

Applications: Deep Learning for Vision I 6.869 Advances in Computer Vision

Places Database and Places-CNNs for Largescale Scene Recognition

Bolei Zhou Nov.9, 2015

Lecture Outline

- Building the Places Database
- Training CNN on Places Database
- Analyzing the Places-CNNs

The evolution of object and scene databases

COIL-20 (1996) Caltech 101 (2003)

104

105

2 year

old kid

109

images

The 15-scenes benchmark

15 scene categories and 5, 000 images

Building facade

Coast

Forest

Bedroom

Living room

Office

Kitchen

Store

Industrial

Street

Mountain

Open country

Oliva & Torralba, 2001, Fei Fei & Perona, 2005, Lazebnik, et al 2006

The evolution of scene and object centered databases

15 scenes database (2006)

SUN dataset 900 Scene categories & 130,000 images

The evolution of scene and object centered databases

15 scenes database (2006)

places

Places Database for Scene Recognition

http://places.csail.mit.edu

Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

Dataset building process:

1. Scene words are collected from a dictionary

2. Images are queried and downloaded

flickr

bing

3. Crowd sourcing annotation

Dataset building process:

1. Scene words are collected from a dictionary

any concrete noun which could reasonably complete the phrase "I am in a place ", or "Let's go to the place "

Dataset building process:

2. Images are queried and downloaded

bedroom

0 Q

Web Images

Videos Maps Shopping

More * Search tools

Modern

Designs

THOMAS .

student bedroom

<u>م</u>

Web Images

es Shopping Videos News More *

Search tools

Design

In reality, student bedroom should be like this:

900 adjective to improve diversity

abandoned, acceptable, accessible, additional, adjacent, advertised, affordable, air-conditioned, alternative, american, amusing, ancient, antique, appealing, appropriate, architectural, asian, astonishing, astounding, attractive, austere, authentic, available, average, awesome, beautiful, beguiling, beloved, best, better, better-known, big, bigger, biggest, bizarre, black, black-and-white, bland, boring, breezy, brick-built, bright, brighter, brightest, brilliant, broken, busiest, business-like, bustling, busy, central, centralized, certain, changed, changing, charming, cheaper, cheapert, cheerful, cheerless, cheery, cherished, chilling, chilly, civilized, classic, classical, clean, cleaner, clear, clearer, clinical, closer, closest, closing, cloudy, coastal, cold, coldest, colourful, comfortable, comforting, comfortless, comfy, common, comparable, comparative, competitive, complementary, complete, complex, complicated, concealed, conceivable, confined, considerable, contemporary, cool, coolest, cosmopolitan, cost-effective, cosy, cozy, cream-white, creative, crowded, cultivated, cultural, current, damp, dangerous, dark, darkened, darker, darkest, decorative, delightful, designated, designed, desirable, desired, desolate, desolated, different, difficult, dilapidated, dim, dimly-lit, dingy, dirty, disadvantageous, disorderly, do-it-yourself, domestic, double-fronted, doublelength, downtown, drab, dreadful, driest, dry, dual, dull, duller, dullest, dusty, early, economic, economical, elegant, embarrassing, empty, enormous, especial, european, everyday, exciting, exemplary, exotic, exterior, external, extraordinary, extravagant, familiar, famous, fancy, fantastic, far-away, fascinating, fashionable, fashioned, favourable, fictional, fictitious, filmed, filthy, fine, foggy, foreign, formal, fractured, friendly, frightening, frightful, frosty, frozen, frustrating, full, funny, furnished, fuzzy, gaudy, ghastly, ghostly, glamorous, glassy, glazed, glittering, gloomy, glorious, glossy, godlike, gold-plated, good, gorgeous, graceful, gracious, grand, gray, great, greatest, green, greener, grey, grisly, gruesome, habitable, habitual, handy, happy, harmonious, harrowing, harsh, hazardous, healthful, healthy, heart-breaking, heart-rending, heavy, hideous, hiding, higgledypiggledy, high, hilarious, historical, holiest, home, horizontal, hospitable, hostile, hot, huge, humid, idyllic, illegal, imaginary, immaculate, immense, imminent, immortal, impassable, impassioned, impersonal, important, impossible, impressive, improbable, improper, inauspicious, inconceivable, inconvenient, incredible, independent, individual, indoor, industrial, ineffable, inexpensive, informal, inhabited, inhospitable, initial, innovatory, innumerable, insecure, insignificant, inspiring, integrated, intentional, interesting, intermediate, internal, international, intimidating, intriguing, inviting, irrational, irregular, isolated, joint, joyful, key, known, large, large-scale, largest, less-favored, lesser, licensed, lifeless, light, limited, little, little-frequented, little-known, lively, living, local, lofty, logical, lone, long, long-awaited, long-forgotten, long-inhabited, long-netting, longstays, long-term, lost, lousy, lovely, low, low-ceilinged, low-cost, low-energy, lower, lucky, luxury, magical, magnificent, main, majestic, major, marginal, marine, marvellous, massive, masterful, maximum, mean, meaningless, mechanised, medieval, mediocre, medium-sized, melancholy, memorable, messy, middle, middle-order, mighty, miniature, minor, miserable, missing, misty, mixed, modern, moist, mouldy, mountainous, moving, muddy, multi-functional, multiple, mundane, murky, musty, muted, mysterious, mysterious-looking, mystic, mystical, mythic, naff, named, nameless, narrow, national, native, natural, naturalistic, nearby, neat, necessary, neglected, neighboring, new, nice, night-time, nineteenth-century, noisy, nondescript, normal, northern, notable, notorious, numerous, odd, odorous, official, old, only, open, open-air, operatic, orderly, ordinary, organic, original, ornamental, out-of-homes, out-of-the-way, outdoor, outlying, outside, outstanding, over-crowded, overgrown, overwhelming, paid, painful, painted, palatial, pastoral, peaceful, peculiar, perfect, periodic, peripheral, permanent, permitted, personal, petty, pictorial, picturesque, pitiful, placid, plain, planted, pleasant, pleasing, poisonous, poor, popular, populated, populous, positive, possible, post-war, posterior, postmodern, potential, powerful, practical, pre-arranged, pre-eminent, precise, predictable, present, present-day, preserved, pretty, previous, pricey, primal, prior, private, privileged, probable, professional, profitable, promising, proven, public, pure, queer, quiet, rainy, rare, real, realistic, reasonable, rebuilt, recent, recognized, recommended, reconstructed, recreated, recurring, red, red-brick, redundant, refused, regional, regular, related, relative, relaxing, relevant, reliable, religious, remaining, remarkable, remote, rented, representative, reputable, required, reserved, residential, respectable, respected, restful, restless, restricted, retail, rich, ridiculous, right, rigid, river-crossing, rocky, romantic, rural, sacred, sad, safe, salubrious, satisfying, scary, scattered, scenic, scientific, secondary, secret, secured, selected, senior, separated, serious, sexy, shiny, shocking, shoddy, short-term, significant, silent, silly, similar, simple, single, sizable, slack, small, smelly, smoke-free, smoking, snowy, sobering, soft, solid, sombre, soothing, sophisticated, sorrowful, sound-filled, southern, spare, spatial, specialized, spectacular, sporting, stable, standard, static, steady, stifling, strange, stressful, striking, stunning, stupendous, stupid, stylish, successful, sufficient, sunny, super, superior, surrealistic, suspicious, symbolic, teenage, terrible, terrific, theoretical, thrilling, thriving, tidier, tight, tiny, tough, tragic, unattractive, unbelievable, uncertain, unchanging, uncharted, uncivilized, uncomfortable, unconventional, underground, underwater, undisturbed, uneven, unexpected, unfamiliar, unforgettable, unfriendly, unhappy, unhealthy, unimportant, unknown, unnatural, unnecessary, unparalleled, unpleasant, unsafe, unseemly, unsuitable, unusual, upmarket, urban, vague, valuable, varied, various, vertical, very, vibrant, virtual, visual, vital, vivid, voluntary, vulgar, vulnerable, wacky, waiting, warm, wealthy, weeping, weird, weird-looking, well-assured, well-defended, well-designed, well-hidden, well-insulated, well-known, well-lit, well-loved, well-ordered, well-organized, well-secured, well-sheltered, well-used, wet, white, whole, wicked, wide, widespread, wild, windy, wintering, wonderful, wondrous, wooded, wordless, working, worldly, worldwide, worst, worthwhile, worthy, wretched, wrong, young, yucky,

