6.819/6.869 Advances in Computer Vision

Aditya Khosla

Image by
kirkh.deviantart.com

Today’s class

* Part 1: What is deep learning?

* Part 2: Supervised Deep Learning
* Neural networks
* Convolutional Neural Networks (CNNs)

* Part 3: Unsupervised Deep Learning
e Overview of some approaches

Slide credit

* Many slides are taken/adapted from

Rl Land

Fei-Fei Li Andrew Ng

Part 1:

What is deep learning?

Typical goal of machine learning

iInput

images/video

udio oo —JIR—

text

€ 3O wwmnytmescom Y

- Ehe New Hork Times

output

Label: “Motorcycle”
Suggest tags
Image search

Speech recognition
Music classification
Speaker identification

Web search
Anti-spam
Machine translation

earning

Feature engineering:
most time consuming!

output

Label: “Motorcycle”
Suggest tags
Image search

Speech recognition
Music classification
Speaker identification

Web search
Anti-spam
Machine translation

Our goal in object classification

—m—> “motorcycle”

You see this:

Why is this hard?

194
\ 150

' 114
' 87
\ 102

\ 94

' 68

y 41

Y| 20

\ 50
72
67

210
189
126
103
11z
95
71
56
43
50
59
61

201
190
140
115
106
79
69
638
69
57
53
58

z2lz
221
158
154
131
104
98
99
75
69
66
65

199
209
176
143
122
105
89
63
56
75
g4
75

213
205
165
14z
138
124
92
45
41
75
9z
78

215
191
152
149
152
129
98
60
51
73
g4
76

195
167
140
153
147
113
95
32
73
74
74
73

178
147
170
173
128
107
89
58
55
53
57
59

Pixel-based representation

pixel 1
» | Learning
algorithm
pixel 2
Input
4 Motorbikes
Raw image = “Non”-Motorbikes

pixel 2

Pixel-based representation

pixel 1
» | Learning
algorithm
pixel 2
Input
+* Motorbikes
Raw image = “Non”-Motorbikes
A
i +
o
X -
o
- +

pixel 1

Pixel-based representation

pixel 1
» | Learning
algorithm
pixel 2
Input
4 Motorbikes
Raw image = “Non”-Motorbikes
A
~ + +
E |
X -
Q_]
+ 4 _
_ +
+ |

pixel 2

handlebars

What we want

> Feature » | Learning
representation algorithm
E.g., Does it have Handlebars? Wheels?
Input
+= Motorbikes
Raw image = “Non”-Motorbikes Features
A A
+_ ¥ * o
+ 4 2 - +
+ - | | -
pixel 1 Handlebars

Some feature representations

Normalized patch Spin image
S 0
P =l N PRI
ADRUE
IREEKIUEE
- ‘tl IR 3
- 4 | -
" —'/",‘vk{ —
N ¢ e A
N oA e = A
1

Keypoint descriptor

SIFT Spin image

Image gradients

Orientation Votin
N) e Normalized patch

Input Image ~ Gradient Image .

HoG

0 /4
ENNIAE=ESNDZAZ
ENNO@E- - - s
ENNDEE- - /. w2 3
.- --+«+HEER .
ENNIAE=SNINZZ P
ENNmEE- - -
EEREERn - (a) (b) (c) (d)

n .
Textons GLOH

Some feature representations

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.

HoG

I) 5=

HIII

OEEEEE =
Illl

Ellﬂll—\\l//

Textons

The brain:
a potential motivation for deep learning

/\ ,-—"" — =
/
i (
A y Vel L ¢ r—/‘ \ '\
' A \ / \ - \(' ,~‘\
“ / »'/ 4 "
4 ? ~

X% T

Auditory Cortex

Auditory cortex learns to see!

[Roe et al., 1992]

The brain adapts!

Haptic belt: Direction sense | Implanting a 3 eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Basic idea of deep learning

* Also referred to as representation learning

* Is there some way to extract meaningful
features from data in a supervised or
unsupervised manner?

