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From Pixels to Perception:
Mid-level operations of Segmentation and
Grouping
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Emergence

http://en.wikipedia.org/wiki/Gestalt psychology







l. Edges



What is an edge'?

surface normal discontinuity

<« s— depth discontinuity

surface color discontinuity

44—~ illumination discontinuity



Finding edges: Computing derivatives

image

intensity function
(along horizontal scanline)

first derivative

N

\ |

edges correspond to
extrema of derivative




Canny edge detector

il

1. Filter image with derivative of Gaussian

edge(image,’canny’)

2. Find magnitude and orientation of gradient
3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them




1: Filter Image with derivatives of Gaussian
2D edge detection filters

derivative of Gaussian (x)

Gaussian P
1 9,
h N = 20 lo’(‘u.} ’U)
o(u,v) 271'02.e ox




Gaussian filters

pixels (O =10 pixels (O =30 pixels

Convolution with self is anothler Gaussian

K-

— Convolving two times with Gaussian kernel of
width 0 = convolving once with kernel of width

oV/2




1: Filter Image with derivatives of Gaussian
2D edge detection filters

1 pixel 3 pixels / pixels

Smoothing filters with different scales



The Sobel Operator: A common
approximation of derivative of gaussian

« Common approximation of derivative of Gaussian
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e The standard defn. of the Sobel operator omits the 1/8 term

— doesn’t make a difference for edge detection
— the 1/8 term is needed to get the right gradient value
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Canny edge detector

il

1. Filter image with derivative of Gaussian

edge(image,’canny’)

2. Find magnitude and orientation of gradient
3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them




2: Gradient: Find edge strength (magnitude)
and direction (angle) of gradient

h (x,y) = Py

oh(x,y) -x - +§2

h (x,y)=
(X)) Py
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Magnitude: hx(x,y)2+hy(x,y)2 Edge strength

Angle: arctan(

h,(x,y)

h (x,y)

) Edge normal



Image Gradient: gradient points in the direction of most rapid

increase in intensity
L s =155

vf=|3.0]
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Can think of it as the slope of a 3D surface

Gradient at a single point (x,y) is a vector
* Direction is the direction of maximum slope:

0 =tan~1 (5L/9)

* Length is the magnitude (steepness) of the slope

1Vl = /G + &)
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Original image

3D plot of lu
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Gradient magnitudes at scale 1 Gradient magnitudes at scale 2

Issues:
1) The gradient magnitude at different scales is different; which should
we choose?
2) The gradient magnitude is large along thick trails; how do we identify
the significant points?
3) How do we link the relevant points up into curves?
4) Noise.

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.



Canny edge detector

il

1. Filter image with derivative of Gaussian

edge(image,’canny’)

2. Find magnitude and orientation of gradient
3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them




an appropriate 09
cutting direction 0
the peak in 0

that direction i

0.3
0

T VL L

Gradient magnitude is
large

iisslsisist=rel
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il |2 [l | |
0 5 10 15 20 25 30 35 40 45

Goal: mark points along the curve where the magnitude is biggest.
How? looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve.
There are then two algorithmic issues:

-at which point is the maximum

-where is the next one?

Forsyth, 2002



Non maximum suppression: check if pixel is local maximum

along gradient direction

® ® ® O © ® ® [ ] e
P

r

® ® q @ ® @ O
Gradient Gradient
® ® O o ® T mrme e o ® o O
r

® o ® ® ® ® @ @

At g, we have a maximum if the Predicting the next edge point: Assume the
value is larger than those at marked point is an edge point. Then we
both p and at r. construct the tangent to the edge curve

(which is normal to the gradient at that

point) and use this to predict the next

points (here either r or s).

Interpolate between p and rto
get these values.



Examples:
Non-Maximum Suppression

Non-maxima
suppressed

Original image Gradient magnitude

But some edges are broken



Canny edge detector

il

1. Filter image with derivative of Gaussian

edge(image,’canny’)

2. Find magnitude and orientation of gradient
3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them




Closing edge gaps

e Check that maximum value of gradient
value is sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a
low threshold to continue them.

