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Shape and Texture 





Two Categories of Textures 

 

•  1) determinist or regular textures : determined by a set of 
primitives and a placement rule (e.g. a tile floor). Those are 
determined by repeated elements or groups of elements. 

 
•  2) stochastic textures: do not have easily identifiable 

primitives (e.g. granite, sand). 
 



When are two textures similar? 

All these images are different instances of the same texture 
We can differentiate between them, but they seem generated  
by the same process 



Texture Analysis 

Compare textures and decide if they’re made of 
the same “stuff”. 

True (infinite) texture 

ANALYSIS 

generated image 

input image 

“Same” or 
“different” 



Texture Synthesis 

Given a finite sample of some texture, the goal is 
to synthesize other samples from that same 
texture 
–  The sample needs to be "large enough“ 

True (infinite) texture 

SYNTHESIS 

generated image 

input image 



Two big families of models 
I-Parametric models of filter outputs 

  



The trivial texture synthesis 
algorithm 



Texture synthesis and 
representation 

Space of all images 

Set of equivalent textures 

Set of equivalent textures: generated by exactly the same physical process  



Texture synthesis and 
representation 

Space of all images 

Set of equivalent textures 

Set of perceptually  
equivalent textures 

Set of equivalent textures: generated by exactly the same physical process  
Set of perceptually equivalent textures: “well, they just look the same to me” 



SIGGRAPH 1994 



The main idea: it works by ‘kind of’ projecting a random 
image into the set of equivalent textures  

Space of all images 

Set of equivalent textures 

Set of perceptually  
equivalent textures 



Overview of the algorithm 

Two main tools: 

1- steerable pyramid 

2- matching histograms 

HeegerBergenTexture 



1-The steerable pyramid 

+ 

Low-pass residual 



1-The steerable pyramid 

But why do I want to represent images like this? 



1-The steerable pyramid 

Argument used by H & B: Statistical measures in the subband 
representation seem to provide a “distance” between textures that 
correlates with human perception better than pixel-based 
representations. 



1-The steerable pyramid 

In general seems a good idea to have a representation that: 

- Preserves all image information (we can go back to the image)  

- Provides more independent channels of information than pixel values (we 
can mess with each band independently) 

But all this is just indirectly related to the texture synthesis task. But let 
assume is good enough… 



Input texture 

Steerable pyr 

1-The steerable pyramid 



Overview of the algorithm 

Two main tools: 

1- steerable pyramid 

2- matching histograms 



2-Matching histograms 

9% of pixels have an intensity value 
within the range[0.37, 0.41] 

75% of pixels have an intensity value 
smaller than 0.5 

5% of pixels have an intensity value 
within the range[0.37, 0.41] 

Cumulative histogram 



2-Matching histograms 

? 

Z(x,y) 

Y(x,y) 

We look for a transformation  
of the image Y 
  
Y’ = f (Y) 
 
Such that 
Hist(Y) = Hist(f(Z)) 
 
Problem: there are infinitely many functions  
that can do this transformation. 
 
A natural choice is to use f being: 
-  pointwise non linearity 
-  stationary 
-  monotonic (most of the time invertible) 



2-Matching histograms 

Y’ = f (Y) 

The function f is just a look up table: it says, change all the 
pixels of value Y into a value f(Y). 

Y= 0.8 
Original 
intensity 

Y(x,y) Y’= 0.5 
New 
intensity 



2-Matching histograms 

Y’ = f (Y) 



Another example: Matching histograms 

5% of pixels have an intensity value 
within the range[0.37, 0.41] 

10% of pixels are black 
and 90% are white 

Cumulative histogram 



Another example: Matching histograms 

Y= 0.8 

Y’ = f (Y) 

The function f is just a look up table: it says, change all the pixels of 
value Y into a value f(Y). 

Original 
intensity 

Y(x,y) 
Y’= 1 
New 
intensity 



Another example: Matching histograms 

Y’ = f (Y) 

In this example, f is a step function. 



