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High Computing Visual Engine:
Object recognition
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Why do we care about recognition?

Perception of function: We can perceive the 3D shape,
texture, material properties, without knowing about objects.
But, the concept of category encapsulates also information
about what can we do with those objects.

“We therefore include the perception of function as a proper —indeed, crucial- subject
for vision science”, from Vision Science, chapter 9, Palmer.




The perception of function
 Direct perception (affordances): Gibson

Flat surface
Horizontal .| Sittable
Knee-high upon

* Mediated perception (Categorization)

Flat surface .
Horizontal .| Chair ,| Sittable
Knee-high upon




Direct perception

Some aspects of an object function can be perceived
directly

* Functional form: Some forms clearly indicate to a
function (“sittable-upon”, container, cutting device, ...)

Sittable-upon gittaple-upon It does not seem easy
to sit-upon this...

Sittable-upon



Limitations of Direct Perception

Obijects of similar structure might have very different functions

ifferent func-

Figure 9.1.2 Objects with similar structure but d
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Not all functions seem to be available from direct visual information only.

The functions are the same at some level of description: we can put things
inside in both and somebody will come later to empty them. However, we
are not expected to put inside the same kinds of things...



Interactions are driven
by real-world size

o1 F R My

dy body/space bodies/spaces

A
11
!l Jl'
i
il am
i &
H
158 |
l :

1 person 1000+ people



Object representation in the brain

Regions of Interests (ROIs)
Patches of cortex with similar location and
function in everyone

Haxby, 2001




RegIOnS Of IntereSt Functionally defined for each individual

Epstein & Kanwisher (1998) Malach et al (1995)

Parahippocampal place area (PPA) Lateral Occipital Complex (LOC)
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Different cortical regions
for small and big objects

Small Objects View of the bottom surface of Whole brain analysis (n=12)
p— an “inflated” brain .
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Individual brains

Ventral Surface

Konkle & Oliva (2012). Neuron



Invariant to retinal (image) size

Konkle & Oliva (2012). Neuron




Challenges 1: view point variation
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Slides: course object recognition

Michelangelo 1475-1564 o\ : ICCV 2005




Challenges 2: illumination

slide credit: S. Ullman




Challenges 3: occlusion

Slides: course object recognition

Magritte, 1957 ICCV 2005




Challenges 4: scale

Slides: course object recognition
ICCV 2005




Challenges 5: deformation

Slides: course object recognition

ICCV 2005 Xu, Beihong 1943




Challenges 6: intra-class variation

Slides: course object recognition
ICCV 2005




Challenges 7: background clutter

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Which level of categorization
Is the right one?

Car is an object composed of:
a few doors, four wheels (not all visible at all times), a roof,
front lights, windshield

)

If you are thinking in buying a car, you might want to be a bit more specific about
your categorization.




Entry-level categories
(Jolicoeur, Gluck, Kosslyn 1984)

» Typical member of a basic-level category
are categorized at the expected level

» Atypical members tend to be classified at
a subordinate level.

An ostrich



Creation of new categories

A new class can borrow information from
similar categories




High-Powered Machine:

finding objects in context
(visual search)

Even when objects are not there...



Look for a person in the next scene
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| know where you looked
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Guidance by Target Features

Dalal & Triggs (2005) people detector




Saliency detector
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Guidance by Contextual Region




ALLERAN




| Guidance by all three sources

For people search task |




\
| \\ Scene context

Combination of
guidance sources

Global and local
image features

Attentional map

Ehinger et al (2009)



Object (target) features Model

« Dalal & Triggs (2005)
detector uses histograms
of oriented gradients

Positive Negative Average
features features gradient

|

Dalal & Triggs (2005)




The Image Classification Challenge:

1,000 object classes
.1 431 167 images

Steel drum !l Giant panda
Drumstick  pemmmemag Drumstick
Mud turtle 4  Mud turtle
e LTl ML
Russakovsky et aI arXiy, 2014

Slide from Fei-Fei Li & Andrej Karpathy
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First Saliency Model: Itti-Koch 2001