* Then, throw in some hierarchical ‘stuff’ to
make it ‘deep’

Part 2:

Supervised deep learning

Speech recognition on Android

n Speech Recognition and Deep Learning

Posted by Vincent Vanhoucke, Research Scientist, Speech Team

The New York Times recently published an article about Google’s large scale deep learning project, which learns to
discover patterns in large datasets, including... cats on YouTube!

What’s the point of building a gigantic cat detector you
might ask? When you combine large amounts of data,
large-scale distributed computing and powerful machine
learning algorithms, you can apply the technology to
address a large variety of practical problems.

8 pictures of cats \'/

With the launch of the latest Android platform release, Jelly
Bean, we've taken a significant step towards making that
technology useful: when you speak to your Android phone,
chances are, you are talking to a neural network trained to
recognize your speech.

Using neural networks for speech recognition is nothing
new: the first proofs of concept were developed in the late

Impact on speech recognition

100%a

Using DL

10%

4%

Word error rate on Switchboard

2%

1%

v

1990 2000 2010

Appllcahon to Google Streetwew

Object recognition

1000-way image classification

0.3

0.2}

Classification error

2010 2011 2012 2013 2014
ImageNet Challenge Year

Object recognition

BC AD
(before ConvNets) (after deep learning)

0.3

0.2}

Classification error

2010 2011 2012 2013 2014
ImageNet Challenge Year

Object recognition
BC AD

(before ConvNets) (after deep learning)

Classification error

ImageNet Challenge Year

Neural networks

Neural networks

impulses carried

toward cell body
branches
of axon

dendrites

axon

nucleus terminals

impulses carried
away from cell body

Neural networks

imDUISeS carried
toward cell body

dendrites -

impU|Ses carried

away from cell body
cell body

terminals

Zo -

~@_synapse
axon from a neuron
_Woxo

cell body

D wiwi+b f(zi:w‘x'“Lb)

activation
function

W2

Neural networks

impulses carried
toward cell body

branches
dendrites v of axon
B2 e
nucleus >
impulses carried \
away from cell body
cell body

axon
terminals

o wo

*@ synapse
axon from a neuron
woTg

cell body

' (Z': wi; + b)

w1
0‘8- g Zwimi el output axo;
sigmoid activation ' activation
function WoTs function
1
l+e™*

-10

A single neuron can be used as a
binary linear classifier

e.g., logistic regression

L wy

*@® synapse
axon from a neuron
woxo

cell body f (Z Wz + b)
i Zw,-:z:i +0b|f ' >
: output axon
activation
function

w9

Activation functions

sigmoid activation

function
1

l+e*

tanh(x)

RelLU

f(x) = max(0,x)

layer N

From neurons to neural network

Zo wo Zo wo
—— " @ synapse — - __"@ synapse
axon from a neuron axon from a neuron

wox(wox(

cell body

Zw,-:z:,- +b
i

cell body

Zw,—z:.- + b

f (Z w;z; + b)

output axon
activation

output axon

activation

function function
Zo wo Zo wo
— @ synapse
axon from a neuron S axon from a neuron .

woT(woTo

cell body

Zw,-:z:.- + b

cell body

Zw,—z,— + b

f (Z w;z; + b)

output axon
activation

output axon
activation

T+N J9Ae]

function function
T wo Z(wo
————— @ synapse
axon from a neuron P axon from a neuron i
woxo woTo

cell body

z w;z; + b
;

cell body

2 wimi+b f(Z“”InM)

output axon

activation
function

output axon

activation
function

Neural networks: architectures

output layer
input layer
hidden layer

Neural networks: architectures

output layer
input layer
hidden layer

“2-layer neural net,”k

“1-hidden-layer neural net”

input layer

9
=
R
)

=
&

y.
4

XA
®
va

\ . output layer

hidden layer 1 hidden layer 2

“3-layer neural net,” or
“2-hidden-layer neural net”

“Fully-connected” layers

Neural network: architectures

O

W
)
@

&
«

<O

¢
o0

output layer
output layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

Number of Neurons: ?
Number of Weights: ?
Number of Parameters: ?

