6.819 / 6.869: Advances in Computer Vision

Mid-level vision:
Texture and Shape Synthesis

Website:
http://6.869.csail.mit.edu/fa15/

Instructor: Aude Oliva

Lecture TR 9:30AM – 11:00AM
(Room 34-101)
Shape and Texture
Two Categories of Textures

1) determinist or regular textures: determined by a set of primitives and a placement rule (e.g. a tile floor). Those are determined by repeated elements or groups of elements.

2) stochastic textures: do not have easily identifiable primitives (e.g. granite, sand).
When are two textures similar?

All these images are different instances of the same texture. We can differentiate between them, but they seem generated by the same process.
Compare textures and decide if they’re made of the same “stuff”.

Texture Analysis

input image

ANALYSIS

“Same” or “different”

True (infinite) texture generated image
Texture Synthesis

Given a finite sample of some texture, the goal is to synthesize other samples from that same texture.

- The sample needs to be "large enough"
Two big families of models
I-Parametric models of filter outputs
The trivial texture synthesis algorithm
Texture synthesis and representation

Set of equivalent textures: generated by exactly the same physical process
Texture synthesis and representation

Set of equivalent textures: generated by exactly the same physical process
Set of perceptually equivalent textures: “well, they just look the same to me”
Pyramid-Based Texture Analysis/Synthesis

David J. Heeger*
Stanford University

James R. Bergen†
SRI David Sarnoff Research Center

SIGGRAPH 1994
The main idea: it works by ‘kind of’ projecting a random image into the set of equivalent textures.
Overview of the algorithm

Two main tools:

1- steerable pyramid
2- matching histograms
1-The steerable pyramid
1-The steerable pyramid

But why do I want to represent images like this?
1-The steerable pyramid

Argument used by H & B: Statistical measures in the subband representation seem to provide a "distance" between textures that correlates with human perception better than pixel-based representations.
In general seems a good idea to have a representation that:

- Preserves all image information (we can go back to the image)
- Provides more independent channels of information than pixel values (we can mess with each band independently)

But all this is just indirectly related to the texture synthesis task. But let assume is good enough...
1-The steerable pyramid
Overview of the algorithm

Match-texture(noise, texture)

Match-Histogram (noise, texture)

analysis-pyr = Make-Pyramid (texture)

Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr

for s-band in subbands of synthesis-pyr do

Match-Histogram (s-band, a-band)

noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (noise, texture)

Two main tools:

1- steerable pyramid

2- matching histograms
2-Matching histograms

9% of pixels have an intensity value within the range \([0.37, 0.41]\]

75% of pixels have an intensity value smaller than 0.5

5% of pixels have an intensity value within the range \([0.37, 0.41]\]
We look for a transformation of the image Y

$Y' = f(Y)$

Such that

$\text{Hist}(Y) = \text{Hist}(f(Z))$

Problem: there are infinitely many functions that can do this transformation.

A natural choice is to use f being:
- pointwise non linearity
- stationary
- monotonic (most of the time invertible)
2-Matching histograms

The function f is just a look up table: it says, change all the pixels of value Y into a value $f(Y)$.

$$Y' = f(Y)$$
2-Matching histograms

\[Y' = f(Y) \]
Another example: Matching histograms

5% of pixels have an intensity value within the range $[0.37, 0.41]$

10% of pixels are black and 90% are white

Cumulative histogram
Another example: Matching histograms

The function f is just a look up table: it says, change all the pixels of value Y into a value $f(Y)$.

$Y' = f(Y)$

Original intensity

New intensity

$Y(x,y)$
Another example: Matching histograms

In this example, f is a step function.
Matching histograms of a subband
Matching histograms of a subband

\[Y' = f(Y) \]
Texture analysis

The texture is represented as a collection of marginal histograms.

Wavelet decomposition (steerable pyr)

(Steerable pyr; Freeman & Adelson, 91)
Texture synthesis

Heeger and Bergen, 1995

Input texture

(histogram)

(histogram)

(histogram)
Why does it work? (sort of)

The black and white blocks appear by thresholding (f) a blobby image

Iteration 0

Filter bank
Why does it work? (sort of)

The black and white blocks appear by thresholding (f) a blobby image.
Why does it work? (sort of)

After 6 iterations

Histograms match ok

red = target histogram, blue = current iteration
Color textures

Three textures

Original texture

R

G

B
Color textures

R

G

B
Color textures

This does not work
Color textures

Problem: we create new colors not present in the original image.

