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Today’s class

* Part 1: What is deep learning?

* Part 2: Supervised Deep Learning
* Neural networks
* Convolutional Neural Networks (CNNs)

* Part 3: Unsupervised Deep Learning
e Overview of some approaches



Slide credit
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Part 1:

What is deep learning?



Typical goal of machine learning
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earning

Feature engineering:
most time consuming!

output
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Image search
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Our goal in object classification

—m—> “motorcycle”




You see this:

Why is this hard?
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Pixel-based representation

pixel 1
» | Learning
algorithm
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Input
4 Motorbikes
Raw image = “Non”-Motorbikes

pixel 2
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Pixel-based representation
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pixel 2

handlebars

What we want

> Feature » | Learning
representation algorithm
E.g., Does it have Handlebars? Wheels?
Input
+= Motorbikes
Raw image = “Non”-Motorbikes Features
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Some feature representations
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Some feature representations

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.
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The brain:
a potential motivation for deep learning
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Auditory Cortex

Auditory cortex learns to see!

[Roe et al., 1992]



The brain adapts!

Haptic belt: Direction sense | Implanting a 3 eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]



Basic idea of deep learning

* Also referred to as representation learning

* Is there some way to extract meaningful
features from data in a supervised or
unsupervised manner?

* Then, throw in some hierarchical ‘stuff’ to
make it ‘deep’



Part 2:

Supervised deep learning



Speech recognition on Android

n Speech Recognition and Deep Learning

Posted by Vincent Vanhoucke, Research Scientist, Speech Team

The New York Times recently published an article about Google’s large scale deep learning project, which learns to
discover patterns in large datasets, including... cats on YouTube!

What’s the point of building a gigantic cat detector you
might ask? When you combine large amounts of data,
large-scale distributed computing and powerful machine
learning algorithms, you can apply the technology to
address a large variety of practical problems.

8 pictures of cats \'/

With the launch of the latest Android platform release, Jelly
Bean, we've taken a significant step towards making that
technology useful: when you speak to your Android phone,
chances are, you are talking to a neural network trained to
recognize your speech.

Using neural networks for speech recognition is nothing
new: the first proofs of concept were developed in the late




Impact on speech recognition
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Appllcahon to Google Streetwew




Object recognition

1000-way image classification
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ImageNet Challenge Year



Object recognition

BC AD
(before ConvNets) (after deep learning)
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Object recognition
BC AD

(before ConvNets) (after deep learning)

Classification error

ImageNet Challenge Year



Neural networks




Neural networks
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Neural networks
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Neural networks
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A single neuron can be used as a
binary linear classifier

e.g., logistic regression
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Activation functions

sigmoid activation

function
1

l+e*

tanh(x)

RelLU

f(x) = max(0,x)




layer N

From neurons to neural network
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Neural networks: architectures

output layer
input layer
hidden layer



Neural networks: architectures

output layer
input layer
hidden layer

“2-layer neural net,”k

“1-hidden-layer neural net”

input layer
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“3-layer neural net,” or
“2-hidden-layer neural net”

“Fully-connected” layers



Neural network: architectures
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Number of Neurons: ?
Number of Weights: ?
Number of Parameters: ?



Neural network: architectures

output layer
input layer

hidden layer

Number of Neurons: 4+2 = 6
Number of Weights: [4x3 + 2x4] = 20

Number of Parameters: 20 + 6 = 26 (biases!)

input layer

X
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output layer

hidden layer 2

Number of Neurons: ?
Number of Weights: ?

Number of Parameters: ?




Neural network: architectures

,0

AN
XU/
<

o‘o}o

SOe

Va

tput |
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input layer input layer
hidden layer hidden layer 1 hidden layer 2
Number of Neurons: 4+2 = 6 Number of Neurons: 4 +4+1=9
Number of Weights: [4x3 + 2x4] = 20 Number of Weights: [4x3+4x4+1x4]=32

Number of Parameters: 20 + 6 = 26 (biases!) Number of Parameters: 32+9 = 41




Neural network: architectures

output layer
input layer

hidden layer
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. output layer
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input layer

Modern CNNs: ~10 million neurons
Human visual cortex: ~5 billion neurons



Training a neural network

output layer
input layer

hidden layer

Given training set (x4, Y4), (X, ¥,), (X3, Y3 ), -

Adjust parameters 0 (for every node) to make:

(Use gradient descent - “Backpropagation” algorithm)