Input image
Colours
Multscale
bw-Evel feature = :zj‘m‘we’ yect
extracton
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Application: image processing




Application: image processing




Application: image processing
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Goferman, Zelnik-Manor, Tal, 2010, 2012
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Photo collaging

Smarter compression




mit saliency benchmark

mit saliency benchmark results: mit300

The following are results of models evaluated on their ability to predict ground truth human fixations on our benchmark data set containing 300 natural images with eye
tracking data from 39 observers. We post the results here and provide a way for people to submit new models for evaluation.

citations
It you use any of the results or data on this page, please cite the following:

MIT Saliency Benchmark:
keeps track of the curren

e state-of-the-art models
of saliency

300 benchmark Images (the fixations from 39 viewers per image are not public such that no model can be trained using this data set).

énisc{mit-saliency-benchma
author = {Zoya B
title = {MIT Sa
)

and Tilke Judd and Ali Borji and Laurent Itti and Fr{\'e}do Durand and Aude Oliva and Antonic Torralba),
ney Benchmark),

Tnis dataset is released in conjunction to the paper *A Benchmark of Computational Models of Sallency to Predict Human Fixations" by Tilke Judd, Fredo Durand
and Antonio Torralba, available as a Jan 2012 MIT tach report.

#InProceedings{J
author = {Tilke Judd and Fr{\'e}do Durand and Antonio Torralba},
title {A Benchmark of Computational Models of Saliency to Predict Human Fixationa},

a_2012,

model performances
47 models, 5 baseines, 7 metrics, and counting...

Performance numbers prior to September 25, 2014.
Matlab code for the metrics we use.
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The following are results of models evaluated on their ability to predict ground truth human fixations on our benchmark data set containing 300 natural images with eye
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Approaching human
performance!

The following are results of models evaluated on their ability to predict ground truth human fixations on our benchmark data set containing 300 natural images with eye

| ]
tracking data from 39 observers. We post the results here and provics a way for pecple to submit new models for evaluation M a k I n a I Ot Of n e W
citations

1 you use any of the results or data on this page, please cite the following:

émisc{nit-saliency-benchmark,

] " "
hor = {Zoya Bylinskii and Ali Borji and Laurent Itti and Fr{\'e}do Durand and Aude Oliva and Anto: Torralba),
title = saliency Beachmark},
) []

Tnis dataset is released in conjunction to the paper *A Benchmark of Computational Models of Sallency to Predict Human Fixations" by Tilke Judd, Fredo Durand
and Antonio Torralba, availlable as a Jan 2012 MIT tech report

#InProceedings{Judd 2012,
e Judd and Fr{\'e}do Durand and Antonio Torralba},
Computational Models of Saliency to Predict Human Fixations),

booktitle = {MIT Technical Report),

images
300 benchmark images (the fixations from 38 viewers per image are not public such that no medel can be trained using this data set).
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A person riding a A skateboarder does a trick
motorcycle on a dirt road. on aramp.

A group of young people Two hockey players are fighting A little girl in a pink hat is

playing a game of frisbee. over the puck. blowing bubbles. A refrigerator filled with lots of
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A herd of elephants walking
across a dry grass field.




Contextual Guidance Model

Bottom-up
Local features saliency map
LOCAL PATHWAY
X Saliency
e
&t —> computation
Global features

st

Scene
priors

GLOBAL PATHWAY

Task:
looking for Contextual

pedestrians. modulation

Torralba, Oliva et al (2006), Torralba (2003)



Contextual Guidance Model

Bottom-up

Local features saliency map
LOCAL PATHWAY

> ) Saliency
&t computation

Global features
A— — — — —,
@ > > > > Scene-modulated

P XX Scene .
GLOBALPATHWRY 277 7" > priors saliency map

ask:
looking for Contextual

pedestrians. modulation

Scene “gist” Scene Priors
Representation

(Si m ple version ) Torralba, Oliva et al (2006), Torralba (2003)



Goal

Predicting the location of the first eye movements for a
given search task

‘ Observers fixations

Torralba, Oliva et al (2006), Oliva, Torralba, et al (2003)



Learning Scene Priors




Learning Scene Priors

Scene
Global _ prior
features P(obj, x | G) —

 Guidance of attention by context requires a learning stage in which
the system learns what are the typical locations of objects in scene.