Neural network: architectures

output layer
input layer

hidden layer

Number of Neurons: 4+2 = 6
Number of Weights: [4x3 + 2x4] = 20

Number of Parameters: 20 + 6 = 26 (biases!)

input layer

X

SOe

hidden layer 1

Va

i

AN
XU/
<

o‘o}c

output layer

hidden layer 2

Number of Neurons: ?
Number of Weights: ?

Number of Parameters: ?

Neural network: architectures

,0

AN
XU/
<

o‘o}o

SOe

Va

tput |
output layer ‘ Nl R i
input layer input layer
hidden layer hidden layer 1 hidden layer 2
Number of Neurons: 4+2 = 6 Number of Neurons: 4 +4+1=9
Number of Weights: [4x3 + 2x4] = 20 Number of Weights: [4x3+4x4+1x4]=32

Number of Parameters: 20 + 6 = 26 (biases!) Number of Parameters: 32+9 = 41

Neural network: architectures

output layer
input layer

hidden layer

\/

g

f

NN
s

N®
Yok

=

. output layer

hidden layer 1 hidden layer 2

input layer

Modern CNNs: ~10 million neurons
Human visual cortex: ~5 billion neurons

Training a neural network

output layer
input layer

hidden layer

Given training set (x4, Y4), (X, ¥,), (X3, Y3), -

Adjust parameters 0 (for every node) to make:

(Use gradient descent - “Backpropagation” algorithm)

Convolutional neural networks

C3:f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5
32x32 0P8k S2:1. mafs
6@14x1

I
| Ful contlecﬁon ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

Convolutional neural networks
aka ConvNets

aka CNNs
aka Computer vision Savior

C3:f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT 6@28:28
32x32 C5: layer
-1a F6: layer QUTPUT

I
| Ful conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

ConvNets: architecture

before:

output layer
input
layer hidden layer

NOow:

ConvNets: architecture

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 32x32x3 volume
32 width, 32 height, 3 depth (RGB channels)

DEPTH

ConvNets: architecture

I wy

Convolutional Neural Networks
are just Neural Networks BUT: "fi}()
1. Local connectivity /

othing changes

32

a hidden neuron in

32

ConvNets: architecture

) wy
-® s

Convolutional Neural Networks renteme e

are just Neural Networks BUT:

1. Local connectivity

32

32

===

a hidden neuron in
next layer

e (7 } L
/\

nothing changes

Image: 32x32x3 volume
before: full connectivity: 32x32x3 weights

now: one neuron will connect to, e.g. 5x5x3
chunk and only have 5x5x3 weights.

note that connectivity is:
- local in space (5x5 inside 32x32)
- but full in depth (all 3 depth channels)

ConvNets: architecture

Convolutional Neural Networks
are just Neural Networks BUT:
1. Local connectivity

32

depth dimension
>

@>@OOOO

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

32

Iy wy
*@® synapse
xon from a neuron 3
woI

ﬂt“.l[body f (\ " w4 b.)
wyey o M7 :

nothing changes

acluvabor
function

Multiple neurons all
looking at the same
region of the input
volume, stacked
along depth.

Convolutional Neural Networks
are just Neural Networks BUT:
1.

ConvNets: architecture

Local connectivity

32

OO 0O

IF

32

wy
= *® synapse
1xon from a neuron

T
%g‘ IIIIIII '{(\.u'.!_ 4 [.)

w)r) f y‘ b \ \T /

4—{ w;x; +b

R o g fi. output axc n

i /
aclivation
function

Wolo il

nothing changes

These form a single
[1 x 1 x depth]
“depth column” in the
output volume

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 27?

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 27?

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 27?

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7X7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

7x7 input

assume 3x3 connectivity, stride 2

--> 3x3 output

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 37

ConvNets: architecture

Replicate this column of hidden neurons across
space, with some stride.

