3.4 = Spatial Filtering

abecd

109

FIGURE 3.12 (a) Same as Fig. 3.10(a). (b) Result of using function adapthisteq with the default valucs.
(¢) Result of using this function with parameter NumTiles setto {25 25]. Result of using this number of tiles

and ClipLimit = 0.05.

»>> g3 = adapthisteq(f, 'NumTiles', [25 25}, 'ClipLimit', 0.05);

vielded the result in Fig. 3.12(d). The enhancement in detail in this image is sig-
nificant compared Lo the previous two results. In fact, comparing Figs. 3.12(d)
and 3.11(b) provides a good example of the advantage that local enhance-
ment can have over global enhancement methods. Generally, the price paid is
additional function complexity.

Spatial Filtering

Asmentioned in Section 3.1 and illustrated in Fig. 3.1, ncighborhood processing
consists of (1) selecting a center point, (x, y):(2) performing an operation that
involves only the pixels in a predefined neighborhood about (x, y); (3) letting
the result of that operation be the “response™ of the process at that point; and
{4) repeating the process for every point in the image. The process of moving
the center point creates new neighborhoods, one for each pixel in the input im-
age. The two principal terms used to identify this operation are neighborhiood
processing and spatial filtering, with the second term being more prevalent. As
explained in the following section. if the computations performed on the pixels
of the neighborhoods are linear, the operation is called linear spatial filtering
(the term spatial convolution also used): otherwise it is called nonlinear spatial
filtering.

J41 Linear Spatial Filtering
The concept of linear filtering has its roots in the use of the Fourier transtorm

for signal processing in the Irequency domain, a topic discussed in detail in
Chapter 4. In the present chapter, we are interested in filtering operations that

110 Chapter 3 = Intensity Transformations and Spalial Filtering

are performed directly on the pixels of an image. Use of the term linear spatial
[filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each
pixel in the neighborhood by a corresponding coefficient and summing the re-
sults to obtain the response at each point (x. y). If the neighborhood is of size
m X n.mn coefficients are required. The coefficients are arranged as a matrix,
called a filter, mask. filter mask. kernel. template, or windeow, with the first three
terms being the most prevalent. For reasons that will become obvious shortly,
the terms convolution filier. convolution mask. or convolution kernel. also are
used.

Figure 3.13 illustrates the mechanics of linear spatial filtering. The process
consists of moving the center of the filter mask, w0, from point to point in an
image. . At cach point (x, y). the response of the filter at that point is the
sum of products of the filter coellicients and the corresponding neighborhood
pixels in the area spanned by the filter mask. For a mask of size m % n, we
assume typically that m = 2a + | and n =2b + 1 where @ and b are nonnega-
tive integers. All this says is that our principal [ocus is on masks of odd sizes.
with the smallest meaningful size being 3 % 3. Although it certainly is not a
requirement. working with odd-size masks is more intuitive because they have
an unambiguous center point.

There are two closely related concepts that must be understood clearly when
performing linear spatial filtering. One is correlation: the other is convolution.
Correlation is the process of passing the mask w by the image array fin the
manner described in Fig. 3.13. Mechanically. convolution is the same process,
except that w: is rolated by 180 prior to passing it by f. These two concepts are
best explained by some examples.

Figure 3.14(a) shows a one-dimensional unction, f, and a mask. w. The ori-
gin of f'is assumed to be its leftmost point. To perform the correlation of the
two functions. we move w so that its rightmost point coincides with the origin
ol f. as Fig. 3.14(b) shows. Note that there are points between the two func-
tions that do not overlap. The most common way to handle this problem is to
pad fwith as many Os as are necessary to guarantee that there will always be
corresponding points for the full excursion of 1 past £, This situation is illus-
trated in Fig. 3.14(c).

We are now ready to perform the correlation. The first value of correlation
is the sum of products of the two functions in the position shown in Fig, 3.14(c).
The sum of products is 0 in this case. Next. we move w one location to the right
and repeat the process [Fig. 3.14(d)]. The sum of products again is 0. After four
shifts [Fig. 3.14(e)], we encounter the first nonzero value of the correlation.
which is (2)(1) = 2. If we proceed in this manner until » moves completely
past [[the ending geometry is shown in Fig. 3.14([)] we would get the result in
Fig. 3.14(g). This set of values is the correlation of w and f. If we had padded
w. aligned the rightmost element of fwith the leftmost element of the padded
w, and performed correlation in the manner just explained. the result would
have been different (rotated by 1807), so order of the functions matters in cor-
relation,

3.4 m Spatial Filtering 111

i\hrmgu origin

Mask centered
at an arbitrary
point (x, y)

Image /

w(ly, =1} w(ll. wilh, 1)

0

wil, - 1) wil, 0y wil 1y

v (x=1Ly) a1l y+l) Mask coellicients, showing
conrdinate arrangement

x=1l.y=1) (x+tly) (x+l.y=1)

Image coordmates under the mask

The label *full' in the correlation in Fig. 3.14(g) is a flag (to be discussed
later) used by the toolbox to indicate correlation using a padded image and
computed in the manner just described. The toolbox provides another option,
denoted by 'same’' [Fig. 3.14(h)] that produces a correlation that is of the
same size as f. This computation also uses zero padding, but the starting posi-
tion is with the center point of the mask (the point labeled 3 in) aligned
with the origin of f. The last computation is with the center point of the mask
aligned with the last point in f.

