6.819 / 6.869: Advances in Computer Vision

Image Features:

Harris detector & SIFT

Instructor: Aude Oliva

Lecture TR 9:30AM – 11:00AM
(Room 34-101)

Website: http://6.869.csail.mit.edu/fa15/
Finding the same thing across images

Instances Find these two objects

Categories Find a bottle:
Finding similar instances

SIFT: Scale-Invariant Feature Transform (Lowe, 1999)

Gist: Grid of gabor filters (Oliva & Torralba, 2001)

HOG: Histograms of oriented gradients (Dalal & Triggs CVPR 05)

DPM: Deformable Part Models (Felzenszwalb, McAllester, Ramanan, 2008)
Goal: Find the same patch

Task: find the most similar patch in a second image
Not all patches are created equal

Intuition: this would be a good patch for matching, since it is very distinctive (there is only one patch in the second frame that looks similar)
Not all patches are created equal

Intuition: this would be a bad patch for matching, since it is **not** very distinctive (there are many similar patches in the second frame)
Building a Panorama

How do we build a panorama?

• We need to match (align) images
Matching with Features

Detect feature points in both images
Matching with Features

Detect feature points in both images
Find corresponding pairs
Matching with Features

• Detect feature points in both images
• Find corresponding pairs
• Use these matching pairs to align images - the required mapping is called a homography.
Matching with Features

• Problem 1:
 – Detect the same point independently in both images

counter-example:

no chance to match!

We need a repeatable detector
Matching with Features

• Problem 2:
 – For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor
Preview

• Detector: detect same scene points independently in both images
• Descriptor: encode local neighboring window
• Correspondence: find most similar descriptor in other image

Note: here viewpoint is different, not panorama
Basic Ideas of Corner Points

Junctions and Corners: they are the most stable features over changes in viewpoint.

Intuitively, there is a large variations in the neighborhood of the point in all directions.

We should easily recognize the point by looking at intensity values within a small window.

Shifting the window in any direction should yield a large change in appearance.
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Harris corner detector: The Basic Idea

• We should easily localize the point by looking through a small window

• Shifting a window in any direction should give a large change in pixels intensities in window – makes location precisely define
Window-averaged squared change of intensity induced by shifting the image data by \([u,v]\):

\[
E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2
\]

Window function \(w(x,y) = \)

- 1 in window, 0 outside
- Gaussian

For nearly constant patches, this will be near 0. For very distinctive patches, this will be larger. Hence... we want patches where \(E(u,v)\) is LARGE.
Intuitive way to understand Harris
Plotting Derivatives as 2D points

The distribution of the x and y derivatives is very different for all three types of patches.
Fitting ellipses to each set of points

The distribution of x and y derivatives can be characterized by the shape and size of the principal component ellipse.

- **Corner**: $\lambda_1 \sim \lambda_2 = \text{large}$
- **Flat**: $\lambda_1 \sim \lambda_2 = \text{small}$
- **Linear Edge**: $\lambda_1 \text{ large}; \lambda_2 = \text{small}$
Classification via Eigenvalues

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are small; E is almost constant in all directions
- $\lambda_2 \gg \lambda_1$, “Edge”
 - λ_1 and λ_2 are large.
 - $\lambda_1 \sim \lambda_2$;
 - E increases in all directions
- “Corner”
- “Flat” region
- $\lambda_1 \gg \lambda_2$, “Edge”
Selecting Good Features

Image patch
(contrast auto-scaled)

Error surface
(vertical scale exaggerated relative to previous plots)

small λ_1, small λ_2
Selecting Good Features

λ_1 and λ_2 are large

Image patch

Error surface

12×10^5
Selecting Good Features

large λ_1, small λ_2
Harris Detector: Workflow
Harris Detector: Workflow

Compute corner response R
Harris Detector: Workflow

Find points with large corner response: \(R > \text{threshold} \)
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
Models of Image Change

• Geometry
 – Rotation
 – Similarity (rotation + uniform scale)
 – Affine (scale dependent on direction)
 valid for: orthographic camera, locally planar object

• Photometry
 – Affine intensity change \(\text{I} \rightarrow a \text{I} + b \)
Harris Detector: Some Properties

- Rotation invariance?
Harris Detector: Some Properties

- **Rotation invariance**

 Ellipse rotates but its shape (i.e. eigenvalues) remains the same.

 Corner response R is invariant to image rotation.
Harris Detector: Some Properties

- Partial invariance to additive and multiplicative intensity changes

 ✓ Only derivatives are used => invariance to intensity shift \(I \rightarrow I + b \)

 ✓ Intensity scaling: \(I \rightarrow a I \) fine, except for the threshold that’s used to specify when \(R \) is large enough.
Harris Detector: Some Properties

• Invariant to image scale?

image

zoomed image
Harris Detector: Some Properties

• Not invariant to image scale!

