
Convolutional Networks and Applications in Vision
Yann LeCun, Koray Kavukcuoglu and Clément Farabet

Computer Science Department, Courant Institute of Mathematical Sciences, New York University
{yann,koray,cfarabet}@cs.nyu.edu

Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce



Fig. 2. An example of feature extraction stage of the type F−Rabs−N−PA.
An input image (or a feature map) is passed through a filter bank, followed
by abs(gi. tanh()), local subtractive and divisive contrast normalization, and
spatial pooling/sub-sampling.

the resolution [5], [6]. In some recent versions of ConvNets,
the pooling also pools similar feature at the same location, in
addition to the same feature at nearby locations [7].

Supervised training is performed using a form of stochastic
gradient descent to minimize the discrepancy between the
desired output and the actual output of the network. All
the coefficient of all the filters in all the layers are updated
simultaneously by the learning procedure. The gradients are
computed with the back-propagation method. Details of the
procedure are given in [2], and methods for efficient training
are detailed in [8].

History and Applications
ConvNets can be seen as a representatives of a wide

class of models that we will call Multi-Stage Hubel-Wiesel
Architectures. The idea is rooted in Hubel and Wiesel’s classic
1962 work on the cat’s primary visual cortex. It identified
orientation-selective simple cells with local receptive fields,
whose role is similar to the ConvNets filter bank layers, and
complex cells, whose role is similar to the pooling layers.
The first such model to be simulated on a computer was
Fukushima’s Neocognitron [9], which used a layer-wise, un-
supervised competitive learning algorithm for the filter banks,
and a separately-trained supervised linear classifier for the
output layer. The innovation in [5], [1] was to simplify the
architecture and to use the back-propagation algorithm to
train the entire system in a supervised fashion. The approach
was very successful for such tasks as OCR and handwrit-
ing recognition. An operational bank check reading system
built around ConvNets was developed at AT&T in the early
1990’s [2]. It was first deployed commercially in 1993, running
on a DSP board in check-reading ATM machines in Europe
and the US, and was deployed in large bank check reading
machines in 1996. By the late 90’s it was reading over
10% of all the checks in the US. This motivated Microsoft
to deploy ConvNets in a number of OCR and handwriting
recognition systems [6], [10], [11] including for Arabic [12]
and Chinese characters [13]. Supervised ConvNets have also
been used for object detection in images, including faces
with record accuracy and real-time performance [14], [15],
[16], [17], Google recently deployed a ConvNet to detect
faces and license plate in StreetView images so as to protect
privacy [18]. NEC has deployed ConvNet-based system in
Japan for tracking customers in supermarket and recognizing
their gender and age. Vidient Technologies has developed a
ConvNet-based video surveillance system deployed in several
airports in the US. France Télécom has deployed ConvNet-
based face detection systems for video-conference and other
systems [15]. Other experimental detection applications in-
clude hands/gesture [19], logos and text [20]. A big advantage
of ConvNets for detection is their computational efficiency:
even though the system is trained on small windows, it suffices
to extend the convolutions to the size of the input image
and replicate the output layer to compute detections at every
location. Supervised ConvNets have also been used for vision-
based obstacle avoidance for off-road mobile robots [21]. Two

participants in the recent DARPA-sponsored LAGR program
on vision-based navigation for off-road robots used ConvNets
for long-range obstacle detection [22], [23]. In [22], the system
is pre-trained off-line using a combination of unsupervised
learning (as described in section II) and supervised learning.
It is then adapted on-line, as the robot runs, using labels
provided by a short-range stereovision system (see videos at
http://www.cs.nyu.edu/ yann/research/lagr). Inter-
esting new applications include image restoration [24] and
image segmentation, particularly for biological images [25].
The big advantage over MRFs is the ability to take a large
context window into account. Stunning results were obtained
at MIT for reconstructing neuronal circuits from an stack of
brain slice images a few nanometer thick. [26].