7x7 input

assume 3x3 connectivity, stride 1

--> 5x5 output

What about stride 3? CANNOT

ConvNets: architecture

Output size:
(N - F) / stride + 1

eg.N=7,F=3:

stride 1 => (7 - 3)/1 + 1

5
stride2=>(7-3)/(2+1=3

stride 3=> (7-3)/3+1=_..:\

ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 1
Number of neurons: 5

Output volume: ?

T\

<

OO0 0O

D

ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 1
Number of neurons: 5

Output volume: (32-5)/1+1=

neurons?

7
[

\J/

/

OO0

D

, SO:
How many weights for each of the 28x28x5

X25X5

ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 1
Number of neurons: 5

Output volume: (32-5)/1+ 1=

neurons? 5x5x3 =75

7
[

\V/

/

OO0 0O

D

, SO:
How many weights for each of the 28x28x5

X25X5

ConvNets: architecture

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 2
Number of neurons: 5

Output volume: ?

N

\J/
\

DOOO(

D

ConvNets: architecture

Examples time: /

=0 000

D

Input volume: 32x32x3

N

Receptive fields: 5x5, stride 2 -
Number of neurons: 5

Output volume: ? Cannot: (32-5)/12 + 1 = 14.5 :\

ConvNets: architecture

Input volume of size [W1 x H1 x D1]

using K neurons with receptive fields F x F and
applying them at strides of S gives

Output volume: [W2, H2, D2]

W2 = (W1-F)/S+1 H2 = (H1-F)/S+1 D2 = K

ConvNets: architecture

There’s one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:

=> Qutput volume: [32 x 32 x 30]

(32*32*30 = 30720 neurons)

Each neuron has 5*5*3 (=75) weights
=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

/]

\[J/

ejejeje](

14

D

ConvNets: architecture

There’s one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:
=> Qutput volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)
Each neuron has 5*5*3 (=75) weights

=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

eJelerel)) | <—— Example trained weights

ConvNets: architecture

There’s one more problem...

Assume input [32 x 32 x3]

30 neurons with receptive fields 5x5, applied at stride 1/pad1:
=> Qutput volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)
Each neuron has 5*5*3 (=75) weights

=> Number of weights in such layer: 30720 * 75 ~= 3 million :\

D000 D | <—— Example trained weights

IDEA: lets not learn the same
thing across all spatial locations

ConvNets: architecture

Our first ConvNet layer had size [32 x 32 x3]

If we had 30 neurons with receptive fields 5x5, stride 1, pad 1
Output volume: [32 x 32 x 30] (32*32*30 = 30720 neurons)
Each neuron has $*5*3 (=75) weights

Before:
#weights in such layer: (32*32*30) * 75 = 3 million :\

Now: (paramater sharing)
#weights in the layer: 30 * 75 = 2250.

ConvNets: architecture

These layers are called Convolutional Layers

1. Connect neurons only to local receptive fields

2. Use the same neuron weight parameters for
neurons in each “depth slice” (i.e. across

spatial positions) /

-
14

ConvNets: architecture

vations:
iﬁ Can call the neurons “filters”
We call the layer convolutional because it is
i---.-. related to convolution of two signals (kind of):
flx,y1* glx,y] = 2 Z fln.ny)-glx—n,,y—n,|

elementwise multiplication and sum
a filter and the signal (image)

GINEERDNZIIAAEENESESREINSEERASRG

one filter = one depth slice (or activation map) 5X5 ﬁ|ters

Fast-forward to today

[From recent Yann

LeCun slides]
Low-Level| |Mid-Level| |High-Level Trainable
— — — —
Feature Feature Feature Classifier
4 A |

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

ConvNets: Max pooling

In ConvNet architectures, Conv layers are often followed by Pool layers

- convenience layer: makes the representations smaller and more manageable
without losing too much information. Computes MAX operation (most common)

downsampling
32

16

32

ConvNets: Max pooling

Single depth slice

1111|124
5|6 |7 |8
31210
112]3| 4

max pool with 2x2 filters
and stride 2

>

ConvNets: Max pooling

In ConvNet architectures, Conv layers are often followed by Pool layers

- convenience layer: makes the representations smaller and more manageable
without losing too much information. Computes MAX operation (most common)