Dataset building process:

3. Crowd sourcing annotation

AMT workers get paid to annotate the images

Annotation Interface

overlay on the photo. Here are some examples:

Task

No Single Object No Text Overlay No Drawing No Screenshot No Graphics No Bad Photo

Annotation Interface 1st round

Annotation Interface: 2nd round

Is this a living room scene?

Submit (798 images left)

Definition: a room in a private residence intended for general social and leisure activities.

L-II	5/810	[⊫]

simple bedroom:476

superior bedroom:423

senior bedroom:319

colourful bedroom:209

cleaner bedroom:205

messy bedroom:808

places - • •

Places Database for Scene Recognition

http://places.csail.mit.edu

10 million images from 476 scene categories

Mostly Pressed

More than one year of time!

Depressed.

Oppressed.

Impressed!

How to train with million of images

Traditional machine learning algorithm cannot handle large-scale data

Training CNN on Places Database

AlexNet CNN: 5 conv layers + 2 FC layers + 1 softmax layer

Imagenet classification with deep convolutional neural networks. NIPS'12

Training CNN on Places Database

We train AlexNet CNN on 2.5 million images from 205 categories of Places.

- trained on GPU NVIDIA Titan Black for 7 days using Caffe Package. - 60,000,000 parameters and 630,000,000 connections.

Classification accuracy on the test set of Places 205 and the test set of SUN 205.