Why? Color channels are not independent.
Principal Components Analysis (PCA) and decorrelation

In the original image, R and G are correlated, but, after synthesis,…
PCA and decorrelation

The texture synthesis algorithm assumes that the channels are independent.
What we want to do is some rotation

See that in this rotated space, if I specify one coordinate the other remains unconstrained.
PCA and decorrelation

PCA finds the principal directions of variation of the data. It gives a decomposition of the covariance matrix as:

\[C = D D' \]

By transforming the original data (RGB) using D we get:

\[\begin{pmatrix} U_1 \\ U_2 \\ U_3 \end{pmatrix} = \begin{pmatrix} D' \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} \]

The new components (U1, U2, U3) are decorrelated.

\[D = \begin{pmatrix} 0.6347 & 0.6072 & 0.4779 \\ 0.6306 & -0.0496 & -0.7745 \\ 0.4466 & -0.7930 & 0.4144 \end{pmatrix} \]

\[C = \begin{pmatrix} 1.0000 & 0.9303 & 0.6034 \\ 0.9303 & 0.9438 & 0.6620 \\ 0.6034 & 0.6620 & 0.5569 \end{pmatrix} \]
Color textures

These three textures look similar (high dependency)

Rotation Matrix (3x3)

These three textures look less similar (lower dependency)
Color textures

Inverse Rotation Matrix

D

R

G

B

Original texture
Color textures

These three textures look similar (high dependency)

These three textures look less similar (lower dependency)
Color channels
Examples from the paper

Figure 4: In each pair, left image is original and right image is synthetic: red gravel, figured sepele wood, broccoli, bark paper, denim, pink wall, ivy, grass, sand, surf.
Examples not from the paper

It does not keep much of the structure for these textures
Portilla and Simoncelli (2001)

Same principle than previous method but using more statistics
Four statistics

- Marginal Statistics
- Coefficient Correlation
- Magnitude Correlation
- Cross-Scale Phase Statistics
Texture analysis and synthesis

Original

Marginal Histograms (Heeger-Bergen)

Higher order statistics
Marginal Statistics

- Pixel statistics: Mean, Variance, Skew, Kurtosis, Min and Max
Marginal Statistics

Original

Marginals only

Full set

All except marginals
(2) Coefficient correlation

It captures periodic or globally oriented structure (within a neighborhood size, e.g. 9 pixels). The local correlation of each subband. It characterizes the salient spatial frequencies and the regularity of the texture, as represented by periodic or globally oriented structure.
Raw coefficient correlation

Original

Raw corr + Marginals

Full set

All except raw corr
(3) Magnitude correlation

Capture structure (edges, bars, corners) and “second-order” textures. cross-correlation of each subband magnitudes with those of other orientations at the same scale, and cross-correlation of each subband magnitude with all orientations at a coarser scale.

Black = Cousin Cross-correlation
Red = Parent Cross-correlation
(3) Magnitude correlation
(4) Cross-scale phase statistics

Cross-scale phase statistics: Distinguishes edges from lines. Help represented gradients/lighting effects. A local representation of the phase (position), in order to represent edges and lines. Important to represent 3dimensional aspect and shadows, and more generally gradients due to lighting effects.
Portilla & Simoncelli

Heeger & Bergen

Portilla & Simoncelli
Two big families of models

II-Example-based non-parametric models
The Challenge

• Texture analysis: how to capture the essence of texture?
• Need to model the whole spectrum: from repeated to stochastic texture
• This problem is at intersection of vision, graphics, statistics, and image compression
Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt}@cs.berkeley.edu
Efros & Leung Algorithm

Synthesizing a pixel

– Search the input image for all similar neighborhoods pixels to p
Non parametric texture synthesis

finite sample image

let’s directly search the input image for all similar neighbourhoods pixels to produce a histogram for p
Growing Texture

Starting from the initial configuration, we “grow” the texture one pixel at a time.