Over the years, other instances of the Multi-Stage Hubel-
Wiesel Architecture have appeared that are in the tradition
of the Neocognitron: unlike supervised ConvNets, they use
a combination of hand-crafting, and simple unsupervised
methods to design the filter banks. Notable examples include
Mozer’s visual models [27], and the so-called HMAX family
of models from T. Poggio’s lab at MIT [28], [29], which
uses hard-wired Gabor filters in the first stage, and a simple
unsupervised random template selection algorithm for the
second stage. All stages use point-wise non-linearities and
max pooling. From the same institute, Pinto et al. [4] have
identified the most appropriate non-linearities and normaliza-
tions by running systematic experiments with a a single-stage
architecture using GPU-based parallel hardware.

II. UNSUPERVISED LEARNING OF CONVNETS

Training deep, multi-stage architectures using supervised
gradient back propagation requires many labeled samples.
However in many problems labeled data is scarce whereas un-
labeled data is abundant. Recent research in deep learning [30],
[31], [32] has shown that unsupervised learning can be used
to train each stage one after the other using only unlabeled
data, reducing the requirement for labeled samples signifi-
cantly. In [33], using abs and normalization non-linearities,
unsupervised pre-training, and supervised global refinement
has been shown to yield excellent performance on the Caltech-
101 dataset with only 30 training samples per category (more
on this below). In [34], good accuracy was obtained on the
same set using a very different unsupervised method based on
sparse Restricted Boltzmann Machines. Several works at NEC
have also shown that using auxiliary tasks [35], [36] helps
regularizing the system and produces excellent performance.

Unsupervised Training with Predictive Sparse Decomposition
The unsupervised method we propose, to learn the filter

coefficients in the filter bank layers, is called Predictive Sparse
Decomposition (PSD) [37]. Similar to the well-known sparse
coding algorithms [38], inputs are approximated as a sparse
linear combination of dictionary elements. In conventional
sparse coding for any given input X , one needs to run
an expensive optimization algorithm to find Z∗ (the “basis
pursuit” problem). PSD trains a feed-forward regressor (or
encoder) C(X,K) to quickly approximate the sparse solution
Z∗. During training, the feature vector Z∗ is obtained by
minimizing:

E(Z,W,K) = ∥X − WZ∥2
2 + λ∥Z∥1 + ∥Z − C(X,K)∥2

2

where W is the matrix whose columns are the dictionnary
elements and K are the filters. For each training sample X ,
one first finds Z∗ that minimizes E, then W and K are



TABLE I

AVERAGE RECOGNITION RATES ON CALTECH-101.
Rabs − N − PA Rabs − PA N − PM PA

U+ 65.5% 60.5% 61.0% 32.0%
R+ 64.7% 59.5% 60.0% 29.7%
U 63.7% 46.7% 56.0% 9.1%
R 62.9% 33.7% 37.6% 8.8%

adjusted by stochastic gradient descent to lower E. Once
training is complete, the feature vector for a given input is
simply obtained with Z∗ = C(X,K), hence the process is
extremely fast (feed-forward).
Results on Object Recognition

In this section, various architectures and training procedures
are compared to determine which non-linearities are prefer-
able, and which training protocol makes a difference.

Generic Object Recognition using Caltech 101 Dataset: We
use a two-stage system where, the first stage is composed of
an F layer with 64 filters of size 9× 9, followed by different
combinations of non-linearities and pooling. The second-stage
feature extractor is fed with the output of the first stage and
extracts 256 output features maps, each of which combines
a random subset of 16 feature maps from the previous stage
using 9 × 9 kernels. Hence the total number of convolution
kernels is 256 × 16 = 4096.

Table I summarizes the results for the experiments, where
U and R denotes unsupervised pre-training and random
initialization respectively, and + denotes supervised fine-
tuning of the whole system.
1. Excellent accuracy of 65.5% is obtained using unsupervised
pre-training and supervised refinement with abs and
normalization non-linearities. The result is on par with the
popular model based on SIFT and pyramid match kernel
SVM [39]. It is clear that abs and normalization are cruciala
for achieving good performance. This is an extremely
important fact for users of convolutional networks, which
traditionally only use tanh().
2. Astonishingly, random filters without any filter learning
whatsoever achieve decent performance (62.9% for R), as
long as abs and normalization are present (Rabs − N − PA).
A more detailed study on this particular case can be found
in [33].
3. Comparing experiments from rows R vs R+, U vs U+,
we see that supervised fine tuning consistently improves the
performance, particularly with weak non-linearities.
4. It seems that unsupervised pre-training (U , U+) is crucial
when newly proposed non-linearities are not in place.

