

6.819 / 6.869: Advances in Computer Vision

High-level vision: Object & Scene Recognition: What are the next challenges?

Website: <u>http://6.869.csail.mit.edu/fa15/</u>

Instructor: Aude Oliva

Lecture TR 9:30AM – 11:00AM (Room 34-101)

bench: 3.0

Jitendra Trevor Darrell

Pietro Perona

Fei-Fei

Zisserman

l i

●●●●● AT&T ᅙ 6:57 PM ∦ 100% ■ places.csail.mit.edu

Predictions:

• type: outdoor

Oliva

- semantic categories: picnic_area:0.14, patio:0.12, yard:0.11, veranda:0.11, boardwalk:0.06
- scene attributes: natural light, man-made, nohorizon, soothing, foliage, trees, vegetation, warm, open area, leaves

Antonio Torralba

High Computing Visual Engine: Object recognition

Spatiotemporal map of correlations between MEG and fMRI

- RSC = Retrosplenial cortex
- PHC = Parahippocampal cortex
- LO = Lateral Occipital cortex

MEG: Time Every millisecond

PERCEPTION

fMRI: Space Each millimeter

Representational Geometry

Nikolaus Kriegeskorte (2008)

Shepard et al., 1980; Kruskal and Wish., 1978; Edelman et al. 1998; Kriegeskorte et al., 2008; Mur et al., 2009; Liu et al., 2013

Representational Geometry

"RDMs as a hub to relate different representations across sensors and models"

Time-specific fMRI searchlight analysis

A spatially unbiased view of the relations in similarity structure between MEG and fMRI

Object recognition

Spatiotemporal maps of correlations between MEG and fMRI

Visualizing model RFs & connections

Algorithmic-specific fMRI searchlight analysis

A spatially unbiased view of the relations in similarity structure between deep architectures and fMRI

Cichy, Khosla, Pantazis, Torralba, Oliva (submitted)

See also Kaligh-Razavi & Krigeskorte (2014)

Spatiotemporal map of correlations between human brain and model layers

Spatiotemporal maps of correlations between human brain and CNN layers Layer 1

Layers 1-2

Layers 2-4

Layers 5-8

places = 400

400 Categories, 10 M images

places.csail.mit.edu

Predictions:

- type: indoor
- semantic categories: coffee_shop:0.47, restaurant:0.17, cafeteria:0.08, food_court:0.06,

Predictions:

- type: indoor
- semantic categories: supermarket:0.96,

Predictions:

- type: indoor
- semantic categories: conference_center:0.51, auditorium:0.12, office:0.08,

Predictions:

- type: indoor
- semantic categories: bus_interior:0.91,

Deep architectures: Place and Object Recognition

More meaningful

Object detectors emerge within CNN trained to classify scenes, without any object supervision