Matching histograms of a subband 



Y’ = f (Y) 

Matching histograms of a subband 



Texture analysis 

Input texture 

The texture is represented as a 
collection of marginal histograms. 

Wavelet decomposition (steerable pyr) 

(Steerable pyr; Freeman & Adelson, 91) 

(histogram) 

(histogram) 



Texture synthesis 

Input texture 

(histogram) 

(histogram) 
Heeger and Bergen, 1995 



Why does it work? (sort of) 

The black and white  
blocks appear by  
thresholding (f) a  
blobby image 

Iteration 0 

… 

Filter bank 



Why does it work? (sort of) 
The black and white blocks appear by  
thresholding (f) a blobby image 



Why does it work? (sort of) 

After 6 iterations 

Histograms match ok 

red = target histogram, blue = current iteration 



Color textures 

R 

G 

B 

Three textures 



Color textures 

R 

G 

B 



Color textures 

R 

G 

B 

This does not work 



Color textures 

Problem: we create new colors not present in the original image. 
 
Why? Color channels are not independent.  

R G B 



Principal Components Analysis (PCA) and decorrelation 

R G B 

R 

G 

In the original image, R and G are correlated, but, after synthesis,…  

R 

G 



PCA and decorrelation 

R 

G 

The texture synthesis algorithm assumes that the channels  
are independent. 
What we want to do is some rotation 

See that in this rotated space,  
if I specify one coordinate the  
other remains unconstrained. 

U1 

U2 

Rotation 



PCA and decorrelation 

R 

G

U1 

U2 

 1.0000    0.9303    0.6034 

 0.9303    0.9438    0.6620 

 0.6034    0.6620    0.5569 

C =  

correlation(R,G) 

C = D D’ 
  0.6347    0.6072    0.4779 

  0.6306   -0.0496   -0.7745 

  0.4466   -0.7930    0.4144 

D =  

= 

3 x Npixels 3 x Npixels 3 x 3 

D’ 
R 
G 
B 

U1 
U2 
U3 

PCA finds the principal directions of variation of the data. 
It gives a decomposition of the covariance matrix as:  

By transforming the original data (RGB) using D we get:  

The new components (U1,U2,U3) are decorrelated. 



Color textures 

R 

G 

B 

Rotation 
Matrix 
(3x3) 

These three textures 
look similar  
(high dependency) 

These three textures 
Look less similar  
(lower dependency) 

D’ 



Color textures 

Inverse 
Rotation 
Matrix 

R 

G 

B 

D 



Color textures 

R 

G 

B 

Rotation 
Matrix 

 

These three textures 
look similar  
(high dependency) 

These three textures 
Look less similar  
(lower dependency) 

D’ 

Inverse 
Rotation 

 

R 

G 

B 
D 



Color channels 

Without PCA With PCA 



Examples from the paper 



Examples not from the paper 

Input 
texture 

Synthetic 
texture 

It does not keep much of the structure for these textures 



Portilla and Simoncelli (2001) 

Same principle than previous method but using more statistics 



Four statistics 



Texture analysis and synthesis 

Original 

Marginal 
Histograms 
(Heeger-Bergen) 

Higher order 
statistics 







(2) Coefficient correlation 
It captures periodic or globally oriented structure (within a neighborhood size, 
e.g. 9 pixels). The local correlation of each subband. It characterizes the salient 
spatial frequencies and the regularity of the texture, as represented by periodic 
or globally oriented structure 

All parameters All but coefficient correlation 





(3) Magnitude correlation 
Capture structure (edges, bars, corners) and “second-order” textures.  
cross-correlation of each subband magnitudes with those of other orientations at 
the same scale, and cross-correlation of each subband magnitude with all 
orientations at a coarser scale.  
 



(3) Magnitude correlation 

All parameters All but magnitude correlation 



(4) Cross-scale phase statistics 
Cross-scale phase statistics: Distinguishes edges from lines. Help 

represented gradients/lighting effects. A local representation of the 
phase (position), in order to represent edges and lines. Important to 
represent 3dimensional aspect and shadows, and more generally 
gradients due to lighting effects.  