Convolutional neural networks

C3:f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5
32x32 0P8k S2:1. mafs
6@14x1

I
| Ful contlecﬁon ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]



Convolutional neural networks
aka ConvNets

aka CNNs
aka Computer vision Savior

C3:f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT 6@28:28
32x32 C5: layer
-1a F6: layer QUTPUT

I
| Ful conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]



ConvNets: architecture

before:

output layer
input
layer hidden layer

NOow:




ConvNets: architecture

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 32x32x3 volume
32 width, 32 height, 3 depth (RGB channels)

DEPTH



ConvNets: architecture

I wy

Convolutional Neural Networks
are just Neural Networks BUT: "fi}( )
1. Local connectivity /
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ConvNets: architecture

) wy
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Convolutional Neural Networks renteme e

are just Neural Networks BUT:

1. Local connectivity

32

32

===

a hidden neuron in
next layer

e (7 } L
/\

nothing changes

Image: 32x32x3 volume
before: full connectivity: 32x32x3 weights

now: one neuron will connect to, e.g. 5x5x3
chunk and only have 5x5x3 weights.

note that connectivity is:
- local in space (5x5 inside 32x32)
- but full in depth (all 3 depth channels)



ConvNets: architecture

Convolutional Neural Networks
are just Neural Networks BUT:
1. Local connectivity

32

depth dimension
>

@>@OOOO

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

32
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*@® synapse
xon from a neuron 3
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wyey o M7 :

nothing changes

acluvabor
function

Multiple neurons all
looking at the same
region of the input
volume, stacked
along depth.



Convolutional Neural Networks
are just Neural Networks BUT:
1.

ConvNets: architecture

Local connectivity
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[1 x 1 x depth]
“depth column” in the
output volume



ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1




ConvNets: architecture
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ConvNets: architecture
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ConvNets: architecture
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ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output




ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 27?




ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 27?




ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 27?




ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

7x7 input

assume 3x3 connectivity, stride 2

--> 3x3 output



ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 37




ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 3? CANNOT




ConvNets: architecture

Output size:
(N - F) / stride + 1

eg.N=7,F=3:

stride 1 => (7 - 3)/1 + 1

5
stride2=>(7-3)/(2+1=3

stride 3=> (7-3)/3+1=_..:\




ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 1
Number of neurons: 5

Output volume: ?
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ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 1
Number of neurons: 5

Output volume: (32-5)/1+1=

neurons?

7
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How many weights for each of the 28x28x5

X25X5




ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 1
Number of neurons: 5

Output volume: (32-5)/1+ 1=

neurons? 5x5x3 =75

7
[
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D

, SO:
How many weights for each of the 28x28x5

X25X5




ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 2
Number of neurons: 5

Output volume: ?

N

\J/
\

DOOO(

D




ConvNets: architecture

Examples time: /

=0 000

D

Input volume: 32x32x3

N

Receptive fields: 5x5, stride 2 -
Number of neurons: 5

Output volume: ? Cannot: (32-5)/12 + 1 = 14.5 :\




ConvNets: architecture

Input volume of size [W1 x H1 x D1]

using K neurons with receptive fields F x F and
applying them at strides of S gives

Output volume: [W2, H2, D2]

W2 = (W1-F)/S+1 H2 = (H1-F)/S+1 D2 = K



ConvNets: architecture

There’s one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:

=> Qutput volume: [32 x 32 x 30]

(32*32*30 = 30720 neurons)

Each neuron has 5*5*3 (=75) weights
=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

/]

\[J/

ejejeje](

14

D




ConvNets: architecture

There’s one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:
=> Qutput volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)
Each neuron has 5*5*3 (=75) weights

=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

eJelerel)) | <—— Example trained weights




ConvNets: architecture

There’s one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:
=> Qutput volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)
Each neuron has 5*5*3 (=75) weights

=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

D000 D | <—— Example trained weights

IDEA: lets not learn the same
thing across all spatial locations




ConvNets: architecture

Our first ConvNet layer had size [32 x 32 x3]

If we had 30 neurons with receptive fields 5x5, stride 1, pad 1
Output volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)
Each neuron has $*5*3 (=75) weights

Before:
#weights in such layer: (32*32*30) * 75 = 3 million :\

Now: (paramater sharing)
#weights in the layer: 30 * 75 = 2250.