To perform convolution we rotate w by 180° and place its rightmost point
at the origin of f, as Fig. 3.14(j) shows, We then repeat the sliding/computing

FIGURE 3.13

The mechanies of
linear spatial
filtering. The
magnified drawing
shows a 3 X 3 filter
mask and the
corresponding
image
neighborhood
directly under

it. The image
neighborhood is
shown displaced
out from under
the mask for ease
of readability.

112 Chapter 3 @ Intensity Transformations and Spatial Filtering

FIGURE 3.14
Itlustration of
one-dimensional
correlation and
convolution,

process employed in correlation, as illustrated in Figs. 3.14(k) through (n). The
‘full’ and ‘same' convolution results are shown in Figs. 3.14(0) and (p). re-
spectively.

Function fin Fig. 3.14 is a discrete unit impulse that is 1 at a point and 0
everywhere else. It is evident from the result in Figs. 3.14(0) or (p) that con-
volution with an impulse just “copies™ w at the location of the impulse. This
copying property (called sifting) is a fundamental concept in linear system
theory, and it is the reason why one of the functions is always rotated by 180°
in convolution. Note that, unlike correlation, swapping the order of the func-
lions yields the same convolution result. If the function being shifted is sym-
metric. it is evident that convolution and correlation yield the same result.

The preceding concepts extend easily to images, as Fig. 3.15 illustrates. The
origin is at the top, left corner of image f(x.y) (see Fig. 2.1). To perform cor-
relation, we place the bottom, rightmost point of w(x, y) so that it coincides
with the origin of f(x,y) as in Fig. 3.15(c). Note the use of 0 padding for the

Correlation Convolution
~ Origin f w -~ Origin f w rotated 180°
(@) 00010000 123290 ¢ 00010000 02321 (i)
| :
(b) 00010000 00010000)]
12320 02321

t Starting position alignment

f_£_‘—-— Zero padding —;_]

€WO000000100000000
12320

(=~

00000D10000CG0O0D0O0 (k)
2321

(d0000000100000000
12320

L Position after one shift

000
0

001000060000 ()
1

w S
LS 1

~

() 00D0000CO0OLOOODOOD0OLO
12320

L pusition after four shifts

0000000100000000 (m)
2321

1
2

fHHoOoO0OOODTIO0OVOLOOOQ
1 3

00000001 00000000 (n)
2320 2 |

0232
Final position 4

'full' convolution result
000123200000 (o)

*full' correlation result
(g) 000023210000

‘same’ convolution result
01232000 (p)

‘same ' corrclation result
(h) 00232100

3.4 @ Spatial Filtering 113

Padded f FIGURE 3.15
DO0BON000 Mustration of
BOOOOBoON two-dimensional
e 0o0Geo0n00 correlation and
2 Origin of fix.y) Boooaoonn convolution. The
noonnun fe s oo Lrauun (s are shown in
0wohaihn wix, v 0nooao00aan . . .
T I | 2'?. OO0 aq g!"dy.lu.\m‘lphfy
g0 n0n 4 56 oo 0000000 viewing.
O0oouun 78R4 Q00000000
(a) (b)
< Initial position for w *full' correlation resull ‘same’ correlation result
T2 3Fago00000 BDOODOO00 0noono
14 56000000 Doouoononon N9 8&7TNH
:1_5_}33'1: 0hnuon DO ODODO0 06540
Q00000001 DO EETLHLOHO 3210
ool YDYo DODOD6S5S 4000 0ouanuo
DOOHDOOO000D buwn3i2Lonon
Dongongno GOoOnDooaann
DBODOO0D00Dn Douoounuuo
nonnnnnnn OO0 o0nno
(c) (d) (e)
+ Rotated 1w ‘full’ convolution resull 'same’ convolution result
WETROO00 0N GO0 00 OO0 o0o0
G sd000000 OO 01230
:3__2_1_,:» 00o0aau oo oongno0 043560
oo vounoo non1r23000 07890
aGOoao01o00G008 dgon4s56000 nonoon
DOOOOUYDnO Hno7890n010
aaoaoouonl Oouno0nononao
ooy no Ooo0onnoonu
QoOoboyooooodn oo gnoa
() () (h)

reasons mentioned in the discussion of Fig. 3.14. To perform correlation, we
move w(x.v) in all possible locations so that at least one of its pixels over-
laps a pixel in the original image f(x,y). This 'full' correlation is shown in
Fig.3.15(d). To obtain the 'same ' correlation in Fig. 3.15(e), we require that all
excursions of w(x, v) be such that its center pixel overlaps the original f(x.).
For convolution, we rotate w(.x. y) by 180 and proceed in the same manner
as in correlation [see Figs. 3.15(f) through (h)]. As in the one-dimensional
example discussed earlier, convolution yields the same result independently of
the order of the functions. In correlation the order does matter, a fact that is
made clear in the toolbox by assuming that the filter mask is always the func-
tion that undergoes translation. Note also the important fact in Figs. 3.15(e)
and (h) that the results of spatial correlation and convolution are rotated by
180° with respect to each other. This, of course, is expected because convolu-
tion is nothing more than correlation with a rotated filter mask.

