
6.819 / 6.869: Advances in Computer
Vision

Mid-level vision:

Texture and Shape Synthesis

Website:
http://6.869.csail.mit.edu/fa15/

Instructor: Aude Oliva

Lecture TR 9:30AM – 11:00AM
(Room 34-101)

Shape and Texture

Two Categories of Textures

•  1) determinist or regular textures : determined by a set of
primitives and a placement rule (e.g. a tile floor). Those are
determined by repeated elements or groups of elements.

•  2) stochastic textures: do not have easily identifiable

primitives (e.g. granite, sand).

When are two textures similar?

All these images are different instances of the same texture
We can differentiate between them, but they seem generated
by the same process

Texture Analysis

Compare textures and decide if they’re made of
the same “stuff”.

True (infinite) texture

ANALYSIS

generated image

input image

“Same” or
“different”

Texture Synthesis

Given a finite sample of some texture, the goal is
to synthesize other samples from that same
texture
–  The sample needs to be "large enough“

True (infinite) texture

SYNTHESIS

generated image

input image

Two big families of models
I-Parametric models of filter outputs

The trivial texture synthesis
algorithm

Texture synthesis and
representation

Space of all images

Set of equivalent textures

Set of equivalent textures: generated by exactly the same physical process

Texture synthesis and
representation

Space of all images

Set of equivalent textures

Set of perceptually
equivalent textures

Set of equivalent textures: generated by exactly the same physical process
Set of perceptually equivalent textures: “well, they just look the same to me”

SIGGRAPH 1994

The main idea: it works by ‘kind of’ projecting a random
image into the set of equivalent textures

Space of all images

Set of equivalent textures

Set of perceptually
equivalent textures

Overview of the algorithm

Two main tools:

1- steerable pyramid

2- matching histograms

HeegerBergenTexture

1-The steerable pyramid

+

Low-pass residual

1-The steerable pyramid

But why do I want to represent images like this?

1-The steerable pyramid

Argument used by H & B: Statistical measures in the subband
representation seem to provide a “distance” between textures that
correlates with human perception better than pixel-based
representations.

1-The steerable pyramid

In general seems a good idea to have a representation that:

- Preserves all image information (we can go back to the image)

- Provides more independent channels of information than pixel values (we
can mess with each band independently)

But all this is just indirectly related to the texture synthesis task. But let
assume is good enough…

Input texture

Steerable pyr

1-The steerable pyramid

Overview of the algorithm

Two main tools:

1- steerable pyramid

2- matching histograms

2-Matching histograms

9% of pixels have an intensity value
within the range[0.37, 0.41]

75% of pixels have an intensity value
smaller than 0.5

5% of pixels have an intensity value
within the range[0.37, 0.41]

Cumulative histogram

2-Matching histograms

?

Z(x,y)

Y(x,y)

We look for a transformation
of the image Y

Y’ = f (Y)

Such that
Hist(Y) = Hist(f(Z))

Problem: there are infinitely many functions
that can do this transformation.

A natural choice is to use f being:
-  pointwise non linearity
-  stationary
-  monotonic (most of the time invertible)

2-Matching histograms

Y’ = f (Y)

The function f is just a look up table: it says, change all the
pixels of value Y into a value f(Y).

Y= 0.8
Original
intensity

Y(x,y) Y’= 0.5
New
intensity

2-Matching histograms

Y’ = f (Y)

Another example: Matching histograms

5% of pixels have an intensity value
within the range[0.37, 0.41]

10% of pixels are black
and 90% are white

Cumulative histogram

Another example: Matching histograms

Y= 0.8

Y’ = f (Y)

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Original
intensity

Y(x,y)
Y’= 1
New
intensity

Another example: Matching histograms

Y’ = f (Y)

In this example, f is a step function.

Matching histograms of a subband

Y’ = f (Y)

Matching histograms of a subband

Texture analysis

Input texture

The texture is represented as a
collection of marginal histograms.

Wavelet decomposition (steerable pyr)

(Steerable pyr; Freeman & Adelson, 91)

(histogram)

(histogram)

Texture synthesis

Input texture

(histogram)

(histogram)
Heeger and Bergen, 1995

Why does it work? (sort of)

The black and white
blocks appear by
thresholding (f) a
blobby image

Iteration 0

…

Filter bank

Why does it work? (sort of)
The black and white blocks appear by
thresholding (f) a blobby image

Why does it work? (sort of)

After 6 iterations

Histograms match ok

red = target histogram, blue = current iteration

Color textures

R

G

B

Three textures

Color textures

R

G

B

Color textures

R

G

B

This does not work

Color textures

Problem: we create new colors not present in the original image.