Handwritten Digit Classification using MNIST Dataset:
Using the evidence gathered in previous experiments, we used
a two-stage system with a two-layer fully-connected classifier.
The two convolutional stages were pre-trained unsupervised,
and refined supervised. An error rate of 0.53% was achieved
ont he test set. To our knowledge, this is the lowest error
rate ever reported on the original MNIST dataset, without
distortions or preprocessing. The best previously reported
error rate was 0.60% [32].

Connection with Other Approaches in Object Recognition
Many recent successful object recognition systems can also

be seen as single or multi-layer feature extraction systems fol-
lowed by a classifier. Most common feature extraction systems
like SIFT [40], HoG [41] are composed of filterbanks (oriented
edge detectors at multiple scales) followed by non-linearities
(winner take all) and pooling (histogramming). A Pyramid

Match Kernel (PMK) SVM [39] classifer can also be seen as
another layer of feature extraction since it performs a K-means
based feature extraction followed by local histogramming.

III. HARDWARE AND SOFTWARE IMPLEMENTATIONS

Implementing ConvNets in software is best achieved
using the modular, object-oriented approach suggested
in [2]. Each basic module (convolution, pooling, etc)
is implemented as a class with three member functions
module.fprop(input,output), which computes the
output from the input, module.bprop(input,output),
which back-propagates gradients from the outputs back to
the inputs and the internal trainable parameters, and op-
tionally module.bbprop(input,output), which may
back-propagate second diagonal derivatives for the implemen-
tation of second-order optimization algorithms [8].

Several software implementations of ConvNets are built
around this concept, and have four basic capabilities: 1. a flex-
ible multi-dimensional array library with basic operations such
as dot products, and convolutions, 2. a class hierarchy of basic
learning machine building blocs (e.g. multiple convolutions
non-linear transforms, cost functions, . . . ), 3. a set of classes
for energy-based inference [42], gradient-based optimization,
and performance measurement.

Three available ConvNet implementations use this concept.
The first one is part of the Lush system, a Lisp dialect with
an interpreter and compiler with an easy interface to C [43]
. The second one is EBlearn, a C++ machine learning library
with class hierarchy to the Lush implementation [44]. Third
is Torch-5 [45] a C library with an interpreter front end based
on Lua. All three systems come with facilities to manipulate
large datasets, images, and videos.

The first hardware implementations of ConvNets date back
to the early 90’s with Bell Labs’ ANNA chip, a mixed analog-
digital processor that could compute 64 simultaneous 8 × 8
convolutions at a peak rate of 4.109 multiply-accumulate
operations per second [46], [47], with 4 bit resolution on the
states and 6 bits on the weights. More recently, a group from
the Canon corporation developed a prototype ConvNet chip for
low-power intelligent cameras [48]. Some current approaches
rely on Addressed-Event Representation (AER) convolvers,
which present the advantage of not requiring multipliers
to compute the convolutions. CAVIAR is the leading such
project, with a performance of 12G connections/sec [49].

FPGA implementations of ConvNets appeared in the
mid-90’s with [50], which used low-accuracy arithmetic to
avoid implementing full-fledged multipliers. Fortunately, re-
cent DSP-oriented FPGAs include large numbers of hard-
wired MAC units, which allow extremely fast and low power
implementations of ConvNets. The CNP developed in our
group [51] achieves 10GOPS for 7x7 kernels, with an archi-
tecture that implements entire ConvNets, including pre/post-
processing, and is entirely programmable. An actual face de-
tection application was demonstrated on this system, achieving
10fps on VGA images [52].