Input volume of size [W1 x H1 x D1]

Pooling unit receptive fields F x F and applying them at
strides of S gives

Output volume: [W2, H2, D1]

W2 = (W1-F)/S+1, H2 = (H1-F)/S+1

Note: pooling happens independently across each slice, preserving number of slices
E.g. a pooling “neuron” of size 2x2 will perform MAX operation over 4 numbers.

ConvNets: summary

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28:28
32x32 S2:1. ma CS: layer :
s@14x14 120 PS: layer QUTPUT

I
| Ful comlection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

ConvNets: tips & tricks

In practice: Common to zero pad the border

0

0

0

0

0

o | o | o | O | o

(in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

ConvNets: tips & tricks

In practice: Common to zero pad the border

0

0

0

0

0

o | o | o | O | o

(in each channel)

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the output?

7X7 => preserved size!
in general, common to see stride 1, size F, and

zero-padding with (F-1)/2.
(Will preserve input size spatially)

ConvNets: tips & tricks

- start with image that has power-of-2 size
- for conv layers, use stride 1 filter size 3x3 pad input with a
border of zeros (1 spatially)

This makes it so that: [W1,H1,D1] -> [W1,H1,D2] (i.e. spatial size
exactly preserved)

- for pool layers, use pool size 2x2 (more = worse)

Part 3:

Unsupervised deep learning

Methods of Unsupervised Deep Learning

e Autoencoders

* Deep belief networks (DBNs)
* Restricted Boltzmann Machines (RBMs)
* Deep Boltzmann Machines (DBMs)

* Sparse coding

Feature learning problem

* Given a 14x14 image patch x, we can represent it using

196 real numbers. N
255
98
- 93
. 87

..|l" o1
B 91

48

\.“J

 Problem: Can we find a learn a better feature vector to
represent this?

First stage of visual processing: V1

V1 is the first stage of visual processing in the brain.
Neurons in V1 typically modeled as edge detectors:

Neuron #1 of visual cortex Neuron #2 of visual cortex
(model) (model)

Learning sensor representations

Sparse coding (Olshausen & Field,1996)

Input: Images x(1), x@), ..., x(M (each in R"x")

Learn: Dictionary of bases ¢, ¢,, ..., ¢ (also R"*"), so
that each input x can be approximately decomposed

as: ~
=1
X S a; Q,

s.t. aj’s are mostly zero (“sparse”)

Sparse coding illustration

Natural Images Learned bases (¢; _g,): “Edges”

Test example

~(.8 * 36 + 0.3 * d,;, T O.5%
[a,, ..., a64] =[o0,0,..0,0.8,0,..00.3,0, .., 0,0.5, 0]

(feature representation)

Sparse coding illustration

Represent as: [a,;=0.6, a,;=0.8, a,;, = 0.4]

P15 O o,

Represent as: [a;=1.3, a,,=0.9, a,, = 0.3]

b5
* Method “invents” edge detection

« Automatically learns to represent an image in terms of the edges that
appear in it. Gives a more succinct, higher-level representation than the
raw pixels.

» Quantitatively similar to primary visual cortex (area V1) in brain.

Going deep

object models

object parts
(combination
of edges)

Training set: Aligned
images of faces.

[Honglak Lee]

Autoencoder

Layer 2

Layer 3

Network is trained to
output the input (learn
identify function).

Trivial solution unless:
- Constrain number of
units in Layer 2 (learn
compressed
representation), or

- Constrain Layer 2 to
be sparse.

Autoencoder

O\ X

9\\},7’@»“
W,
O

I
/ , a‘/'l;h\

V‘;

1o ()

e Layer 2 Layer 3

Layer 1

Autoencoder

New representation for input.