Why? Color channels are not independent.

R G B

Principal Components Analysis (PCA) and decorrelation

R G B

R

G

In the original image, R and G are correlated, but, after synthesis,…

R

G

PCA and decorrelation

R

G

The texture synthesis algorithm assumes that the channels
are independent.
What we want to do is some rotation

See that in this rotated space,
if I specify one coordinate the
other remains unconstrained.

U1

U2

Rotation

PCA and decorrelation

R

G

U1

U2

 1.0000 0.9303 0.6034

 0.9303 0.9438 0.6620

 0.6034 0.6620 0.5569

C =

correlation(R,G)

C = D D’
 0.6347 0.6072 0.4779

 0.6306 -0.0496 -0.7745

 0.4466 -0.7930 0.4144

D =

=

3 x Npixels 3 x Npixels 3 x 3

D’
R
G
B

U1
U2
U3

PCA finds the principal directions of variation of the data.
It gives a decomposition of the covariance matrix as:

By transforming the original data (RGB) using D we get:

The new components (U1,U2,U3) are decorrelated.

Color textures

R

G

B

Rotation
Matrix
(3x3)

These three textures
look similar
(high dependency)

These three textures
Look less similar
(lower dependency)

D’

Color textures

Inverse
Rotation
Matrix

R

G

B

D

Color textures

R

G

B

Rotation
Matrix

These three textures
look similar
(high dependency)

These three textures
Look less similar
(lower dependency)

D’

Inverse
Rotation

R

G

B
D

Color channels

Without PCA With PCA

Examples from the paper

Examples not from the paper

Input
texture

Synthetic
texture

It does not keep much of the structure for these textures

Portilla and Simoncelli (2001)

Same principle than previous method but using more statistics

Four statistics

Texture analysis and synthesis

Original

Marginal
Histograms
(Heeger-Bergen)

Higher order
statistics

(2) Coefficient correlation
It captures periodic or globally oriented structure (within a neighborhood size,
e.g. 9 pixels). The local correlation of each subband. It characterizes the salient
spatial frequencies and the regularity of the texture, as represented by periodic
or globally oriented structure

All parameters All but coefficient correlation

(3) Magnitude correlation
Capture structure (edges, bars, corners) and “second-order” textures.
cross-correlation of each subband magnitudes with those of other orientations at
the same scale, and cross-correlation of each subband magnitude with all
orientations at a coarser scale.

(3) Magnitude correlation

All parameters All but magnitude correlation

(4) Cross-scale phase statistics
Cross-scale phase statistics: Distinguishes edges from lines. Help

represented gradients/lighting effects. A local representation of the
phase (position), in order to represent edges and lines. Important to
represent 3dimensional aspect and shadows, and more generally
gradients due to lighting effects.

All parameters All but phase statistics

Portilla & Simoncelli

Portilla & Simoncelli

Heeger & Bergen Portilla & Simoncelli

Two big families of models

II-Example-based non-parametric models

The Challenge

•  Texture analysis: how to
capture the essence of
texture?

• Need to model the whole
spectrum: from repeated to
stochastic texture

•  This problem is at intersection
of vision, graphics, statistics,
and image compression

repeated

stochastic

Both?

See section 9.3 Forsyth Ponce textbook (2003) – pdf given

Efros & Leung Algorithm

p

Synthesizing a pixel

non-parametric
sampling

Input image

– Search the input image for all similar
neighborhoods pixels to p

Non parametric texture synthesis

finite sample image

Generated image

p

–  let’s directly search the input image for all similar
neighbourhoods pixels to produce a histogram for p

SAMPLE

Growing Texture

–  Starting from the initial configuration, we “grow” the texture one pixel at a
time

–  The size of the neighbourhood window is a parameter that specifies how
stochastic (random) the user believes this texture to be

–  To grow from scratch, we use a random 3x3 patch from input image as
seed.

–  Pixels with most neighbors are synthesized first. If no close match can be
found, the pixel is not synthesized until the end

Neighborhood Window

input

Varying Window Size

Increasing window size

Brodatz Results
aluminum wire reptile skin

More Brodatz Results
french canvas rafia weave

More Results
white bread brick wall

Failure Cases

Growing garbage Verbatim copying

Hole Filling

Extrapolation

p

Image Quilting [Efros & Freeman]

•  Observation: neighbor pixels are highly correlated

Input image

non-parametric
sampling

B

Idea: unit of synthesis = block
•  Exactly the same but now we want P(B|N(B))

•  Much faster: synthesize all pixels in a block at once

•  Not the same as multi-scale!