—t
—

Gradient magnitude

|

Not an edge G Labeled as edge — Pixel number in linked list

along gradient maxima




Example: Canny Edge Detection

gap is gone

5 Strong +
connected
weak edges

Original
Image

ot

courtesy of G. Loy
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Segmentat




1.1 Bottom-up segmentation

* Group together similar-looking pixels
— "Bottom-up” process
— Unsupervised

* Bottom-up segmentation

W T e

— Clustering
— Mean shift
— Graph-based

"superpixels”



Method 1: Clustering

» Cluster similar pixels (features) together

Source: K. Grauman



Segmentation as clustering

o Cluster together (pixels, tokens, etc.) that belong
together...

e Agglomerative clustering
— attach closest to cluster it is closest to
— repeat
e Divisive clustering
— split cluster along best boundary
— repeat

e Dendrograms
— yield a picture of output as clustering process continues

Chapter — Forsyth & Ponce



A simple segmentation algorithm

e Each pixel is described by a vector

z=1[r,g,blor[Yuyv], ...

® Run a clustering algorithm (e.g. Kmeans)
using some distance between pixels:

D(pixel ;, pixel )) = Il z; - z 112



Dendrogram obtained by

Data set agglomerative clustering
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e K-means clustering based on intensity or
color is essentially vector quantization of
the image attributes

— Clusters don’t have to be spatially coherent

Image Intensity-based clusters ~ Color-based clusters




K-means using
color alone

(k=11)




Including spatial relationships

Augment data to be clustered with spatial

coordinates.

(1)

N

~color coordinates
(or r,g,b)

~spatial coordinates

» Cluster similar pixels (features) together

(e wmA )
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e Clustering based on (r,g,b,x,y) values
enforces more spatial coherence

K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing or useful segmentation

Hard to pick K...



K-Means for segmentation
® Pros
— Very simple method

— Converges to a local minimum of the error
function

outher

e Cons
— Memory-intensive

—_ Need to piCk K (A): Undesirable clusters
— Sensitive to initialization|/™

outher

[+
Q 0.0
— Sensitive to outliers o9 ©, 0 e

— Only tinds “spherical” (B): Idealcluster
clusters

Slide credit: S. Lazebnik



Method 2: Mean shift clustering

* An advanced and versatile technique for
clustering-based segmentation

Segmented "landscape 1" \ Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html|

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.




Mean shift algorithm

The mean shift algorithm seeks modes or local
maxima of density in the feature space

Feature space
(L*u*v* color values)

50

-50
100~

80

100




Mean Shift Algorithm

Mean Shift Algorithm
1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

Two issues:

(1) Kernel to interpolate
density based on sample
positions.

(2) Gradient ascent to mode.



Search

o window
Center of
o mass
o
o ®
o
o
o
o
\ Mean Shift
® ) vector

Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel



Mean shift clustering

e Cluster: all data points in the attraction
basin of a mode

e Attraction basin: the region for which all
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel



Mean Shift Segmentation

Convert the image into tokens (via color, gradients, texture measures etc).
Choose initial search window locations uniformly in the data.
Compute the mean shift window location for each initial position.

Merge windows that end up on the same “peak” or mode.
The data these merged windows traversed are clustered together.

e wN =
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Pixels in L*u* space Clustering results after
~160 mean shift procedures

100

NORMALIZED DENSITY
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=

Corresponding trajectories with peaks marked as red dots
Szeliski — Chapter 5 - Segmentation, 5.3 Mean shift



Window in image domain
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both image and range domain
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Mean Shift color & spatial Segmentation




Mean shift pros and cons

e Pros

— Clusters are places where data points tend to be
close together

— Does not assume spherical clusters

— Just a single parameter (window size)
— Finds variable number of modes

— Robust to outliers

e Cons
— Output depends on window size
— Computationally expensive
— Does not scale well with dimension of feature space

Slide credit: S. Lazebnik



Method 3: Graph-Theoretic Image
Segmentation

Build a weighted graph G=(V,E) from image
V: image pixels

E: connections
between pairs of
nearby pixels

W, . probability that 1 &

belong to the same

A different way of thinking about segmentation... .
region

Segmentation = graph partition



Segmentation by graph cut

' 3

e Fully connected graph (node for every pixel i,))
e Edge/link between every pair of pixels: p,q
e Fach edge is weighted by the affinity or similarity of the two nodes:

— cost ¢, for each link: c,, measures similarity (or affinity)

Pq
— similarity is inversely proportional to difference in color and position



Segmentation by graph cut

* Break Graph into Segments
— Delete links that cross between segments

— Easiest to break links that have low cost (similarity or
affinity)
* similar pixels should be in the same segments
e dissimilar pixels should be in different segments

Source: S. Seitz



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectorsofdata ©® &

2a- Build a similarity graph

2b- Build a similarity/affinity matrix

Similarities

v oA
7

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors




1- Vectors of data

We represent each pixel by a feature vector x, and define a distance function
appropriate for this feature representation (e.g. euclidean distance).

Features can be brightness value, color—- RGB, L*u*v; texton histogram, etc-
and calculate distances between vectors (e.g. Euclidean distance)

rigp §
%(JI

in o n
BN

<XODOAD
°

G=12

X=100
Y=200

186
181
178
194
201
188
172
157
163

187 179 176 176
180 169 165 165
177 171 172 172
178 178 184 188
193 191 195 200
201 199 201 205
186 183 185 191
171 172 174 175
158 163 164 162
163 165 165 163

=z /7 I\ s

Textons



Measuring affinity

* We represent each pixel by a feature
vector x, and define a distance function
appropriate for this feature representation

 Then we can convert the distance
between two feature vectors into an affinity

with the help of a generalized Gaussian
kernel:

1

exp| —
P 20

- 2
—dist(x,,Xx )

Slide credit: S. Lazebnik



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

... [ )
1- Get vectors of data .. °°

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors



2a- What is a graph?

a b c d e

5 a0 1 0 0 1
.b b11 0 0 0 0

-0 c|0 0 0 0 1
. d10 0 0 0 1

d el O 1 1 0

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



2a- What is a weighted graph?

Affinity Matrix represents the weighted links

a b c d e
1.1 300 |
O 1 4 0.2 |b
w= | 34 1T .67
o0 6 1 1 |d
0.2 .7 1T 1 [|e
Diagonal: each point with itself is 1 VVij :;_orobablhty that1 &J

Strong links/edges
Weak links/edges belong to the same

No links/edges connected .
region

i,j are the pixels in the image

See Forsyth-Ponce chapter



&% . gﬁ;& 1‘*.,3_
o5 . . . . "' %' B
ﬁ Slmllaﬂty gra ph construction %@%f

;2""
Compactness

q‘? oF g ¢

Connectivity

Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

|5137j_33j”2
— 2
Wij=e 2

See Forsyth-Ponce chapter

» Controls size of neighborhood



2b- Building Aftinity Matrix

A weighted graph Weight matrix associated with the graph
0.1 : (larger values are lighter)
2 3 2
2 4
> /
1
2 0.1
1
2 3 2 A cut of the graph: two tightly linked
2 4 components. This cut decomposes
S 7 the graph’s matrix into two main
1 blocks on the diagonal

We can do segmentation by finding the minimum cut in a graph.



Graph terminology

20 40 60 80 100 120 140

Weight matrix associated with the graph
(larger values are lighter)

Slides from Jianbo Shi



Aftinity matrix of a natural image

N pixels

Similarity of image pixels to selected pixel
Brighter means more similar

M pixels

N*M pixels

N*M pixels



Degree of node:

20

Graph terminology

d, = E Wi/
7

Slides from Jianbo Shi



Volume of set:

vol(4) = Edl.,A CV
I€A4

20

10

Graph terminology
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Slides from Jianbo Shi



Graph terminology

Cuts in a graph:

T T T T T T
31
201 E
+ L 4
. + | 09
+ * + + + +
+« * + * 45 - Jos
R, F
10 * 4 + A .
+ + + N + + o 40.7
+
ff + + 4+ - o6
+
+
o™ t& S Y]
L + 4’*‘, R
+ + +
F ot + + e &#
-10} * A
iy + +
+ + + +
+ * o+
-+ +
-20p 1 1 L I 1 I ]
-10 0 10 20 30 40

Slides from Jianbo Shi



Scale affects affinity
W, = exp(-ll z -z ||*/ 0°)

* Small a: group only nearby points

. Dataset of 4 groups
* Large 0: group far-away points o 10 s drr
distribution with four
. different means

0=.2

e,

o
o
 F Tk

affinity

4 o,
bR "
o,
F . $00cos TN g f i i %
0 10 20 30 40 50 60 70 80 30 100

distance?