IV. CONCLUSION

The Convolutional Network architecture is a remarkably
versatile, yet conceptually simple paradigm that can be applied
to a wide spectrum of perceptual tasks. While traditional
ConvNet trained with supervised learning are very effective,
training them require a large number of labeled training
samples. We have shown that using simple architectural tricks
such as rectification and contrast normalization, and using



unsupervised pre-training of each filter bank, the need for
labeled samples is considerably reduced. Because of their
applicability to a wide range of tasks, and because of their rel-
atively uniform architecture, ConvNets are perfect candidates
for hardware implementations, and embedded applications, as
demonstrated by the increasing amount of work in this area.
We expect to see many new embedded vision systems based
on ConvNets in the next few years.

Despite the recent progress in deep learning, one of the
major challenges of computer vision, machine learning, and
AI in general in the next decade will be to devise methods
that can automatically learn good features hierarchies from
unlabeled and labeled data in an integrated fashion. Current
and future research will focus on performing unsupervised
learning on multiple stages simultaneously, on the integration
of unsupervised and unsupervised learning, and on using the
feed-back path implemented by the decoders to perform visual
inference, such as pattern completion and disambiguation.

REFERENCES

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a
back-propagation network,” in NIPS’89.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[3] S. Lyu and E. P. Simoncelli, “Nonlinear image representation using
divisive normalization,” in CVPR, 2008.

[4] N. Pinto, D. D. Cox, and J. J. DiCarlo, “Why is real-world visual object
recognition hard?” PLoS Comput Biol, vol. 4, no. 1, p. e27, 01 2008.

[5] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, 1989.

[6] Y. Simard, Patrice, D. Steinkraus, and J. C. Platt, “Best practices for
convolutional neural networks applied to visual document analysis,” in
ICDAR’03.

[7] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, “Learning
invariant features through topographic filter maps,” in CVPR’09.

[8] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient backprop,” in
Neural Networks: Tricks of the trade, 1998.

[9] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position,”
Pattern Recognition, vol. 15, no. 6, pp. 455–469, 1982.

[10] K. Chellapilla, M. Shilman, and P. Simard, “Optimally combining a
cascade of classifiers,” in Proc. of Document Recognition and Retrieval
13, Electronic Imaging, 6067, 2006.

[11] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in IWFHR’06.

[12] A. Abdulkader, “A two-tier approach for arabic offline handwriting
recognition,” in IWFHR’06.

[13] K. Chellapilla and P. Simard, “A new radical based approach to offline
handwritten east-asian character recognition,” in IWFHR’06.

[14] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the
localisation of objects in images,” IEE Proc on Vision, Image, and Signal
Processing, vol. 141, no. 4, pp. 245–250, August 1994.

[15] C. Garcia and M. Delakis, “Convolutional face finder: A neural archi-
tecture for fast and robust face detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2004.

[16] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face detection
and pose estimation with energy-based models,” Journal of Machine
Learning Research, vol. 8, pp. 1197–1215, May 2007.

[17] F. Nasse, C. Thurau, and G. A. Fink, “Face detection using gpu-based
convolutional neural networks,” pp. 83–90, 2009.

[18] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale privacy protection in
street-level imagery,” in ICCV’09.

[19] S. Nowlan and J. Platt, “A convolutional neural network hand tracker.”
San Mateo, CA: Morgan Kaufmann, 1995, pp. 901–908.

[20] M. Delakis and C. Garcia, “Text detection with convolutional neural
networks,” in International Conference on Computer Vision Theory and
Applications (VISAPP 2008), 2008.

[21] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road
obstacle avoidance through end-to-end learning,” in Advances in Neural
Information Processing Systems (NIPS 2005). MIT Press, 2005.

[22] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu,
U. Muller, and Y. LeCun, “Learning long-range vision for autonomous
off-road driving,” Journal of Field Robotics, vol. 26, no. 2, pp. 120–144,
February 2009.

[23] M. Happold and M. Ollis, “Using learned features from 3d data for
robot navigation,” 2007.

[24] V. Jain and H. S. Seung, “Natural image denoising with convolutional
networks,” in Advances in Neural Information Processing Systems 21
(NIPS 2008). MIT Press, 2008.

