
chapter˙02˙linearfiltering 2014/9/9 17:03 Page 1 #1

2 Filtering

In the previous chapter, we made a simple computer vision system. We broke
the image into edges, and labeled the edges, to make progress in interpreting
the 3d shape of a scene. But we had to work in a very constrained world so
that our brittle processing steps would give useful information about edges and
their labels.

Of course, we want to build a vision system that operates in the real world.
One such system is the human visual system. We have a fairly good idea of
what happens at the initial stages of visual processing, and it will turn out to be
similar to some of the filterings we discuss in this lecture. While we’re inspired
by the biology, here we seek some mathematically simple processing that will
help us to parse an image into useful tokens, low-level features that will be
useful later to construct visual interpretations.

We’d like for our processing to enhance image structures of use for sub-
sequent interpretation, and to remove variability within the image that makes
more difficult comparisons with previously learned visual signals. Let’s pro-
ceed by invoking almost the simplest mathematical processing we can think
of, and see how far it takes us toward these goals.

2.1 Linear Filtering

Perhaps the simplest filtering is linear. Each pixel of the output image is
replaced by a linear combination of pixels of the input image. If horizontal
and vertical positions are indexed by m and n, the output image is f [m, n], and
the input image is g [m, n], then a general linear filtering of the image is

f [m, n] =
∑
k,l

h [m, n, k, l] g [k, l] (2.1)

Typically, we don’t know where within the image we expect to find any
given item (Fig. 2.1), so we often want to process the image in a spatially
invariant manner, the same processing algorithm at every pixel. In that case,
the processing becomes a linear convolution of the image data with some filter.
The weighting, h, for the linear combination of the input image pixels, g, is
only a function of the spatial offset from the pixels of g. For a 1-dimensional
signal, a linear convolution, denoted ◦, of h and g is:

f m = h ◦ g (2.2)

=

∑
k

h [m− k] g [k] (2.3)

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 2 #2

2 Part

Figure 2.1
A fundamental property of images is translation invariance–the same image may appear at arbi-
trary spatial positions within the image. Image credit: [?].

Figure 2.2 shows the convolution of a kernel, h, with a 1-d signal, g. h and g
are shown in the top row. Subsequent rows show the implementation. hm− k
is just h, offset by m pixels and reversed. We multiply this term-by-term with
g and sum those weighted values of g[m] to form the output signal, f[m].

In two dimensions, the processing is analogous: The input filter is flipped
vertically and horizontally, then slid over the image to record the inner product
with the image everywhere. Mathematically, this is:

f [m, n] = h ◦ g (2.4)

=

∑
k,l

h [m− k, n− l] g [k, l] (2.5)

Figure 2.3 shows the 2-d convolution of a kernel h with an image, g. The par-
ticular kernel used in the figure averages in the vertical direction and takes
differences horizontally. The output image reflects that processing, with hori-
zontal differences accentuated and vertical changes diminished.

When implementing a convolution, one is confronted with the question of
what to do at the image boundaries. There’s really no satisfactory answer for
how to handle the boundaries that works well for all applications. Some typical
choices for the convolution output for a pixel where the kernel requires using
an pixel value outside of the input image:

• set the output to zero

• set the value to that of the nearest output image pixel with valid mask inputs

• reflect the valid output image pixels over the boundary of valid output pixels.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 3 #3

3

Figure 2.2
Illustration in 1-d of the steps in computing the convolution of a kernel h with a signal g. Shifted
and offset versions of the kernel h provide the weights to construct f[m] from a linear combination
of the samples of g[m].

Figure 2.3
Illustration of a 2-d convolution of an input image, g, convolved with a kernel, h, giving the output
image, f. The images are shown with both their pixel values and the corresponding image intensi-
ties (the assignment of intensities to numbers was rescaled for the output image, f). Border pixel
values of the output image are not determined by the convolution, since the kernel would include
pixel values outside of the input image.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 4 #4

4 Part

• crop the output image to omit the border pixels

To build intuition about filter convolutions and their visual results, the fol-
lowing figures provide a visual dictionary of some simple convolution ker-
nels and their output when applied to images. Figure 2.4 (a) is a warm-up: an
impulse, convolved with any image, gives back that same image (even at the
boundaries, by the way, since any pixels beyond the boundaries are multiplied
by zero). Figure 2.4 (b) is a shift. when you take this shifted impulse, flip it,
and multiply by the original image, the original image is shifted two pixels to
the right.

