumbnails Search Next

Clear Search

http://www.robots.ox.ac.uk/~vgg/demo/

Immediate, scalable object category detection

Motivation: Object Detection

Running a detector fast on a single image (Cascades, PQ, etc.) [Felzenszwalb-CVPR10, Vedaldi-CVPR12, Sadeghi-NIPS13].

• Running *multiple detectors* fast on a *single image* (Sparselets, etc.) [Song-ECCV12, Dean-CVPR13].

 Running a detector fast (~1sec) on a large-scale image dataset, similar to Video Google [Sivic03] but for category detection.

Large Scale Object Instance Retrieval

query

- Retrieve instantly (< 1sec)
- Robust to: scale, viewpoint, lighting, partial occlusion

Large Scale Object Category Detection

query

- Retrieve instantly (~ 1sec)
- Robust to: scale, viewpoint, lighting, partial occlusion and Intra-class variance

versus

retrieval results

Overview

Uses the three stages of Video Google revamped for object category detection

Classifier Part (CP) Dictionary

(b) HOG Scoring

Query Representation

 α and the spatial layouts of CPs define the reconstructed template w^{rt}

Image Representation

Representation: Image *I* is represented with vector $r = [\Psi(d_1, I) \ \Psi(d_2, I), ..., \Psi(d_M, I)]$, where the *i*th component is the maximum response of the CP d_i sliding over *I*.

Shortlisting

Shortlisting: For the given template w^{rt} , images are shortlisted using the score $\alpha^T r$ which is an upper bound on the maximum score of w^{rt} obtained by sliding over I.

$$\alpha^T r = \sum_j \alpha_j \Psi(d_j, I) \ge \Psi(w^{rt}, I)$$

Spatial Reranking

Reranking (Spatial + Original Template)

Shortlisted images are reranked via fast Hough-like voting of bounding box candidates suggested by each CP.

Retrieved bounding box candidates are re-scored using the original HOG template with fast and memory efficient PQ compression.

Dictionary & Dataset

10K dictionaries of sizes 3x3 - 7x7 HOG cells are extracted from DPMs trained from 1000 **ImageNet** categories.

Tests are performed on PASCAL VOC07 test set (5K images) and validation sets (100K images) of ImageNet 2011 and 2012 challenges.

Detection Results

Person Template

Reconstructed Person Template

TV/Monitor Template

Top 3 retrievals

Cow Template

Reconstructed Cow Template

Top 3 retrievals

Motorbike Template

Reconstructed Motorbike Template

Top 3 retrievals

Exemplar SVM Results

Large Scale Image Search

Large Scale Image Search

• Find similar images in a large database

Fast & Accurate

Large Scale Image Search

Internet contains billions of images

Search the internet

The Challenge:

Need way of measuring similarity between images (distance metric learning)

Needs to scale to Internet (How?)

Requirements for image search

- Search must be both fast, accurate and scalable to large data set
- Fast
 - Kd-trees: tree data structure to improve search speed
 - Locality Sensitive Hashing: hash tables to improve search speed
 - Small code: binary small code (010101101)
- Scalable
 - Require very little memory, enabling their use on standard hardware or even on handheld devices
- Accurate
 - Learned distance metric

Categorization of existing large scale image search algorithms

- Tree Based Structure
 - Spatial partitions (i.e. kd-tree) and recursive hyper plane decomposition provide an efficient means to search lowdimensional vector data exactly.
- Hashing
 - Locality-sensitive hashing offers sub-linear time search by hashing highly similar examples together.
- Binary Small Code

- Compact binary code, with a few hundred bits per image

Tree Based Structure

- Kd-tree
 - The kd-tree is a binary tree in which every node is a k-dimensional point

Locality Sensitive Hashing

- Take random projections of data $\, oldsymbol{r}^T oldsymbol{x}$
- Quantize each projection with few bits

How to search from hash table?

results

Binary codes for images

 Want images with similar content to have similar binary codes

- Use Hamming distance between codes
 - Number of bit flips
 E.g.: Ham_Dist(10001010,10001110)=1
 Ham_Dist(10001010,11101110)=3
- Semantic Hashing [Salakhutdinov & Hinton, 2007]
 Text documents

Semantic Hashing

Find neighbors by exploring Hamming ball around query address
 Lookup time depends on radius of ball, NOT on # data points

Compact Binary Codes

- Google has few billion images (10⁹)
- PC has ~10 Gbytes (10¹¹ bits)
- Codes must fit in memory (disk too slow)

Budget of **10² bits/image**

- 1 Megapixel image is 10⁷ bits
- 32x32 color image is 10⁴ bits

Semantic hash function must also reduce dimensionality

RBM architecture

- Network of binary stochastic units
- Hinton & Salakhutdinov, Science 2006

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i \in \text{visible}} b_i v_i - \sum_{j \in \text{hidden}} b_j h_j - \sum_{i,j} v_i h_i w_{ij}$$

Parameters: Weights w Biases b
Convenient conditional distributions:

$$p(h_j = 1 | \mathbf{v}) = \sigma(b_j + \sum_i w_{ij} v_i)$$

$$p(v_i = 1 | \mathbf{h}) = \sigma(b_i + \sum_j w_{ij} h_j)$$

$$\sigma(x) = 1/(1 + e^{-x}), \text{ the logistic function}$$

Learn weights and biases using
Contrastive Divergence
Visible units: v

Examples of LabelMe retrieval

12 closest neighbors under different distance metrics

Slide Credit - Fergus et al