See Forsyth-Ponce chapter



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

... [ )
1- Get vectors of data .. °°

2a- Build a similarity graph

Zb‘ BU||d a S|m||ar|ty matrIX Similarities

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors



Spectral Clustering

oo o, « .
“‘ 7 / cluster

Similarities Affinity Matrix

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University



Spectral clustering: Using
Eigenvalues of the matrix

* spectral clustering uses the eigenvalues of the similarity/affinity
matrix of the data to perform dimensionality reduction before
clustering in fewer dimensions

Affinity matrix

Reorganized Affinity matrix

w(i,j)> distance node i to node j



What are eigenvectors?

Eigenvectors represent the dimensions of data
Eigenvalues are the length of eigenvectors

largest eigenvalue

* N : =1
smallest eigenvalue

6 - 4
2

0.
2 L J 4 (3 L] "0
: ~ No relationship between variables

0 4 6 8 10
In a case of two variables, y o
Eigenvectors are the two lines o largest eigenvalue
. 6 - 7 A - = DX
drawn in the scatterplot ‘ / smallest eigenvalue
/:’:’,’
P
0 {”

A linear relationship between variables



Eigenvectors example

Histogram of the sample

Al

0
Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4

L= O N L = =

~0.0707 005} . 005} | [ oos|
R A AR
-0.05} N - | -005
-0.0707} 0.05 A\ )
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

1st Eigenvector is the all ones vector 1 (if graph is connected)
e2nd Eigenvector thresholded at O separates first two clusters from last two
e k-means clustering of the 4 eigenvectors identifies all 4 clusters



Spectral Clustering pipeline

N o0
N
“y "
b '.’0« - ;"
- «d ;l
w”v"'n_.u.' Xt

Data are projected into a lower-dimensional space (spectral/eigenvector domain)

where they are easily separable

Given number k of clusters, compute the first k
eigenvectors, V1, ..., Vk of the affinity matrix M
Build the matrix V with the eigenvectors as columns
Interpret the rows of V as new data points Zi
Cluster the points Zi with the k-means algorithms

- X(i)‘X(/)H2
W, =e o Matrix V after
’ .. . Spectral Clusterin
N Affinity matrix M P 9
4’.':.. i % %::
u:- Nty s
- =

Zi | vii vi2 w3

Z n Vi Vn2 Vi3

Dimensionality reduction
nxn-=>nxk



Eigenvectors and blocks

e Block weight matrices have block eigenvectors:

A= 2 Ay= 2 Ay= 0
1l1lo]o 71 0 Ay= 0
1l1]lo]o | 71
eigensolver
010 1 1 0 71
0Ol O 1 1 71

Near-block matrices have near-block eigenvectors:

1|1 ].2
1|1 |0]-2
2 1 | 1
01-21111

eigensolver

A= 2.02

1

.69

14

0

el

A= 2.02

0

_.14

.69

71

e?

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University



Spectral Space

Can put items into blocks by eigenvectors:

1|1 ].2
1 -2
2 1 |1
2101 11

2|1
2 1
1 |-2
1 |-2]1

1
69
14

€

-.1
.69
1

€

1

14
.69

€

69
_.14
71

€7

=

Clusters clear regardless of row ordering:

=

&

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University
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Eigenvector (larggsf) , *

v
& FEOY 0 T LT

10

15

The eigenvector corresponding to the largest eigenvalue
of the affinity matrix. Most values are small, but some,
corresponding to the elements of the main cluster, are large

0.05

Affinity matrix

0.05 045 ok . Ry
0 04 res: .