All parameters All but phase statistics 



Portilla & Simoncelli 



Portilla & Simoncelli 

Heeger & Bergen Portilla & Simoncelli 



Two big families of models 
 

II-Example-based non-parametric models 



The Challenge 

•  Texture analysis: how to 
capture the essence of 
texture?  

• Need to model the whole 
spectrum: from repeated to 
stochastic texture 

•  This problem is at intersection 
of vision, graphics, statistics, 
and image compression 

repeated 

stochastic 

Both? 



See section 9.3 Forsyth Ponce textbook (2003) – pdf given 



Efros & Leung Algorithm 

p 

Synthesizing a pixel 

non-parametric 
sampling 

Input image  

– Search the input image for all similar 
neighborhoods pixels to p 



Non parametric texture synthesis 

finite sample image 

Generated image 

p 

–  let’s directly search the input image for all similar 
neighbourhoods pixels to produce a histogram for p  

SAMPLE 



Growing Texture 

–  Starting from the initial configuration, we  “grow” the texture one pixel at a 
time 

–  The size of the neighbourhood window is a parameter that specifies how 
stochastic (random) the user believes this texture to be 

–  To grow from scratch, we use a random 3x3 patch from input image as 
seed. 

–  Pixels with most neighbors are synthesized first. If no close match can be 
found, the pixel is not synthesized until the end 



Neighborhood Window 

input 



Varying Window Size 

Increasing window size 



Brodatz Results 
aluminum wire reptile skin 



More Brodatz Results 
french canvas rafia weave 



More Results 
white bread brick wall 



Failure Cases 

Growing garbage  Verbatim copying 



Hole Filling 



Extrapolation 



p 

Image Quilting [Efros & Freeman] 

•  Observation: neighbor pixels are highly correlated 

Input image  

non-parametric 
sampling 

B 

Idea: unit of synthesis = block 
•  Exactly the same but now we want P(B|N(B)) 

•  Much faster: synthesize all pixels in a block at once 

•  Not the same as multi-scale! 

Synthesizing a block 

http://graphics.cs.cmu.edu/people/efros/research/quilting.html 



Input texture 

B1 B2 

Random placement  
of blocks  

block 

B1 B2 

Neighboring blocks 
constrained by overlap 

B1 B2 

Minimal error 
boundary cut 



min. error boundary 

Minimal error boundary 
overlapping blocks vertical boundary 

_ = 
2 

overlap error 



Texture Transfer 
•  Take the texture from one 

object and “paint” it onto 
another object 
–  This requires separating 

texture and shape 
–  That’s HARD, but we can 

cheat  
–  Assume we can capture shape 

by boundary and rough 
shading 

•    Then, just add another constraint when sampling: 
similarity to underlying image at that spot 



+ =

+ =

parmesan 

rice 



+ = 



= + 



+ = 



Shape and Texture Synthesis 



Goal of “Interpretation through synthesis” 

  The same idea than the texture synthesis 
approach: 

  
•  Represent a novel image by generating 

synthetic images that are as similar as possible 
to the target image 

 
•  Similarity is based on shape and texture (i.e. 

color): use of a collection of parameters that 
describe the image appearance (e.g. round 
shape, dark grey color, etc) 



Pixels as Features 

•  A grayscale digital 
picture has n rows by m 
columns of pixels.  Each 
pixel can have a single 
gray scale value (ex. 
0-255 black to white).  

•  We can consider each 
pixel as a feature (or 
dimension) of that image.  

•  These features may be 
numerous but they are 
very cheap to generate. 

178 

144 

25632 feature dimensions 



Feature Extraction: 
Principal Component Analysis PCA 

• Use PCA to find a new set of features, 
from pixels, that better represents the 
data.  

•  Pick the best principal component vectors 
to represent the data.   



What is PCA ? Ex. For Faces 
•  An image of a face is stored as the intensity of 

gray level of each pixel. 

•  What differences are important and what are 
not in a set of faces ? Can we reduce the 
dimension of the images (nb of pixels), while 
maintaining the “relevant” differences.  