- The size of the neighbourhood window is a parameter that specifies how stochastic (random) the user believes this texture to be.
- To grow from scratch, we use a random 3x3 patch from input image as seed.
- Pixels with most neighbors are synthesized first. If no close match can be found, the pixel is not synthesized until the end.
Neighborhood Window

input
Varying Window Size

Increasing window size
Brodatz Results

reptile skin

aluminum wire
More Brodatz Results

french canvas

rafi weave
More Results

white bread

brick wall
Failure Cases

- Growing garbage
- Verbatim copying
Hole Filling
Extrapolation
Image Quilting [Efros & Freeman]

• **Observation**: neighbor pixels are highly correlated

Idea: unit of synthesis = block

• Exactly the same but now we want $P(B|N(B))$

• Much faster: synthesize all pixels in a block at once

• Not the same as multi-scale!

http://graphics.cs.cmu.edu/people/efros/research/quilting.html
Input texture

Random placement of blocks

Neighboring blocks constrained by overlap

Minimal error boundary cut
Minimal error boundary

overlapping blocks

vertical boundary

overlap error

min. error boundary
Texture Transfer

• Take the texture from one object and “paint” it onto another object
 – This requires separating texture and shape
 – That’s HARD, but we can cheat
 – Assume we can capture shape by boundary and rough shading

• Then, just add another constraint when sampling: similarity to underlying image at that spot
parmesan + rice =
parmesan + rice =
parmesan + rice =
parmesan + rice =
Shape and Texture Synthesis
Goal of “Interpretation through synthesis”

The same idea than the texture synthesis approach:

- Represent a novel image by generating synthetic images that are as similar as possible to the target image

- Similarity is based on shape and texture (i.e. color): use of a collection of parameters that describe the image appearance (e.g. round shape, dark grey color, etc)
Pixels as Features

- A grayscale digital picture has n rows by m columns of pixels. Each pixel can have a single gray scale value (ex. 0-255 black to white).
- We can consider each pixel as a feature (or dimension) of that image.
- These features may be numerous but they are very cheap to generate.

25632 feature dimensions
Feature Extraction:
Principal Component Analysis PCA

- Use PCA to find a new set of features, from pixels, that better represents the data.

- Pick the best principal component vectors to represent the data.
What is PCA? Ex. For Faces

- An image of a face is stored as the intensity of gray level of each pixel.

- What differences are important and what are not in a set of faces? Can we reduce the dimension of the images (nb of pixels), while maintaining the “relevant” differences.

- One strategy: Principal components analysis

- By analyzing the statistical variation across different pixels in a large number of images, we can derived a more economical way to represent faces.

- Across a series of faces, there will be variation of the intensity shown in each pixel: by analyzing the pattern of correlation between the grey levels in all the different pixels across a series of faces, the principal components of this variation can be extracted.

- E.g. some men have receding hairlines, so the pixels at the upper forehead will be light (skin) while other have a full head of dark hair and the corresponding pixels may be dark.
If a set of eigenfaces is derived from a set of face images, any face can be described as an appropriate weighted sum of this set of eigenfaces for analysis.

Eigenface representation is an economic method of coding large number of faces: what is stored is 1) the eigenfaces images and 2) the weights for each individual face.

Eigenfaces method works only if faces are aligned. A possible method is 1) morph the faces to a common shape first, and 2) apply PCA. Then, analyses can be conducted both of the grey levels in the “shape-free” (morphed) images and on the shape vectors (the transformations needed to restore the original shape to the face).

Those represent the first 4 eigenfaces after all the 174 male faces were morphed to a common shape. There is no more variation around the bottom of the face. In this example, all 4 eigenfaces code aspects of hairstyle.

[Hancock et al. al.98, Vis.Res,38,22]
PCA Demo: Run pcaFaces.m
Principal Components (eigenfaces) of *Emotion* dataset
Run section 4 of pcaFaces.m
Representation in a low dimensional space
Run section 5 of pcaFace.m
Reconstruction with different # of PC
Active Appearance Model

An **Active Appearance Model** (AAM) is a computer vision algorithm for matching a statistical model of object shape and appearance (texture) to a new image.

They are built during a training phase. A set of images together with coordinates of landmarks, that appear in all of the images is provided by the training supervisor.

A statistical model of object appearance can be matched to an image in two steps

- (1) represent the shape of the object
- (2) represent the texture of the object

Active Appearance Models

- Take a set of similar images
- Label corresponding landmark points in each image
- Warp images onto the mean shape to get shape-free texture
- Do PCA separately on shapes and textures . . .
Active Appearance Models

- Do more PCA on combined shape+texture coefficients
- Results:
 - Learn interesting things about the distribution of shapes/textures in the object class and how they co-vary
 - Find landmark points in novel images

Principal components of combined shape+texture (first 4 components, ±3 sd)
Analysis by synthesis

Ingredients:

1) A large database of annotated objects.