	Places 205	SUN 205
Places-CNN	50.0%	66.2%
ImageNet CNN feature+SVM	40.8%	49.6%

Zhou, Lapedriza, Xiao, Torralba & Oliva (NIPS 2014)

Places-CNN Demo

2675 anonymous users report 77% top-5 recognition accuracy

Predictions:

- type: indoor
- semantic categories: coffee_shop:0.47, restaurant:0.17, cafeteria:0.08, food_court:0.06,

Predictions:

- type: indoor
- semantic categories: supermarket:0.96,

Predictions:

- type: indoor
- semantic categories:
- conference_center:0.51, auditorium:0.12, office:0.08,

Demo, data, and Places-CNNs could be downloaded at http://places.csail.mit.edu

Analyzing the CNNs

What are all those units doing?

Object Representations in Computer Vision

Part-based models are used to represent objects and visual patterns.

-Object as a set of parts

-Relative locations between parts

Object Representations in Computer Vision

Constellation model

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Bag-of-word model

Lazebnik, Schmid & Ponce(2003), Fei-Fei Perona (2005)

Deformable Part model

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan (2010)

Class-specific graph model

Kumar, Torr and Zisserman (2005), Felzenszwalb & Huttenlocher (2005)

Learning to Represent Objects

Possible internal representations:

- Object parts
- Textures
- Attributes

How Objects are Represented in CNN?

CNN uses distributed code to represent objects.

Agrawal, et al. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014 Szegedy, et al. Intriguing properties of neural networks.arXiv preprint arXiv:1312.6199, 2013. Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.

Learning to Represent Scenes

Possible internal representations:

- Objects (scene parts?)
- Scene attributes
- Object parts
- Textures

ImageNet CNN and Places CNN

Generic Visual Feature

Scene datasets

	SUN397	MIT Indoor67	Scene15	SUN Attribute
Places-CNN feature	54.32±0.14	68.24	90.19±0.34	91.29
ImageNet-CNN feature	42.61 ± 0.16	56.79	84.23±0.37	89.85

Object datasets

	Caltech101	Caltech256	Action40	Event8
Places-CNN feature	65.18 ± 0.88	45.59 ± 0.31	42.86 ± 0.25	94.12±0.99
ImageNet-CNN feature	$87.22 {\pm} 0.92$	$67.23 {\pm} 0.27$	$54.92 {\pm} 0.33$	94.42±0.76

Data-Driven Approach to Visualize CNN

Neuroscientists study brain

200,000 image stimuli of objects and scene categories (ImageNet TestSet+SUN database)

Preferred Images of Different Layers

Mean Activation Images of Internal Units

ImageNet CNN

Conv1 units

Conv2 units

Conv5 units

FC7 units

Object shapes

Places CNN

Conv1 units

Conv2 units

Conv5 units

FC7 units

Space shapes

Estimating the Receptive Fields

sliding-window stimuli

receptive field

Image segmentation using RF of Units

Image segmentation results for units at different layers:

More semantically meaningful

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Pool5, unit 77; Label:legs; Type: object part; Precision: 96%

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%

Distribution of Semantic Types at Each Layer

Histogram of Emerged Objects in Pool5

Histogram of Emerged Objects in Pool5

Buildings

56) building

120) arcade

8) bridge

123) building

119) building

9) lighthouse

Furniture

18) billard table

155) bookcase

116) bed

38) cabinet

85) chair

People

person

49) person

138) person

100) person

Lighting 55) ceiling lamp

174) ceiling lamp

223) ceiling lamp

13) desk lamp

Nature

195) grass

89) iceberg

140) mountain

159) sand

Evaluation on SUN Database

Evaluate the performance of the emerged object detectors

Bolei Zhou, et al, ICLR'15

Summary

We show that object detectors emerge within CNN trained for scene classification, even more than the CNN trained for object classification.

How these object detectors are relevant to the final prediction of the CNN?

Why CNN makes the prediction?

CNN Predictions:

Bedroom:0.64 Dorm room:0.23

Why CNN makes the prediction?

Hot spring:0.36

Art studio:0.54

Living room:0.53

Zhou et al, Learning Deep Features for Discriminative Localization. CVPR'16 submission

Why CNN makes the prediction?

Basic idea: simplify the CNN structures

Zhou et al, Learning Deep Features for Discriminative Localization. CVPR'16 submission

Class Activation Map

Object localization without bounding box annotation

Class Activation Mapping

Different predictions leads to different class activation maps

Zhou et al, Learning Deep Features for Discriminative Localization. CVPR'16 submission

Weakly-supervised object localization

CNN trained from classification is used for object localization directly, without bounding box annotation.

Table 3. Localization error on the ILSVRC test set for various weakly- and fully- supervised methods.

Method	supervision	top-5 test error
GoogLeNet-GAP (heuristics)	weakly	37.1
GoogLeNet-GAP	weakly	42.9
Backprop [22]	weakly	46.4
GoogLeNet [24]	full	26.7
OverFeat [21]	full	29.9
AlexNet [24]	full	34.2

Localizable Deep Features

Deep Feature + linear SVM: localize informative regions

Stanford Action40

Caltech256

Zhou et al, Learning Deep Features for Discriminative Localization. CVPR'16 submission

Summary

- Places Database are built
- Places-CNNs are trained on Places Database
- Places-CNN and ImageNet-CNN are compared.

All data, demo, and pre-trained models are available at

http://places.csail.mit.edu