[25] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. Barbano,
“Toward automatic phenotyping of developing embryos from videos,”
IEEE Transactions on Image Processing, 2005, special issue on Molec-
ular and Cellular Bioimaging.

[26] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. Briggman,
M. Helmstaedter, W. Denk, and H. S. Seung, “Supervised learning of
image restoration with convolutional networks.” in ICCV’07.

[27] M. Mozer, The Perception of Multiple Objects, A Connectionist Ap-
proach. MIT Press, 1991.

[28] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in CVPR, 2005.

[29] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse,
localized features,” in CVPR, 2006.

[30] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks.” Science, 2006.

[31] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in NIPS, 2007.

[32] M. Ranzato, Y. Boureau, and Y. LeCun, “Sparse feature learning for
deep belief networks,” in NIPS’07, 2007.

[33] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” in Proc. International
Conference on Computer Vision (ICCV’09). IEEE, 2009.

[34] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng., “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in ICML, 2009.

[35] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing, “Training hierarchical
feed-forward visual recognition models using transfer learning from
pseudo-tasks,” in ECCV. Springer-Verlag, 2008.

[36] J. Weston, F. Rattle, and R. Collobert, “Deep learning via semi-
supervised embedding,” in ICML, 2008.

[37] K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “Fast inference in sparse
coding algorithms with applications to object recognition,” Tech. Rep.,
2008, tech Report CBLL-TR-2008-12-01.

[38] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: a strategy employed by v1?” Vision Research, 1997.

[39] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in CVPR,
2006.

[40] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, 2004.

[41] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

[42] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial
on energy-based learning,” in Predicting Structured Data, G. Bakir,
T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, Eds. MIT Press,
2006.

[43] Y. LeCun and L. Bottou, “Lush reference manual,” Tech. Rep.,
2002, code available at http://lush.sourceforge.net. [Online]. Available:
http://lush.sourceforge.net

[44] P. Sermanet, K. Kavukcuoglu, and Y. LeCun, “Eblearn: Open-source
energy-based learning in c++,” in Proc. International Conference on
Tools with Artificial Intelligence (ICTAI’09). IEEE, 2009.

[45] R. Collobert, “Torch,” presented at the Workshop on Machine Learning
Open Source Software, NIPS, 2008.

[46] B. Boser, E. Sackinger, J. Bromley, Y. LeCun, and L. Jackel, “An analog
neural network processor with programmable topology,” IEEE Journal
of Solid-State Circuits, vol. 26, no. 12, pp. 2017–2025, December 1991.

[47] E. Säckinger, B. Boser, J. Bromley, Y. LeCun, and L. D. Jackel,
“Application of the ANNA neural network chip to high-speed character
recognition,” IEEE Transaction on Neural Networks, 1992.

[48] O. Nomura and T. Morie, “Projection-field-type vlsi convolutional neural
networks using merged/mixed analog-digital approach,” in ICONIP’07.

[49] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco,
R. Paz-Vicente, F. Gómez-Rodrı́guez, L. Camu nas-Mesa, R. Berner,
M. Rivas-Pérez, T. Delbrück, S.-C. Liu, R. Douglas, P. Häfliger,
G. Jiménez-Moreno, A. C. Ballcels, T. Serrano-Gotarredona, A. J.
Acosta-Jiménez, and B. Linares-Barranco, “Caviar: a 45k neuron,
5m synapse, 12g connects/s aer hardware sensory-processing-learning-
actuating system for high-speed visual object recognition and tracking,”
Trans. Neur. Netw., vol. 20, no. 9, pp. 1417–1438, 2009.

[50] J. Cloutier, E. Cosatto, S. Pigeon, F. Boyer, and P. Y. Simard, “Vip:
An fpga-based processor for image processing and neural networks,” in
MicroNeuro, 1996.

[51] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-based
processor for convolutional networks,” in International Conference on
Field Programmable Logic and Applications, 2009.

[52] C. Farabet, C. Poulet, and Y. LeCun, “An fpga-based stream processor
for embedded real-time vision with convolutional networks,” in Fifth
IEEE Workshop on Embedded Computer Vision (ECV’09). IEEE, 2009.