Synthesizing a block

http://graphics.cs.cmu.edu/people/efros/research/quilting.html

Input texture

B1 B2

Random placement
of blocks

block

B1 B2

Neighboring blocks
constrained by overlap

B1 B2

Minimal error
boundary cut

min. error boundary

Minimal error boundary
overlapping blocks vertical boundary

_ =
2

overlap error

Texture Transfer
•  Take the texture from one

object and “paint” it onto
another object
–  This requires separating

texture and shape
–  That’s HARD, but we can

cheat
–  Assume we can capture shape

by boundary and rough
shading

•  Then, just add another constraint when sampling:
similarity to underlying image at that spot

+ =

+ =

parmesan

rice

+ =

= +

+ =

Shape and Texture Synthesis

Goal of “Interpretation through synthesis”

 The same idea than the texture synthesis
approach:

•  Represent a novel image by generating

synthetic images that are as similar as possible
to the target image

•  Similarity is based on shape and texture (i.e.

color): use of a collection of parameters that
describe the image appearance (e.g. round
shape, dark grey color, etc)

Pixels as Features

•  A grayscale digital
picture has n rows by m
columns of pixels. Each
pixel can have a single
gray scale value (ex.
0-255 black to white).

•  We can consider each
pixel as a feature (or
dimension) of that image.

•  These features may be
numerous but they are
very cheap to generate.

178

144

25632 feature dimensions

Feature Extraction:
Principal Component Analysis PCA

• Use PCA to find a new set of features,
from pixels, that better represents the
data.

•  Pick the best principal component vectors
to represent the data.

What is PCA ? Ex. For Faces
•  An image of a face is stored as the intensity of

gray level of each pixel.

•  What differences are important and what are
not in a set of faces ? Can we reduce the
dimension of the images (nb of pixels), while
maintaining the “relevant” differences.

•  One strategy: Principal components analysis

•  By analyzing the statistical variation across
different pixels in a large number of images,
we can derived a more economical way to
represent faces.

•  Across a series of faces, there will be variation
of the intensity shown in each pixel: by
analyzing the pattern of correlation between
the grey levels in all the different pixels across
a series of faces, the principal components of
this variation can be extracted.

•  E.g. some men have receding hairlines, so the
pixels at the upper forehead will be light (skin)
while other have a full head of dark hair and
the corresponding pixels may be dark.

•  If a set of eigenfaces is derived from a
set of face images, any face can be
described as an appropriate weighted
sum of this set of eigenfaces for
analysis

•  Eigenface representation is an
economic method of coding large
number of faces: what is stored is 1) the
eigenfaces images and 2) the weights
for each individual face.

•  Eigenfaces method works only if faces
are aligned. A possible method is 1)
morph the faces to a common shape
first, and 2) apply PCA. Then, analyses
can be conducted both of the grey
levels in the “shape-free” (morphed)
images and on the shape vectors (the
transformations needed to restore the
original shape to the face).

 Those represent the first 4 eigenfaces
after all the 174 male faces were
morphed to a common shape. There is
no more variation around the bottom
of the face. In this example, all 4
eigenfaces code aspects of hairstyle

 [Hancock et al. al.98, Vis.Res,38,22]

Faces PCA example

PCA Demo: Run pcaFaces.m

PCA-Faces/pcaFaces.m

Principal Components (eigenfaces)
of Emotion dataset

Run section 4 of pcaFaces.m
Representation in a low dimensional space

Run section 5 of pcaFace.m
Reconstruction with different # of PC

Active Appearance Model
An Active Appearance Model (AAM) is a computer vision
algorithm for matching a statistical model of object shape
and appearance (texture) to a new image.

They are built during a training phase. A set of images
together with coordinates of landmarks, that appear in all
of the images is provided by the training supervisor.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE
TPAMI, 23(6):681–685, 2001

A statistical model of object appearance can be matched
to an image in two steps

•  (1) represent the shape of the object
•  (2) represent the texture of the object

Active Appearance Models
•  Take a set of similar images
•  Label corresponding landmark points in each image
•  Warp images onto the mean shape to get shape-free

texture
•  Do PCA separately on shapes and textures . . .

PCs of shape
(first 2 components, ±3 sd)

Shape PCA

Principal components of texture
(first 2 components, ±3 sd)

Texture PCA

Mean face

Active Appearance Models
•  Do more PCA on combined shape+texture coefficients
•  Results:

–  Learn interesting things about the distribution of shapes/
textures in the object class and how they co-vary

–  Find landmark points in novel images

Principal components of combined shape+texture
(first 4 components, ±3 sd)

Analysis by synthesis

Ingredients:

1) A large database of annotated objects.