Autoencoder

Autoencoder

)

W»,WV
o LI S LI
/4

Train parameters sothat ' =
subject to b;’s being sparse.

Autoencoder

Train parameters so that
subject to b;’s being sparse.

Deep Belief Net

* Deep Belief Net (DBN) is another algorithm for
learning a feature hierarchy.

 Building block: 2-layer graphical model (Restricted
Boltzmann Machine).

OO0 OO

e Can then learn additional layers one at a time.

Restricted Boltzmann Machine (RBM)

d, a, as Layer 2. [a; a,, a]
(binary-valued)

O ® @ @ e

MRF with joint distribution:

P(x, ocexp(Zajaj Z])

Use Gibbs sampling for inference.

Given observed inputs x, want maximum likelihood estimation:
max P(x) = maxz P(z,a)

W

Deep Belief Network

Similar to a sparse autoencoder in many ways. Stack
RBMs on top of each other to get DBN.

Layer 3. [b, b,, bj]

Layer 2. [a, a,, a;]

Input [X; X5, X3, X4]

Deep Belief Network

Layer 4. [c, C,, C3]

Layer 3. [b; by, bs]

Layer 2. [a, a,, aj]

O O O O e

onvolutional DBN for audio

<—— Max pooling unit

<—— Detection units

10

tional DBN for aud

Convolu

e
.~

el -

-5 R RN Y R

B

Convolutional deep belief networks illustration

@)

Layer 3 activation (coefficients)

®l ‘A °n

Layer 2 activation (coefficients)

Layer 1 activation (coefficients)

Filter
l W, visualization
/ / Input image

¢ Example image

74

Benefits of unsupervised feature learning

i 1_____.,, b . % V-
: . c' “ ‘la . 4 g '
] 4 4 - e |
e ! \ o : 1R,
p 8
|)

Task: video activity recognition

Method Accuracy

Hessian + ESURF [Williems et al 2008] 38%

Harris3D + HOG/HOF [Laptev et al 2003, 2004] 45%

Cuboids + HOG/HOF [Dollar et al 2005, Laptev 2004] 46%

Hessian + HOG/HOF [Laptev 2004, Williems et al 2008] 46%

Dense + HOG / HOF [Laptev 2004] 47%

Cuboids + HOG3D [Klaser 2008, Dollar et al 2005] 46%
Unsupervised feature learning (our method) 52% <

[Le, Zhou & Ng, 2011]

(Audio

TIMIT Phone classification

Prior art (Clarkson et al.,1999) 79.6%

80.3%

Feature learning

N

TIMIT Speaker identification

Prior art (Reynolds, 1995) 99.7%

100.0%

Feature learning

/Images

CIFAR Object classification

Prior art (Ciresan et al., 2011) 80.5%

82.0%

Feature learning

NORB Object classification

Prior art (Scherer et al., 2010) 94.4%

95.0%

Feature learning

/

o
Video

Hollywood2 Classification

Prior art (Laptev et al., 2004) 48%

Feature learning 53%

KTH

Prior art (Wang et al., 2010) 92.1%
93.9%

Veature learning

Accuracy

Prior art (Liu et al., 2009) 71.2%

75.8%

Prior art (Wang et al., 2010) 85.6%

86.5% /

Feature learning

Feature learning

4 Text/NLP

Paraphrase detection

Prior art (Das & Smith, 2009) 76.1%

76.4%

Feature learning

Sentiment (MR/MPQA data)

Prior art (Nakagawa et al., 2010) 77.3%

77.7%

Feature learning

/

ImageNet classification: 22,000 classes

smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi

hammerhead, hammerhead shark

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus Mantaray
suitarfish

roughtail stingray, Dasyatis centroura i

puttertly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish
|Atlantic manta, Manta birostris |

devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis

little skate, Raja erinacea

ImageNet Classification:
14M Images, 22K categories

0.005% 9.5% ?

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11) From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

ImageNet Classification:
14M Images, 22K categories

0.005% 9.5% 21.3%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11) From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