» We trained the model to predict the location of people in the scene.

* We used a database of scenes that have been hand-labeled.

2500 images

for which we know
the location of
people

The goal is to learn the joint distribution between global image features
(Vc¢) and the location of the target

Torralba, Oliva et al (2006)



Categorical Priors Prototypes




Counting task

Observers search for small and camouflaged target objects

People search task Mug and painting search task

Torralba, Oliva et al. (2006)



Comparison regions of interest

Saliency
predictions

Saliency and
Global scene
priors

Red dots correspond to fixations 1-4

Torralba, Oliva et al. (2006)



Results: Detecting People

Sceines without people §cenes with people
% of 100 100
s 90 90|
he region
TN 801 soifl W L
701 J J 701 | 10
60 (P 60
50 .50 ;
1 2 3 4 1 2 3 4
Fixation number Fixation number

Saliency Region ‘ Contextual Region



Task modulation

Saliency
predictions

Saliency and
Global scene
priors

@ Mug search A Painting search

Torralba, Oliva et al. (2006)



People detection in outdoors
_A thousand scenes ..
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(1) Do observers look at the same places ?
(2) Can we predict the fixated regions ?




Human Agreement

* Inter-observer agreement =
upper bound for model
performance




Human Agreement

* Inter-observer agreement =
upper bound for model
performance

« Cross-image control = lower
bound for model performance




The ROC curve

detection rate

0 A ; ; . ; ; : : :
O n S 01 02 03 04 05 06 07 08 09
false alarm rate

ROC curve

a receiver operating characteristic (ROC), or ROC curve, is a graphical plot that illustrates the performance of a binary classifier system as its
discrimination threshold is varied. The curve is created by plotting the true positive rate or detection rate (TPR) against the false positive rate (FPR) at
various threshold settings.



The ROC curve

detection rate

false alarm rate

Selected |mage reg|ons 701 02 03 04 05 06 07 08 09
S e W ROC curve




The ROC curve

detection rate
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false alarm rate

ROC curve




The ROC curve

detection rate
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The ROC curve
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The ROC curve

detection rate
o
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The ROC curve
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Human Agreement

Fixation detection rate
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Human agreement examples

High inter-observer agreement

ol

Low inter-observer agreement



Detection rate

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

Human agreement is very high !

Target Absent

Target Present

-
\“‘
'
\“
\
W

06 [

0.5

Detection rate

‘ 0.68

0.95

= control

0.62

0.2 0.4 0.6 0.8 1 0 0.2
False alarm rate

Human Agreement

Cross-Image Control

04 0.6 0.8

False alarm rate




Detection rate
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Can a model predict human fixations like

another human?
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The prediction given by a model would be indistinguishable from
the prediction by another human
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Overview of Model

Local and global
image features

Saliency

~






Saliency Model

e —————

\
\
W

0.4

Fixation detection rate

Cross-Image Control
AUC = 0.68

0.2

0.1

A}
vt
Y
\
\
\
\

09l N et

. . A -
\
' A
A
O 8 ............ s 2
" K . \ . .

0.7

; \ AUC =0.77
o6r | REESAETERRIEES TR
ost[ /oS SR

hd .
~
Y B o ST T T S . e i it e s e e s i i
0.3 SERN
o .
. ;

A
\“\
WY

0 0.2 0.4 0.6 0.8
False alarm rate

Human Agreement
AUC =0.93



Saliency Model: Examples

AUC=0.94

Best performance

Worst performance



Overview of Model

Target features

Local and global
image features

Saliency

~



Pedestrian Detector

« Histograms of Oriented
Gradients (HOG) detector by
Dalal & Triggs

Positive Negative Average
features features gradient

Dalal & Triggs, 2005 CVPR






Target Features Model

Fixation detection rate

AUC =0.78

~Target Features Model
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Target Features Model: Examples