2) Synthesis method for generation of photo-realistic images
from model parameters.

3) Analysis: extraction of model parameters from images.

Goal: Allow a prototype to vary according to some physical
model

AAM/readme.txt

Labeling the training data set is step 1

RoboFaces’s parameters

I- Robot training database

40 points

AAM/labeling.m and demowarp.m

•  It is a function that applies a deformation to an image
given a set of corresponding points:

y1 x1

•  The main building block of AAM is the image warping
 procedure.

•  Synthesis method for generation of photo-realistic images
from model parameters

II- Image Warping

AAM/labeling.m and demowarp.m

The Matlab implementation is limited to convex objects but this is good enough for faces.

= ImageWarp (, , ,)

This function is used during the iterations of the AAM.

background

Background Original image

AAM/demowarp.m

AAM/VirtualExamples.m
AAM/labeling.m

We warp a “real” face into the roboFaces in order to have
more realistic images. We have same modes of variation.

•  Each image is represented as (1) a collection of correspondence
points (shape) and (2) a texture image normalized in shape.

1 - Shape information
(texture free)

2 - Texture information
(shape free)

Original
image I

x1
x2
...
xi

= ImageWarp (, , ,)

Original
image

Mean
shape

Shape
free texture shape zeros

•  2 - Shape normalization is obtained by warping the image into
the mean shape of the training database.

III- Appearance model

1 - Shape model
•  PCA of shape information for the training database:

PC1 PC2 PC3

PC4 PC5 PC6

+ s1 + s2 + s3 + ... =

Shape Mean shape

•  Each shape can be decomposed as:

2 - Texture model
•  PCA of texture information for the training database:

PC1 PC2 PC3

PC4 PC5 PC6

•  Each texture (shape free) can be decomposed as:

The PCA is done on the shape free images

+ t1 + t2 + t3 =

Shape free
texture Mean texture

Original
image + s1 + s2 + s3 + =

+ t1 + t2 + t3 =

shape

texture

= ImageWarp (, , ,)

Original
image

Mean
shape

Shape
free texture shape zeros

t s

Summary of Appearance Model of one image

A set of model parameters encode shape and gray level variation learned from a training set

Active Appearance Model Search

Given a “face” the model has to build an appearance model
(shape + texture) that reproduces the original image.

Shape = ?

Texture = ?

This is done in an iterative procedure that tries to minimize the
reconstruction error.

= ImageWarp (, , ,)

estimated
shape zeros

Input Image
(in shape free template)

s i

Error

Model
(mean shape)

The algorithm adjusts
the points of the shape
and texture templates and
propose a new Model template

This template is the goal of the AAM
Algorithm: retrieve the Red points

AAM/learnerror.m

Two parts of the iterative procedure
1)  given a set of shape parameters, warp input image into its shape free template

= ImageWarp (, , ,)

estimated
shape zeros

Input Image
(in shape free template)

s i

Result of
the warping

- =

The residual is function of errors in both shape and texture parameters

Original Image

Error

Model
(mean shape)

2) measure the residual image and correct the appearance model.

This template is the goal of the AAM
Algorithm: retrieve the Red points

AAM/learnerror.m

Δs
Δt = F - =

Learning to correct model parameters

t i
Linear approximation:

Δs
Δt = A

Column
vector

Matrix A is learned
by adding perturbations
to the parameters of the
training set. The residual
corresponds to the difference
between the image obtained
with the real parameters and
the one perturbed.

Δs = A

vector

s

Learning to correct shape parameters

Each row of As describes how the residual contributes to each shape mode:

1st row of As 2nd row 3rd row

4th row 5th row 6th row

Shape parameters:
As is Rs
in matlab
program..

Learning to correct texture parameters

Δt A

vector

t = Texture parameters:

Each row of At describes how the residual contributes to each texture mode:

1st row of At 2nd row 3rd row

Results
Input image

5

10

1 Iter =

Model Shape Residual

100

Convergence after 50 iterations

AAM/detection.m

Results
Even when the images have real parameters that deviate from the distribution of
the training set, the algorithm seems to converge:

Input image Final Model Shape

0 50 100
0

1

2

3
x 107

input model

gs gm gs-gm

Adding priors to possible appearance parameters may prevent this.

iter

error

Shape-free “animals”

• Obtained by warping each animal’s shape
onto the mean shape

Mean shape