114 Chapter 3 @ Intensity Transformations and Spatial Filtering

Summarizing the preceding discussion in equation form. we have that
the correlation of a filter mask w(x, y) of size m X n with a function f(x,y),
denoted by w(x, y) st f(x, y).is given by the expression

a b

w(x,y)# flx.y)=y z"hw(s.r)f(.r +85y+1)
This equation is evaluated for all values of the displacement variables x and y so
that all elements of w; visit every pixel in f, which we assume has been padded
appropriately. Constants a and b are given by a = (m — 1)/2 and b = (n — 1)/2.
For notational convenience, we assume that m and » are odd integers.
In a similar manner. the convolution of w(x,y) and f(x,y), denoted by
w(x.y) * f(x,y),is given by the expression

o bh
wix.y)* f(x.y)= Z Z w(s.t)f(x —s.y—1t)
s=-at=~h

where the minus signs on the right of the equation flip f (i... rotate it by 180°).
Rotating and shifting finstead of w is done to simplify the notation. The result
is the same. The terms in the summation are the same as for correlation.

The toolbox implements linear spatial filtering using function imfilter,
which has the following syntax:

g = imfilter(f, w, filtering mode, boundary options, size_options)

where f is the input image. w is the filter mask, g is the filtered result. and
the other parameters are summarized in Table 3.3. The filtering_mode is
specified as 'corr’ for correlation (this is the default) or as 'conv' for con-
volution. The boundary_options deal with the border-padding issue. with the
size of the border being determined by the size of the filter. These options are
explained further in Example 3.8. The size_options are either ‘same’ or
'full’, as explained in Figs. 3.14 and 3.15.
The most common syntax for imfilter is

g = imfilter(f, w, 'replicate’')

This syntax is used when implementing standard linear spatial filters in the
toolbox. These filters, which are discussed in Section 3.5.1. are prerotated by
180°, so we can use the correlation default in imfilter (from the discussion of
Fig. 3.15, we know that performing correlation with a rotated filter is the same
as performing convolution with the original filter). If the filter is symmetric
about its center. then both options produce the same result.

" Bucause convolution is commutative, we have that uxx, Y)* fx.p) = f(x, v) ke u(x. p) . This is not true of
correlation. as you can see. for example, by reversing the order of the two functions in Fig. 3.14(a).

{
1
!

A R e A i

3.4 m Spatial Filtering 115

Options Description

Filtering Mode
Sorn! Filtering is done using correlation (see Figs. 3.14 and 3.15). This is
the deflault.
‘conv’ Filtering is done using convolution (see Figs. 3.14 and 3.15).
Boundary Options
P The boundaries of the input image are extended by padding with
a value, P (written without quotes). This is the default, with value 0.
‘replicate’ The size of the image is extended by replicating the values in its
outer border.

‘symmetric' The size of the image is extended by mirror-reflecting it across ils
border.
‘circular’ The size of the image is extended by treating the image as one

period a 2-D periodic function.
Size Options

'full' The output is of the same size as the extended (padded) image
(see Figs, 3.14 and 3.15).

‘same’ The output is of the same size as the input. This is achieved by
limiting the excursions of the center of the filter mask to points
contained in the original image (see Figs. 3.14 and 3.15). This is
the delault.

When working with filters that are neither pre-rotated nor symmetric, and
we wish to perform convolution, we have two options, One is to use the syn-
lax

g = imfilter(f, w, 'conv', ‘replicate')

The other approach is to use function rot90(w, 2) to rotate w by 180° and then
use imfilter(f, w, 'replicate').The two steps can be combined into one:

g = imfilter(f, rot90(w, 2), 'replicate’)

The result would be an image, g. that is of the same size as the input (i.e.. the
default is the 'same' mode discussed earlier).

Each element of the filtered image is computed using floating-point arith-
metic. However, imfilter converts the output image to the same class of the
input. Therefore, if f is an integer array. then output elements that exceed the
range of the integer type are truncated, and [ractional values are rounded. If
more precision is desired in the result. then f should be converted to floating
point using functions im2single, im2double. or tofloat (sce Section 2.7)
before using imfilter.

TABLE 3.3
Options for
function
imfilter.

 roteo

rot90(w, K) rolaies w
by k*80 degrees. where K
IS anmicger

