
6.819 / 6.869:  
Advances in Computer Vision 

Basics of Image Processing III: 

Image Operations for ConvNet 
& Image/Dataset Statistics 

Website:  
http://6.869.csail.mit.edu/fa15/  

Instructor: Aude Oliva 

Lecture TR 9:30AM – 11:00AM  
(Room 34-101)  

Early vision: Image Features

Histogram of Oriented Gradients (HOG)

Carl Vondrick



Thought experiment: let’s build a person detector (HW4).  
Why is this difficult? 

variation in pose, viewpointvariation in appearance

occlusion & clutter

Classic “nuisance factors” for general object recognition

variation in illumination

Slide credit: 
Deva Ramanan



Image intensities

Is this a good enough feature?
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Main idea: use “invariant features”

edges!
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Image features:
Image features - 

histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)
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• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Bin gradients from 8x8 pixel 
neighborhoods into 9 orientations

(Dalal & Triggs 05)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Histograms of oriented gradients (HOG)
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(Simplified) HOG constructionImage Gradients Cells Blocks Descriptor 

!  Convolve the image with discrete derivative mask 
!  [-1, 0, 1] 
!  [-1, 0, 1]T 

Original Image 

X gradient 

Y gradient 

[-1,1] 
[-1,1]’

Y

X
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histograms of gradients 

•Our implementation of DalalTriggs HOG features
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Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)
Quantize each gradient into one of no = 9 orientations

Do we want to put gradients 180 apart in same or different bins?

What should be the angle range of each bin?

[H x W] ->[H x W x 9]
“orientation channel array”
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Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Get some spatial invariance (sort of)…
Count up orientation bins over 8x8 pixel neighborhoods. (im2col)

[H x W x 9] - > [H/8 x W/8 x 9]
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Re-normalize 9 numbers so that their sum is 1

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features
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• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Get some lighting invariance (sort of)…

[H/8 x W/8 x 9] - > [H/8 x W/8 x 9]
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Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features
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Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Bin gradients from 8x8 pixel 
neighborhoods into 9 orientations

Image [H x W] -> Image Descriptor = [H/8 x W/8 x 9]

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Histograms of oriented gradients (HOG)
(note that actual HOG construction is a bit more intricate)

1. Work with raw gradients instead of thresholded gradients 
2. Normalize with respect to histograms of 2x2 neighborhoods
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Template classifiers

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

w·x > 0

w

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

w = weights for orientation and spatial bins

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

neg

pos
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Search over scales

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Slide credit: 
Deva Ramanan



Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

within-class between-class
activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . . M}

Assume we have K object models. We write yi �
{0 . . . K} for the label of the ith window, where the 0 la-

Pedestrian detection

Monday, June 10, 2013
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Face detection

template

Monday, June 10, 2013
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Train “sub-category” templates for each type of pose, body-shape, etc.

Object subcategories

Monday, June 10, 2013
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We need lots of templates, and will likely have little data of ‘yoga twist’ poses

Object subcategories

Monday, June 10, 2013
Slide credit: Deva Ramanan
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Left knee wrt hip Left foot wrt knee Left hand wrt elbowNeck wrt Head Left elbow wrt shoulder

Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

������ ������ ������ �

�
Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

Monday, June 10, 2013

Slide credit: 
Deva Ramanan



History over 40 years

Model encodes local appearance + pairwise geometry 

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Pictorial 
structures

Pictorial Structures (Fischler & Elschlager 73, Felzenswalb and Huttenlocher 00) 
Cardboard People (Yu et al 96) 

Body Plans (Forsyth & Fleck 97)  
Active Appearance Models (Cootes & Taylor 98) 

Constellation Models (Burl et all 98, Fergus et al 03)

Deformable 
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Local evidence + global decision

• Parts have a match quality at each image location.

• Local evidence is noisy.

- Parts are detected in the context of the whole model.

part

test image match quality

Original PS paper used a vector of filter outputs (“jet”) to define feature
Turns out that HOG works much better
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li = (xi, yi)

S(l) =
X

i2V

Local(li) +
X

ij2E

Pair(li, lj)
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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K parts with L possible positions: efficiently score all LK configurations

Scanning window detection
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SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Facial analysis

About as accurate as Google Picassa
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Example object models

Figure 5. Some results from the PASCAL 2007 dataset. Each row shows detections using a model for a specific class (Person, Bottle, Car,
Sofa, Bicycle, Horse). The first three columns show correct detections while the last column shows false positives. Our system is able to
detect objects over a wide range of scales (such as the cars) and poses (such as the horses). The system can also detect partially occluded
objects such as a person behind a bush. Note how the false detections are often quite reasonable, for example detecting a bus with the car
model, a bicycle sign with the bicycle model, or a dog with the horse model. In general the part filters represent meaningful object parts
that are well localized in each detection such as the head in the person model.
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36

person

car

horse

sofa

bottle

cat

Fig. 10. Examples of high-scoring detections on the PASCAL 2007 dataset. The framed images (last two in each row) illustrate

false positives for each category. Many false positives (such as for person and cat) are due to the bounding box scoring criteria.
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Code

http://www.cs.berkeley.edu/~rbg/latent/index.html

• HOG feature extraction 
• DPM training and inference code 
• Object detection models for several categories 
• …but not state-of-the-art anymore!

http://www.cs.berkeley.edu/~rbg/latent/index.html


Everingham et al.
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What information does HOG have?
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HOG



Image

What information does HOG have?
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What information is lost?
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What information is lost?
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What information is lost?



Method: Paired Dictionary
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Human Vision HOG Vision

vs
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Image HOG SVM
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The HOGgles Challenge

Clap your hands when you see a person



Visualizing Learned Models

Car Person Bottle Bicycle

Motorbike Chair TV Horse



Car

Why did the detector fail?



Code

mit.edu/hoggles

• HOG feature extraction 
• Code to visualize HOG: vis = invertHOG(feat) 
• Training code to create your own visualizations

http://mit.edu/hoggles


[Russakovsky, et al.]



[Russakovsky, et al.]

due to 
ConvNets