What linear convolution will cause the image to rotate (Figure 2.4 (c))? At
the center of rotation, the center pixel should be output, no matter what the
surrounding pixels are, so that can only be implemented by convolution with
an impulse. But at the top left corner, one wants to grab a pixel from, say, 5
pixels down and to the right, and from the bottom one needs to grab the pixel
from about 5 pixels up and to the right. So this rotation operation can’t be
written as a spatially invariant convolution.

2.1.1 Kernel and convolution examples

Linear convolutions, despite their simplicity, are surprisingly useful for pro-
cessing and interpreting images. It’s often very useful to blur images, in prepa-
ration for subsampling or to remove noise, for example. Other useful process-
ing includes edge enhancement and motion analysis.

Figure 2.5 shows some blurring kernels and the filtered results. Figure 2.5 (a)
shows an image convolved with a uniform, rectangular kernel–each pixel is an
average of the input pixels within the rectangle.

Figure 2.5 (b) and (c) show the results of blurring in just one direction.
A simple way to design a sharpening filter is to de-emphasize the blurry

components of an image. By the linearity of the convolution operator, we’re
allowed to add and subtract kernels to make a new kernel that would give us
the same filtered image as if we had added and subtracted the filtered outputs
of each of the component kernels. For this example, we start with twice the
original image (sharp plus blurred parts), then subtract away the blurred com-
ponents of the image. That would leave one original image in there, plus an
additional component of the sharp details. The perceptual result is that of a
sharpened image, Fig. 2.6.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 5 #5

5

(a)

(b)

(c)
Figure 2.4
(a) An impulse convolved with the input image gives no change. (b) A shifted impulse shifts the
image. (c) The text discusses why there is no space invariant convolution kernel can rotate an
image.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 6 #6

6 Part

(a)

(b)

(c)
Figure 2.5
Blurring with (a) a rectangle, and a (b) horizontal and (c) vertical line. Note the structures that are
both averaged out (along the direction of blurring), and maintained (perpendicular to that direction)
in each resulting image.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 7 #7

7

Figure 2.6

Sharpening achieved by subtraction of blurred components (the three filter taps of amplitude 1
3)

from the full image (scaled appropriately).

Figure 2.7
A spatially sampled approximation to the convolution of Gaussian kernels applied to an image.

One of the most useful blurring filters is a Gaussian. For a given standard
deviation parameter, σ , the kernel is G(m, n;σ):

G(m, n;σ) =
1

√
2πσ 2

exp−
m2
+ n2

2σ 2 (2.6)

By adjusting the standard deviation, σ , of the Gaussian, it is possible to adjust
the level of image detail that appears in the blurred image. Figure 2.7 shows
the result of narrow and wider Gaussians applied to an image. The multi-
dimensional Gaussian filter has the additional computational advantage that
it can be applied as a concatenation of 1-d Gaussian filters. This can be seen
by writing the 2-d Gaussian, Eq. (2.6), in the convolution equation, Eq. (2.5).

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 8 #8

8 Part

Figure 2.8
Left: input image. Right: blurred version. The left version has many spurious details introduced
by the undersampling of the image. The right image has been blurred by a large Gaussian filter.
((image from http://acor.org/sgreene/hmsbeagle/html/content/17/recroom/artgalas.htm, after 1973
image by Bela Julesz and Leon Harmon)).

Letting Gx and Gy be the 1-d Gaussian convolution kernels in the horizontal
and vertical directions, we have

G [m, n] ◦ f [m, n] =
∑
k,l

G [m− k, n− l] f [k, l]

=

∑
k,l

1
2πσ 2 exp−

(m− k)2 + (n− l)2

2σ 2 ◦ f [m, n]

=

∑
k

1
√

2πσ 2
exp−

(m− k)2

2σ 2

∑
l

1
√

2πσ 2
exp−

(n− l)2

2σ 2 f [k, l]

= Gx
◦ (Gy

◦ f [m, n])

This can save quite a bit in computation time when applying the convolution
of Eq. (2.7) . If the 2-d convolution kernel is nxn samples, then a direct con-
volution of that 2-d kernel scales in proportion to n2, since Eq. (2.7) requires
one multiplication per image position per kernel sample. Using the cascade of
two 1-d kernels, resulting in an equivalent 2-d filter of the same size, scales in
proportion to 2n.

Another application of linear filtering is to remove distracting high-
resolution image details. Fig. 2.8 shows a Gaussian low-pass filter applied to
remove unwanted image details (the blocky artifacts) from an image.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 9 #9

9

2.2 Fourier Transform

We need a precise language to talk about the effect of linear filters, and the dif-
ferent image components, than saying “sharp” and “blurry” parts of the image.
The Fourier transform is useful for such an analysis.