•  One strategy: Principal components analysis 

•  By analyzing the statistical variation across 
different pixels in a large number of images, 
we can derived a more economical way to 
represent faces. 

•  Across a series of faces, there will be variation 
of the intensity shown in each pixel: by 
analyzing the pattern of correlation between 
the grey levels in all the different pixels across 
a series of faces, the principal components of 
this variation can be  extracted. 

•  E.g. some men have receding hairlines, so the 
pixels at the upper forehead will be light (skin) 
while other have a full head of dark hair and 
the corresponding pixels may be dark. 



•  If a set of eigenfaces is derived from a 
set of face images, any face can be 
described as an appropriate weighted 
sum of this set of eigenfaces for 
analysis 

•  Eigenface representation is an 
economic method of coding large 
number of faces: what is stored is 1) the 
eigenfaces images and 2) the weights 
for each individual face.  

•  Eigenfaces method works only if faces 
are aligned. A possible method is 1) 
morph the faces to a common shape 
first, and 2) apply PCA. Then, analyses 
can be conducted both of the grey 
levels in the “shape-free” (morphed) 
images and on the shape vectors (the 
transformations needed to restore the 
original shape to the face). 

      Those represent the first 4 eigenfaces 
after all the 174 male faces were 
morphed to a common shape. There is 
no more variation around the bottom 
of the face. In this example, all 4 
eigenfaces code aspects of hairstyle 

         [Hancock et al. al.98, Vis.Res,38,22]  

Faces PCA example 



PCA Demo: Run pcaFaces.m 

PCA-Faces/pcaFaces.m 



Principal Components (eigenfaces) 
of Emotion dataset 



Run section 4 of pcaFaces.m 
Representation in a low dimensional space 



Run section 5 of pcaFace.m 
Reconstruction with different # of PC 



Active Appearance Model 
An Active Appearance Model (AAM) is a computer vision 
algorithm for matching a statistical model of object shape 
and appearance (texture) to a new image.  
 
They are built during a training phase. A set of images 
together with coordinates of landmarks, that appear in all 
of the images is provided by the training supervisor. 
 
 

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE 
TPAMI, 23(6):681–685, 2001 

A statistical model of object appearance can be matched 
to an image in two steps 

•  (1) represent the shape of the object 
•  (2) represent the texture of the object 



Active Appearance Models 
•  Take a set of similar images 
•  Label corresponding landmark points in each image 
•  Warp images onto the mean shape to get shape-free 

texture 
•  Do PCA separately on shapes and textures . . . 

PCs of shape 
(first 2 components, ±3 sd) 

Shape PCA 

Principal components of texture 
(first 2 components, ±3 sd) 

Texture PCA 

Mean face 



Active Appearance Models 
•  Do more PCA on combined shape+texture coefficients 
•  Results: 

–  Learn interesting things about the distribution of shapes/
textures in the object class and how they co-vary 

–  Find landmark points in novel images 

Principal components of combined shape+texture 
(first 4 components, ±3 sd) 



Analysis by synthesis 

Ingredients: 
 
1) A large database of annotated objects. 
 
2) Synthesis method for generation of photo-realistic images  
from model parameters.  
 
3) Analysis: extraction of model parameters from images. 
 
 
Goal: Allow a prototype to vary according to some physical 
model 

 
 
 

AAM/readme.txt 



Labeling the training data set is step 1 

RoboFaces’s parameters 

I- Robot training database 

40 points 

AAM/labeling.m and demowarp.m 



•  It is a function that applies a deformation to an image  
given a set of corresponding points: 

y1 x1 

•  The main building block of AAM is the image warping 
 procedure. 

•  Synthesis method for generation of photo-realistic images  
from model parameters 

II- Image Warping 

AAM/labeling.m and demowarp.m 



The Matlab implementation is limited to convex objects but this is good enough for faces. 

= ImageWarp (              ,                 ,               ,                ) 

 
This function is used during the iterations of the AAM. 

background 

Background Original image 

AAM/demowarp.m 



AAM/VirtualExamples.m 
AAM/labeling.m 

We warp a “real” face into the roboFaces in order to have 
more realistic images. We have same modes of variation.  