All points will be classified as edges

Corner!
Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

The features look the same to these two operators.
Finding same instance

Vision tasks such as stereo and motion estimation require finding corresponding features across two or more views.

- Harris corner detector
- finding a characteristic scale: DoG or Laplacian of Gaussian

SIFT: Scale-Invariant Feature Transform
Scale-Invariant Feature Transform

• Generates image features, “keypoints”
 – invariant to image scaling and rotation
 – partially invariant to change in illumination and 3D camera viewpoint
 – many can be extracted from typical images
 – highly distinctive

SIFT [Lowe]
SIFT Algorithm Stages

- **Scale-space Extrema Detection**
 - Uses difference-of-Gaussian function
- **Keypoint Localization**
 - Sub-pixel location and scale fit to a model
- **Orientation assignment**
 - 1 or more for each keypoint
- **Keypoint descriptor**
 - Created from local image gradients

See document: SIFT-tutorial.pdf
Scale Space

\[L(x, y, \sigma) = G(x, y, \sigma) \ast I(x, y) \]

\[G(x, y, \sigma) = \frac{1}{2\pi} e^{-(x^2+y^2)/2\sigma^2} \]
Difference Of Gaussian Pyramid

\[
D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y) \\
= L(x, y, k\sigma) - L(x, y, \sigma)
\]
Difference Of Gaussian Pyramid

\[D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) \ast I(x, y) \]

\[= L(x, y, k\sigma) - L(x, y, \sigma) \]
Extrema Detection

• Keypoint must be a minima or maxima of its 8 neighbors at its scale and the 9 neighbors above and 9 below.
Extrema Detection
Keypoint Localization and Refinement

Throw out points that have low contrast
Remove points that are too “edgy”.

- Keypoint Localization and Refinement
 - Remove points with low contrast
 - Remove points that are too “edgy”
Keypoint Localization and Refinement
Orientation Assignment

• Create histogram of local gradient directions computed at selected scale
• Assign canonical orientation at peak of smoothed histogram
• Each keypoint specifies stable 2D coordinates \((x, y, \text{scale}, \text{orientation})\)
3D object recognition example
SIFT Review

• Generates image features, “keypoints”
 – invariant to image scaling and rotation
 – partially invariant to change in illumination
 and 3D camera viewpoint
 – many can be extracted from typical images

• Each “keypoint” has an associated descriptor that is
 – Relative to keypoint orientation and scale
 – Is robust to small affine transformations.
Download MATLAB Toolbox for the LabelMe Image Database

The LabelMe Matlab toolbox is designed to allow you to download and interact with the images and annotations in the LabelMe database. The toolbox contains functions for plotting and querying the annotations, computing statistics, dealing with synonyms, etc. This page gives a step-by-step overview of the main toolbox functionalities.

Download

There are two ways to download the Matlab toolbox:

1. **Github repository**

 We maintain the latest version of the toolbox on github. You can then run "git clone https://github.com/CSAILVision/" version by running "git pull" from inside the project.

2. **Zip file**

 The zip file is a snapshot of the latest source code or

SIFT descriptor

Here we provide a function to compute dense SIFT features as described in:

The function `LMdensedesSift.m` computes a SIFT descriptor at each pixel location (in this implementation there is no ROI detection as in the original definition by D. Lowe). This function is a modification of the code provided by S. Lazebnik. The current implementation uses convolutions. Here there is an example of how to compute the dense SIFT descriptors for an image and to visualize the descriptors as described in Liu et al 09.

```matlab
% demo SIFT using LabelMe toolbox

img = imread('demo1.jpg');
img = imresize(img, s, 'bilinear');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIFT parameters:
SIFTparam.grid_spacing = 1;  % distance between grid centers
SIFTparam.patch_size = 16;  % size of patch from which to compute SIFT descriptor (it has to be a factor of 4)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CONSTANTS (you can not change this)

w = SIFTparam.patch_size/2;  % boundary

% COMPUTE SIFT: the output is a matrix [nrows x ncols x 128]
SIFT = LMdensedesSift(img, '', SIFTparam);

figure
subplot(121)
imshow(img(wend-w+1, wend-w+1,:),)
title('cropped image')
subplot(122)
exshowColorSIFT(SIFT)
title('SIFT color coded')
```
Uses for feature point detectors and descriptors in computer vision and graphics.

– Image alignment and building panoramas
– 3D reconstruction
– Motion tracking
– Object and scene recognition
– Indexing and database retrieval
– Robot navigation
– … other
a) Camera translation

Original images

Aligned and composite image

Masks and seams between images

Final sequence

b) Camera rotation

Original images

Final sequence
Finding similar instances

Gist: Grid of gabor filters (Oliva & Torralba, 2001)

SIFT: Scale-Invariant Feature Transform (Lowe, 1999)

HOG: Histograms of oriented gradients (Dalal & Triggs CVPR 05)

DPM: Deformable Part Models (Felzenszwalb, McAllester, Ramanan, 2008)