By analogy with temporal frequencies, which describe how quickly signals
vary over time, a “spatial frequency” describes how quickly a signal varies
over space. The Fourier transform lets us describe a signal as a sum of complex
exponentials, each of a different spatial frequency.

Here’s the definition of the discrete Fourier transform, and its inverse trans-
formation.

Fourier Transform

F [u, v] =
M−1∑
m=0

N−1∑
n=0

f [m, m] exp−2π i(
um
M
+

vn
N
) (2.7)

By applying 1
MN

∑M−1
u=0

∑N−1
v=0 to both sides of Eq. (2.7) and exploiting the

orthonormality between distinct Fourier basis elements, we find the inverse
Fourier transform relation,

Inverse Fourier Transform

f [m, n] =
1

MN

M−1∑
u=0

N−1∑
v=0

F [u, v] exp+2π i(
um
M
+

vn
N
) (2.8)

As we can see from the transform equation, we re-write the image, instead of
as a sum of offset pixel values, as a sum of complex exponentials, each at a dif-
ferent frequency, called a spatial frequency for images, since they describe how
quickly things vary across space. Of course, images are real, and thus really
we’re describing the image as a sum of sines and cosines, which we’ll create
from the complex exponentials by taking sums and differences of them, at the
same amplitude. So to generate a real valued image, the Fourier transform will
always have real component that is even, and an imaginary component that is
odd.

From the inverse transform formula, we see that to construct an image from
a Fourier transform, capital F, we just add-in the corresponding amount of that
particular complex exponential (conjugated).

To get a feel for what the Fourier components indicate visually, we can look
at a some positions in the Fourier transform plane, and see what those coeffi-
cients correspond to, visually.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 10 #10

10 Part

We usually arrange the coefficients in the complex plane so that the zero fre-
quency, or “DC”, coefficient is at the center (this is different than what matlab
will give you if you run FFT). Slow, large variations correspond to complex
exponentials of frequencies near the origin. If the amplitudes of the complex
conjugate exponentials are the same, then their sum will represent a cosine
wave; if their amplitudes are opposite, it will be a sine wave. Frequencies
further away from the origin represent faster variation with movement across
space.

2.2.1 Fourier transform properties

Figure 2.10 shows a color visualization of the complex-valued matrix, which,
when used as a multiplicand, yields the Fourier transform of 1-d vectors. Many
Fourier transform properties and symmetries can be observed from inspecting
that matrix.

Upon first learning about Fourier transforms, it can be such a surprise to
learn that one can synthesize any image as a sum of sines and cosines. To help
gain insight into how that works, it is informative to show examples of partial
sums of complex exponentials. Figure 2.11 shows partial sums of the Fourier
components of an image. In each partial sum of N components, we use the
largest N components of the Fourier transform. Using the fact that the Fourier
basis functions are orthonormal, it is straightforward to show that this is the
best least squares reconstruction possible from each given number of Fourier
basis components. In this example, the first 500 coefficients are sufficient for
recognizing this 256x256 resolution image.

The Fourier transform coefficients are complex numbers. One might ask
which is more important, the magnitude of the fourier transform, or its phase.
For the global fourier transform, the magnitude of the images can often be
quite similar, one to another. The phases carry the information of where the
image contours are, by specifying how the phases of the sinusoids must line
up in order to create the observed contours and edges.

It’s useful to become adept at computing and manipulating simple Fourier
transforms. Figure ?? shows a list of useful Fourier transform pairs (temporar-
ily showing figures from Bracewell and Szeliski’s books), and these are useful
to study and become familiar with.

Figure 2.14 shows the 2-d Fourier transforms of some simple signals. The
depicted signals all happen to be symmetric about the spatial origin. From
the Fourier transform equation, one can show that real and even input signals

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 11 #11

11

(a)

(b)

(c)

(d)

(e)

(f)
Figure 2.9
(a) To get some sense of what basis elements look like, we plot a basis element — or rather,
its real part — as a function of x,y for some fixed u, v. We get a function that is constant when
(ux+vy) is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives
an orientation. The function is a sinusoid with this frequency along the direction, and constant
perpendicular to the direction. (b)Here u and v are larger than in the previous slide. (c) And larger
still...

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 12 #12

12 Part

Figure 2.10
Visualization of Fourier transform as a matrix. The signal to be transformed forms the entries of
the column vector at right. The complex values of the Fourier Transform matrix are indicated by
the color, with the key in the bottom left. In the vector at the right, black values indicate zero.

transform to real and even outputs. So for the examples of Fig. 2.14, we only
show the magnitude of the Fourier transform, which in this case is the absolute
value of the real component of the transform, and the imaginary component
happens to be zero for the signals we’ll examine.