ConvNets: architecture

These layers are called Convolutional Layers

1. Connect neurons only to local receptive fields

2. Use the same neuron weight parameters for
neurons in each “depth slice” (i.e. across

spatial positions) /

-
14




ConvNets: architecture

vations:
iﬁ Can call the neurons “filters”
We call the layer convolutional because it is
i---.-. related to convolution of two signals (kind of):
flx,y1* glx,y] = 2 Z fln.ny)-glx—n,,y—n,|

elementwise multiplication and sum
a filter and the signal (image)

GINEERDNZIIAAEENESESREINSEERASRG

one filter = one depth slice (or activation map) 5X5 ﬁ|ters




Fast-forward to today

[From recent Yann

LeCun slides]
Low-Level| |Mid-Level| |High-Level Trainable
— — — —
Feature Feature Feature Classifier
4 A |

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



ConvNets: Max pooling

In ConvNet architectures, Conv layers are often followed by Pool layers

- convenience layer: makes the representations smaller and more manageable
without losing too much information. Computes MAX operation (most common)

downsampling
32

16

32



ConvNets: Max pooling

Single depth slice

1111|124
5|6 |7 |8
31210
112 ]3| 4

max pool with 2x2 filters
and stride 2

>




ConvNets: Max pooling

In ConvNet architectures, Conv layers are often followed by Pool layers

- convenience layer: makes the representations smaller and more manageable
without losing too much information. Computes MAX operation (most common)

Input volume of size [W1 x H1 x D1]

Pooling unit receptive fields F x F and applying them at
strides of S gives

Output volume: [W2, H2, D1]

W2 = (W1-F)/S+1, H2 = (H1-F)/S+1

Note: pooling happens independently across each slice, preserving number of slices
E.g. a pooling “neuron” of size 2x2 will perform MAX operation over 4 numbers.



ConvNets: summary

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28:28
32x32 S2:1. ma CS: layer :
s@14x14 120 PS: layer QUTPUT

I
| Ful comlection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]



ConvNets: tips & tricks

In practice: Common to zero pad the border

0

0

0

0

0

o | o | o | O | o

(in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?



ConvNets: tips & tricks

In practice: Common to zero pad the border

0

0

0

0

0

o | o | o | O | o

(in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

7X7 => preserved size!
in general, common to see stride 1, size F, and

zero-padding with (F-1)/2.
(Will preserve input size spatially)



ConvNets: tips & tricks

- start with image that has power-of-2 size
- for conv layers, use stride 1 filter size 3x3 pad input with a
border of zeros (1 spatially)

This makes it so that: [W1,H1,D1] -> [W1,H1,D2] (i.e. spatial size
exactly preserved)

- for pool layers, use pool size 2x2 (more = worse)



Part 3:

Unsupervised deep learning



Methods of Unsupervised Deep Learning

e Autoencoders

* Deep belief networks (DBNs)
* Restricted Boltzmann Machines (RBMs)
* Deep Boltzmann Machines (DBMs)

* Sparse coding



Feature learning problem

* Given a 14x14 image patch x, we can represent it using

196 real numbers. N
255
98
- 93
. 87

..|l" o1
B 91

48

\.“J

 Problem: Can we find a learn a better feature vector to
represent this?



First stage of visual processing: V1

V1 is the first stage of visual processing in the brain.
Neurons in V1 typically modeled as edge detectors:

Neuron #1 of visual cortex Neuron #2 of visual cortex
(model) (model)



Learning sensor representations

Sparse coding (Olshausen & Field,1996)

Input: Images x(1), x@), ..., x(M (each in R"x")

Learn: Dictionary of bases ¢, ¢,, ..., ¢ (also R"*"), so
that each input x can be approximately decomposed

as: ~
=1
X S a; Q,

s.t. aj’s are mostly zero (“sparse”)



Sparse coding illustration

Natural Images Learned bases (¢; _g,): “Edges”

Test example

~(.8 * 36 + 0.3 * d,;, T O.5%
[a,, ..., a64] =[o0,0,..0,0.8,0,..00.3,0, .., 0,0.5, 0]

(feature representation)




Sparse coding illustration

Represent as: [a,;=0.6, a,;=0.8, a,;, = 0.4]

P15 O o,

Represent as: [a;=1.3, a,,=0.9, a,, = 0.3]

b5
* Method “invents” edge detection

« Automatically learns to represent an image in terms of the edges that
appear in it. Gives a more succinct, higher-level representation than the
raw pixels.