2) Synthesis method for generation of photo-realistic images from model parameters.

3) Analysis: extraction of model parameters from images.

Goal: Allow a prototype to vary according to some physical model
I- Robot training database

Labeling the training data set is step 1

RoboFaces’s parameters

AAM/labeling.m and demowarp.m
II- Image Warping

• Synthesis method for generation of photo-realistic images from model parameters

• The main building block of AAM is the image warping procedure.

• It is a function that applies a deformation to an image given a set of corresponding points:

AAM/labeling.m and demowarp.m
The Matlab implementation is limited to convex objects but this is good enough for faces.

\[\text{ImageWarp} \]

This function is used during the iterations of the AAM.
We warp a "real" face into the roboFaces in order to have more realistic images. We have same modes of variation.
III- Appearance model

- Each image is represented as (1) a collection of correspondence points (shape) and (2) a texture image normalized in shape.

1 - Shape information (texture free)

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 ... \\
 x_i
\end{pmatrix}
\]

2 - Texture information (shape free)

\[
\text{Original image} \quad \xrightarrow{\text{ImageWarp}} \quad \text{Mean shape} \quad \text{zeros} \quad \text{shape} \quad \text{Original image}
\]

- 2 - Shape normalization is obtained by warping the image into the mean shape of the training database.

\[
\text{Shape free texture} = \text{ImageWarp} \left(\begin{pmatrix}
 x_1 \\
 x_2 \\
 ... \\
 x_i
\end{pmatrix}, \begin{pmatrix}
 \text{zeros} \\
 \text{shape}
\end{pmatrix}, \text{Original image} \right)
\]
1 - Shape model

- PCA of shape information for the training database:

\[
\text{Shape} = \text{Mean shape} + s_1 \cdot \text{PC}_1 + s_2 \cdot \text{PC}_2 + s_3 \cdot \text{PC}_3 + \ldots
\]

- Each shape can be decomposed as:
2 - Texture model

• PCA of texture information for the training database: The PCA is done on the shape free images

PC1 PC2 PC3

PC4 PC5 PC6

• Each texture (shape free) can be decomposed as:

Shape free texture = Mean texture + t1 + t2 + t3
Summary of Appearance Model of one image

A set of model parameters encode shape and gray level variation learned from a training set.

$$\text{Original image} = \text{ImageWarp} \left(\begin{array}{c}
\text{shape} \\
\text{zeros} \\
\text{Mean shape} \\
\text{Shape free texture}
\end{array} \right)$$
Active Appearance Model Search

Given a “face” the model has to build an appearance model (shape + texture) that reproduces the original image.

This is done in an iterative procedure that tries to minimize the reconstruction error.
The algorithm adjusts the points of the shape and texture templates and propose a new Model template. This template is the goal of the AAM Algorithm: retrieve the Red points. AAM/learnererror.m
Two parts of the iterative procedure

1) given a set of shape parameters, warp input image into its shape free template

\[= \text{ImageWarp} (\text{zeros}, \text{estimated shape}, \text{Input Image}) \]

Result of the warping

2) measure the residual image and correct the appearance model.

The residual is function of errors in both shape and texture parameters
Learning to correct model parameters

\[
\begin{pmatrix}
\Delta s \\
\Delta t
\end{pmatrix}
= F \begin{pmatrix}
\text{Column vector}
\end{pmatrix}
- t_i
= \begin{pmatrix}
\text{Matrix A}
\end{pmatrix}
\]

Linear approximation:

\[
\begin{pmatrix}
\Delta s \\
\Delta t
\end{pmatrix}
= A
\]

Matrix A is learned by adding perturbations to the parameters of the training set. The residual corresponds to the difference between the image obtained with the real parameters and the one perturbed.
Learning to correct shape parameters

Shape parameters: $$\Delta s = A_s$$

Each row of $$A_s$$ describes how the residual contributes to each shape mode:
Learning to correct texture parameters

Texture parameters: $\Delta t = A_t$

Each row of A_t describes how the residual contributes to each texture mode:
Results

Input image

Iter = 1

Model

5

Shape

10

Residual

100

Convergence after 50 iterations

Convergence after 50 iterations

AAM/detection.m
Even when the images have real parameters that deviate from the distribution of the training set, the algorithm seems to converge:
Adding priors to possible appearance parameters may prevent this.
Shape-free “animals”

• Obtained by warping each animal’s shape onto the mean shape