AUC=0.95

AUC = 0.50

= W

Best performance

Worst performance



Overview of Model

-

\\ Scene context

Target features

Local and global
image features

Saliency

~
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Scene Context Model (Gist features)
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Oliva & Torralba, 2001



Gui_danc_ev' by Scene Context




Scene Context Model
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Scene Context Model: Examples

AUC=0.95

AUC =0.27

Best performance

Worst performance



Overview of Model

-

\f Scene context

Target features

Local and global
image features

Saliency

~



! Combined Sources of Guidance




Combined Model

Fixation detection rate
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Combined Model: Examples

AUC=0.94
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Target Absent vs. Target Present

Target Absent Scenes Target Present Scenes

o
~

o
o

Fixation detection rate
2 35

©
w

o
[N}

L

0 0.2 0.4 0.6 0.8 1
False alarm rate

0 0.2 0.4 0.6 0.8 1
False alarm rate



Overview of Model
X{ 3cene context

Context “oracle”

Target features

Combination of
sources of guidance

Local and global
image features




“Context Oracle” Implementation

Context Model, AUC = 0.67

Context Oracle, AUC = 0.90
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Context Oracle
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Overview of Model
X{ 3cene context

Context “oracle”

Target features

Combination of
sources of guidance

Local and global
image features




Comblned Model W|th Oracle
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Summary of results

« Combined model accounts for 94% of
human agreement in search fixations

» Context predicts human fixations better
than saliency or target features in this
search task

* How to get that last 6%?

— Context “oracle”™?

* Improves performance to 95% of human
agreement

— Something else?



Fixation detection rate

0.3,

0.1

What's missing?
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_____ = Combined Model.
~ AUC = 0.88.

................................................
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False alarm rate

Human Agreement
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When context fails, we learn

Best performance ¢ > Worst performance

AUC =0.95 AUC=0.87 AUC =0.27












High-Powered Machine:
Visual context/scene

7




Look at the following video and
try to make sense of it






Let's see the real video ...






Standard approach to scene analysis

1) Object representation based on intrinsic features:

Classifier
p(car|V,) [7> mocar




-l

Is local information enough??

e —




With hundreds of categories

P .
R 4 F A

eI Py o S v 3 LAY e o)
¥ o MR ﬂ“I o G el e et

e

If we have 1000 categories (detectors), and each detector produces 1 fa every 10
images, we will have 100 false alarms per image...



[

Is local information even enough?

. Information

\

Contextual featurei

—

Local features

[

»

Distance



The system does not care about the
scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

... even if there is one indeed.



The multiple personalities of a blob




The multiple personalities of a blob
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Look-Alikes by Joan Steiner
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Look-Alikes by Joan Steiner




Why is context important?

* Changes the interpretation of an object (or its function)




The influence of an object extends beyond its physical boundaries TRENDS in Cognitive Sciences




The context challenge

How far can you go without using an
object detector?



What are the hidden objects?




What are the hidden objects?




The importance of context

Cognitive psychology
— Palmer 1975
— Biederman 1981

Computer vision

— Noton and Stark (1971)

— Hanson and Riseman (1978)
— Barrow & Tenenbaum (1978)
— Ohta, kanade, Skai (1978)

— Haralick (1983)

— Strat and Fischler (1991)

— Bobick and Pinhanez (1995)
— Campbell et al (1997)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-1S-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE
RGB-IS-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT/
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE—CONTAINS(compIele—ground)
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
- CLIQUE-CONTAINS(skyline)
GROUND TIME-IS-DAY DARK




Biederman 1972

* Arrow appeared before or after picture.
» Selected object from 4 pictures.









Biederman 1972

» Better accuracy with normal scene and
with pre-cue.

» Coherence of surroundings affected object
perception.

* But, jumbled pictures had unnatural edge
artifacts.



Palmer 1975

* Scene preceded object to identify.

» Better identification when preceded by a
semantically consistent scene.

1AR04T onC!

Objects seen for 20, 40, 60 or 120 ms.




Palmer

« Scenes shown ahead of time for 2 s.

* More accurate recognition of consistent
objects than inconsistent objects.