005 | 035 -0.05 |

—01} 03} -01

~015 | 025 | 3 S -

Rec | 0 02}
geir 0;? I ~025

-03 | 1 g
~035} 005 | Pige = -03 | >,

-04 | () [reasnsnves PR -0.35 : : e ‘
A TN P T UL 5 10 1520 5 A0 e A0, 05 10 15 20 25 N B

The 3 next eigenvectors corresponding to the next 3 largest eigenvalues
of the affinity matrix. Most values are small but for (disjoint) sets of elements

the values are large. This follows from the block structure of the affinity matrix

See Forsyth Ponce, Chapter 14



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

... [ )
1- Get vectors of data .. °°

2a- Build a similarity graph

Zb‘ BU||d a S|m||ar|ty matrIX Similarities

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors




Clustering — How many groups are
there?

n LA Ll .l -
li" - -=.
- : n l‘s..-.. (| u
fl i.‘h J o ] "y ..
Sy -.l ‘ I.I l‘ .
n . m" an - =l [
. M . N
1 L ‘I n o
I-.. [ | | -l? [ | =..
m " .‘
\.. . l.n.l
" [ -I...

Out of the various possible partitions, which is the correct one?



What does the Affinity Matrix Look Like?

50
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150

200
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The Eigenvectors and the Clusters:

Step-Function like

behavior preferred! 2nd Eigenvector

Makes Clustering
Easier.

1st Eigenvector

05
- y | "o 0 20 3m0 o 00 200 300
05 ] 4nd Eigenvector 5nd Eigenvector
1 - .05
1 . .
0 100 20 30

0 100 200 W 0 100 200 300



The Eigenvectors and the Clusters:

2nd Eigenvector 3nd Eigenvector

1st Eigenvector

4nd Eigenvector 5nd Eigenvector

ee nam




Clustering — Example 2

Dense
Square
Cluster

Sparse

\I Square

Cluster

Sparse
Circle
Cluster




The Affinity Matrix

50
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(3)

(6)

) (N) (9)

The eigenvectors correspond the 29 smallest to the 9™ smallest eigenvalues
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Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

... [ )
1- Get vectors of data .. °°

2a- Build a similarity graph

Zb‘ BU||d a S|m||ar|ty matrIX Similarities

3- Calculate eigenvectors

4- Cut the graph:

apply threshold to eigenvectors



Graph cut

Cuts in a graph:
cut(A,A4) = E W,

€A, jeA

*Set of edges whose removal makes a graph disconnected
eCost of a cut: sum of weights of cut edges
*A graph cut gives us a segmentation




Partition a graph with minimum cut

cut(A, B) = Z w(u, v)
uceAveB

e Cut: sum of the weight of the cut edges:
e Minimum cut is the cut of minimum weight



Normalized Cut is a better measure ..

e \We normalize by the total volume of connections
cut(A,B)  cut(A,B)

Neut(4, B) = assoc(A,V)  assoc(B,V)

cuf(A,B) . cufA,B)

N cufA,B) =
assodA, V) assodB,V)

where assoc(A, V) = ) ca ey w(u, t)



Many different methods...

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data 1- Get vectors of data
2- Build a similarity graph 2- Build normalized cost matrix
3- Calculate eigenvectors 3- Get eigenvectors with

smallest eigenvalues
4- Apply threshold to largest

eigenvectors 4- Apply threshold

Shi & Malik

.. etc



Normalized cut

— Ny Eigenvector #1 Eigenvector #2 Eigenvector #3

Eigenvector #4 Eigenvector #5 Eigenvector #5 Eigenvector #




Normalized cut




Normalized cut







1.2 Top-down Segmentation

* Separate image into coherent “things”: combining
object recognition with segmentation

— Supervised or unsupervised

e

human segmentation

Berkeley segmentation database



Aim: Given an image and object
category, to segment the object

Object
Category
Mode|

.-' ."'. W . e s .
_ ﬁ@mentation

Cow Image Segmented Cow

Segmentation should (ideally) be
* shaped like the object e.g. cow-like
* obtained efficiently in an unsupervised manner

e able to handle self-occlusion
Slide from Kumar ‘05



Examples of bottom-up segmentation

e Using Normalized Cuts, Shi & Malik, 1997

Bottom-up Top-down

SN
= 5