Based on this example, and the Fourier transform pairs of Fig. 2.14, take
the following quiz: match these Fourier transform magnitudes with the corre-
sponding images in Fig. 2.16

The Fourier transform lets us characterize images by their spatial frequency
content. It’s also the natural domain in which to analyze space invariant lin-
ear processes, because the Fourier bases are the eigenfunctions of all space
invariant linear operators. In other words, if you start with a complex exponen-
tial, and apply any linear, space invariant operator to it, you always come out
with a complex exponential of that same frequency, but, in general, with some
different amplitude and phase.

Another way to state that property is through the Fourier convolution the-
orem, given below. Consider a function f that is the convolution of two func-
tions, g and h:

f = g ◦ h (2.9)

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 13 #13

13

(3) (5)

(9) (17)

(33) (65)

(129) (257)

(513) (1025)

(2049) (4097)

(16385) (32769)

(65536)
Figure 2.11
Reconstructing an image from the N Fourier coefficients of the largest amplitude. The left frame
shows the location, in the Fourier domain, of the N Fourier coefficients which, when inverted, give
the image at the right. Using only 1025 coefficients, the image is seen clearly.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 14 #14

14 Part

Figure 2.12
The Fourier transform is complex valued, with each spatial frequency having a magnitude and a
complex phase value. The phase values of the spatial frequencies dominate in their importance
of the visual perception of an image. Top row: three images. Bottom row: image resulting from
randomizing the Fourier transform phase value of each image.

If we take the Fourier transform of both sides, and using the definition of the
Fourier transform, we obtain

F [u, v] = DFT(g ◦ h) (2.10)

=

M−1∑
m=0

N−1∑
n=0

M−1∑
k=0

N−1∑
l=0

g [m− k, n− l] h [k, l] e−2π i(um
M +

nv
N) (2.11)

Changing the dummy variables in the sums (introducing µ = m− k and ν =
n− l), we have

F [u, v] =
M−k−1∑
µ=−k

N−l−1∑
ν=−l

M−1∑
k=0

N−1∑
l=0

g [µ,ν] h [k, l] e−2π i((µ+k)u
M +

(ν+l)v
N (2.12)

Recognizing that the first two summations give the DFT of g, using circular
boundary conditions, gives

F [u, v] =
M−1∑
k=0

N−1∑
l=0

Gu, ve2π i(ku
M+

lv
N)h [k, l] (2.13)

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 15 #15

15

(a)

(b)
Figure 2.13
(a) and (b): A collection of useful Fourier transform pairs, from [?] and [?].

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 16 #16

16 Part

(a)

(b)
Figure 2.14
(a) and (b): Some two-dimensional Fourier transform pairs. Note the trends visible in the collection
of transform pairs: As the support of the image in one domain gets larger, the magnitude in the
other domain becomes more localized. A line transforms to a line oriented perpendicularly to the
first.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 17 #17

17

(a) (b)

(c) (d)
Figure 2.15
Simple filtering in the Fourier domain. (a) The repeated columns of the building of the MIT dome
generate harmonics along a horizontal line in the Fourier domain. (b) By zeroing out those Fourier
components, the columns of the building are substantially removed.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 18 #18

18 Part

Figure 2.16
Match the image to the corresponding plot of the log of the magnitude of its Fourier tranform.

Performing the DFT indicated by the second two summations gives the desired
result,

F [u, v] = G [u, v] H [u, v] (2.14)

Thus, the operation of a convolution, in the Fourier domain, is just a multi-
plication of the Fourier transform of each term in the Fourier domain.

This property lets us examine the operation of a filter on any image by
examining how it modulates the fourier coefficients of any image. This lets
us make precise our coarse description of, say, how sharpening works. So let’s
just revisit that one example.

2.2.2 Sampling and Aliasing

2.2.2.1 shah function and its Fourier transform

2.2.2.2 Nyquist frequency

Figure 2.17.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 19 #19

19

(a) (b)

(c) (d)

(e) (f)

Figure 2.17
Aliasing examples. (a) - (f) Far left column: spatial sampling pattern. 2nd column: Fourier trans-
form of that spatial pattern, revealing replication locations of the Fourier transform spectrum of
the subsampled image. The subsampled image is shown in the 3rd column. Zeroing out all but
the central replication of the image spectrum (far right), yields the interpolated images of the 4th
column.

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 20 #20

chapter˙02˙linearfiltering 2014/9/9 17:03 Page 21 #21

Bibliography