» Similar looking objects were misnamed,
showing a bias effect.



Loftus & Mackworth

* Inconsistent objects
fixated earlier and
longer.

* Suggested additional
processing of objects
out of context.

o Similar results found
by Friedman (1979).




Object Detection

 Biederman et al. 1982, relational violations

Cue and Mask







Biederman 1982

* Pictures shown for 150
ms.

* Objects in appropriate
context were detected
more accurately than

objects in an
inappropriate context.

* Scene consistency
affects object detection.




Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

Biederman’s violations (1981):

1. Support (e.g., a floating fire hydrant). The object does not appear to be resting on a surface.

2. Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
violation appear to be transparent or passing through another object. ’

3. Probability (e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.

4. Position (e.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur
in that scene, but it is unlikely to be in that particular position.

5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large
or too small relative to the other objects in the scene.




[Golconde Rene Magritte]



Interposition

[Blank Check Rene Magritte]



Size

[The Listening Room Rene Magritte]



Position, Probability

[Personal Values Rene Magritte]



Object priming

—— Car, pedestrian, mailbox, ...

p(object | scene)

I_II_II_I|_|I_I 111

n |l

Low rigidity Strong rigidity

Torralba, Sinha, Oliva, VSS 2001



Looking outside the bounding box

<

Outside the object

Inside the object g

(contextual features)

-._“
T
‘*

1%

£
—_

A 1 i
pllem-

(intrinsic features)

Ll | k -?_.’:(,
I v ' = oo "
I w Object size
< | >
< | >
Global context Local context Global Parts Pixels
appearance

Kruppa & Shiele, (03), Fink & Perona (03)

Carbonetto, Freitas, Barnard (03), Kumar, Hebert, (03)

He, Zemel, Carreira-Perpinan (04), Moore, Essa, Monson, Hayes (99)
Strat & Fischler (91), Torralba (03), Murphy, Torralba & Freeman (03)

Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91),Vidal-Naquet, Ullman, (03)

Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03)
Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99)
Etc.



Current approaches

1) Scene to object dependencies

2) Object to object dependencies



Many object types co-occur...




... but this co-occurrence has a hidden
common “cause”: the scene

offices

It is easier to first recognize the scene, then predict object presence, than
running local object classifiers



The layered structure of scenes

Assuming a human observer standing on the ground

In a display with multiple targets present, the location of one target constraints the ‘y’
coordinate of the remaining targets, but not the ‘x’ coordinate.



The layered structure of scenes

Assuming a human observer standing on the ground
Traffic light

Person
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In a display with multiple targets present, the location of one target constraints the ‘y’
coordinate of the remaining targets, but not the ‘x’ coordinate.
Torralba, Oliva, Castelhano, Henderson. (2006).



3d Scene Context

Image
I;orif_on Plane Camera
osition ‘

Object Image
Height

Camera
Height

3D Object s

Object World

Object World
Heic.;ht i

Height

Image

World

Hoiem, Efros, Hebert ICCV 2005



Current approaches

1) Scene to object dependencies

2) Object to object dependencies



Where should | put the silverware?




Sampling from the labels

Ol

T )

.




Sampling from the labels

Cf. Hoiem et al; Hays, Efros. Siggraph 2007



Detecting difficult objects

Maybe
ﬁ Ofﬁce ﬁ there iS

a Mousc

Start recognizing the scene

Torralba, Murphy, Freeman. NIPS 2004.



Detecting difficult objects

Detect first simple objects (reliable detectors) that provide strong
contextual constraints to the target (screen -> keyboard -> mouse)

Torralba, Murphy, Freeman. NIPS 2004.



Detecting difficult objects

Detect first simple objects (reliable detectors) that provide strong
contextual constraints to the target (screen -> keyboard -> mouse)

Torralba, Murphy, Freeman. NIPS 2004.



High-Powered Machine:
Principles

/




l. Plasticity

Nothing is lost, everything is transformed

G

Feeling touch with the "“visual” brain




Il. Growth
Immediate Short-term Long-term

o)

Hlppocampus ‘

- Dentate—