•  Each image is represented as (1) a collection of correspondence 
points (shape) and (2) a texture image normalized in shape. 

1 - Shape information 
(texture free) 

2 - Texture information 
(shape free) 

Original 
image I 

x1 
x2 
... 
xi 

= ImageWarp (              ,                 ,               ,                ) 

Original 
image 

Mean 
shape 

Shape 
free texture shape zeros 

•  2 - Shape normalization is obtained by warping the image into 
the mean shape of the training database. 

III- Appearance model 



1 - Shape model 
•  PCA of shape information for the training database: 

PC1 PC2 PC3 

PC4 PC5 PC6 

+ s1 + s2 + s3  + ... = 

Shape Mean shape 

•  Each shape can be decomposed as: 



2 - Texture model 
•  PCA of texture information for the training database: 

PC1 PC2 PC3 

PC4 PC5 PC6 

•  Each texture (shape free) can be decomposed as: 

The PCA is done on the shape free images 

+ t1 + t2 + t3 = 

Shape free 
texture Mean texture 



Original 
image + s1 + s2 + s3 + = 

+ t1 + t2 + t3 = 

shape 

 
texture 

= ImageWarp (              ,                 ,               ,                ) 

Original 
image 

Mean 
shape 

Shape 
free texture shape zeros 

t s 

Summary of Appearance Model of one image 

A set of model parameters encode shape and gray level variation learned from a training set 



Active Appearance Model Search 

Given a “face” the model has to build an appearance model 
(shape + texture) that reproduces the original image.  

Shape = ? 

Texture = ? 

This is done in an iterative procedure that tries to minimize the 
reconstruction error. 



= ImageWarp (              ,                 ,               ,                ) 

estimated 
shape zeros 

Input Image  
(in shape free template) 

s i 

Error 

Model 
(mean shape) 

The algorithm adjusts 
the points of the shape 
and texture templates and 
propose a new Model template 

This template is the goal of the AAM 
Algorithm: retrieve the Red points 

AAM/learnerror.m 



Two parts of the iterative procedure  
1)  given a set of shape parameters, warp input image into its shape free template 
 
 
 
 
 

= ImageWarp (              ,                 ,               ,                ) 

estimated 
shape zeros 

Input Image  
(in shape free template) 

s i 

Result of  
the warping 

- = 

The residual is function of errors in both shape and texture parameters 

Original Image 

Error 

Model 
(mean shape) 

2) measure the residual image and correct the appearance model. 

This template is the goal of the AAM 
Algorithm: retrieve the Red points 

AAM/learnerror.m 



Δs 
Δt = F - = 

Learning to correct model parameters 

t i 
Linear approximation: 

Δs 
Δt = A 

Column  
vector 

Matrix A is learned 
by adding perturbations 
to the parameters of the  
training set. The residual 
corresponds to the difference 
between the image obtained 
with the real parameters and 
the one perturbed. 



Δs = A 

vector 

s 

Learning to correct shape parameters 

Each row of As describes how the residual contributes to each shape mode: 

1st row of As  2nd row 3rd row 

4th row 5th row 6th row 

Shape parameters: 
As is Rs 
in matlab 
program.. 



Learning to correct texture parameters 

Δt A 

vector 

t = Texture parameters: 

Each row of At describes how the residual contributes to each texture mode: 

1st row of At  2nd row 3rd row 



Results 
Input image 

5 

10 

1 Iter = 

Model Shape Residual 

100 

Convergence after 50 iterations 

AAM/detection.m 



Results 
Even when the images have real parameters that deviate from the distribution of  
the training set, the algorithm seems to converge: 

Input image Final Model Shape 



0 50 100
0

1

2

3
x 107

input model

gs gm gs-gm

Adding priors to possible appearance parameters may prevent this. 

iter 

error 





Shape-free “animals” 

• Obtained by warping each animal’s shape 
onto the mean shape 

Mean shape 