» Quantitatively similar to primary visual cortex (area V1) in brain.



Going deep

object models

object parts
(combination
of edges)

Training set: Aligned
images of faces.

[Honglak Lee]



Autoencoder

Layer 2

Layer 3

Network is trained to
output the input (learn
identify function).

Trivial solution unless:
- Constrain number of
units in Layer 2 (learn
compressed
representation), or

- Constrain Layer 2 to
be sparse.



Autoencoder
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Layer 1



Autoencoder

New representation for input.




Autoencoder




Autoencoder

)

W»,WV
o LI S LI
/4

Train parameters sothat ' =
subject to b;’s being sparse.



Autoencoder

Train parameters so that
subject to b;’s being sparse.




Deep Belief Net

* Deep Belief Net (DBN) is another algorithm for
learning a feature hierarchy.

 Building block: 2-layer graphical model (Restricted
Boltzmann Machine).

OO0 OO

e Can then learn additional layers one at a time.



Restricted Boltzmann Machine (RBM)

d, a, as Layer 2. [a; a,, a]
(binary-valued)

O ® @ @ e

MRF with joint distribution:

P(x, ocexp( Zajaj Z])

Use Gibbs sampling for inference.

Given observed inputs x, want maximum likelihood estimation:
max P(x) = maxz P(z,a)

W



Deep Belief Network

Similar to a sparse autoencoder in many ways. Stack
RBMs on top of each other to get DBN.

Layer 3. [b, b,, bj]

Layer 2. [a, a,, a;]

Input [X; X5, X3, X4]



Deep Belief Network

Layer 4. [c, C,, C3]

Layer 3. [b; by, bs]

Layer 2. [a, a,, aj]

O O O O e



onvolutional DBN for audio

<—— Max pooling unit

<—— Detection units
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Convolutional deep belief networks illustration

@)

Layer 3 activation (coefficients)

®l ‘A °n

Layer 2 activation (coefficients)

Layer 1 activation (coefficients)

Filter
l W, visualization
/ / Input image

# ¢ Example image

74



Benefits of unsupervised feature learning

i 1_____.,, b . % V-
: . c' “ ‘la . 4 g '
] 4 4 - e |
e ! \ o : 1R,
p 8
| )

Task: video activity recognition

Method Accuracy

Hessian + ESURF [Williems et al 2008] 38%

Harris3D + HOG/HOF [Laptev et al 2003, 2004] 45%

Cuboids + HOG/HOF [Dollar et al 2005, Laptev 2004] 46%

Hessian + HOG/HOF [Laptev 2004, Williems et al 2008] 46%

Dense + HOG / HOF [Laptev 2004] 47%

Cuboids + HOG3D [Klaser 2008, Dollar et al 2005] 46%
Unsupervised feature learning (our method) 52% <

[Le, Zhou & Ng, 2011]



(Audio

TIMIT Phone classification

Prior art (Clarkson et al.,1999) 79.6%

80.3%

Feature learning

N

TIMIT Speaker identification

Prior art (Reynolds, 1995) 99.7%

100.0%

Feature learning

/Images

CIFAR Object classification

Prior art (Ciresan et al., 2011) 80.5%

82.0%

Feature learning

NORB Object classification

Prior art (Scherer et al., 2010) 94.4%

95.0%

Feature learning

/

o
Video

Hollywood2 Classification

Prior art (Laptev et al., 2004) 48%

Feature learning 53%

KTH

Prior art (Wang et al., 2010) 92.1%
93.9%

Veature learning

Accuracy

Prior art (Liu et al., 2009) 71.2%

75.8%

Prior art (Wang et al., 2010) 85.6%

86.5% /

Feature learning

Feature learning

4 Text/NLP

Paraphrase detection

Prior art (Das & Smith, 2009) 76.1%

76.4%

Feature learning

Sentiment (MR/MPQA data)

Prior art (Nakagawa et al., 2010) 77.3%

77.7%

Feature learning

/




ImageNet classification: 22,000 classes

smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi

hammerhead, hammerhead shark

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus Mantaray
suitarfish

roughtail stingray, Dasyatis centroura i

puttertly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish
|Atlantic manta, Manta birostris |

devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis

little skate, Raja erinacea




ImageNet Classification:
14M Images, 22K categories

0.005% 9.5% ?

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11) From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



ImageNet Classification:
14M Images, 22K categories

0.005% 9.5% 21.3%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11) From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



