202

Texture Chap. 9

Figure 9.11 The images shows Gabor filter kernels as images, with mid-grey
values representing zero, darker values representing negative numbers and lighter
values representing positive numbers. The top row shows the antisymmetric
component, and the bottom row shows the symmetric component. The scale of
these filters is constant, and they are shown for three different spatial frequencies.
These filters are shown at a finer scale than those of Figure 9.10.

9.2.3 Oriented Pyramids

A Laplacian pyramid does not contain enough information to reason about image texture, be-
cause there is no explicit representation of the orientation of the stripes. A natural strategy for
dealing with this is to take each layer and decompose it further, to obtain a set of components
each of which represents a energy at a distinct orientation. Each component can be thought of
as the response of an oriented filter at a particular scale and orientation. The result is a detailed
analysis of the image, known as an oriented pyramid (Figure 9.13),

A comprehensive discussion of the design of oriented pyramids would take us out of our
way. The first design constraint is that the filter should select a small range of spatial frequencies
and orientations, as in Figure 9.9. There is a second design constraint for our analysis filters:
synthesis should be easy. If we think of the oriented pyramid as a decomposition of the Lapla-
cian pyramid (Figure 9.14), then synthesis involves reconstructing each layer of the Laplacian
pyramid, and then synthesizing the image from the Laplacian pyramid. The ideal strategy is 0
have a set of filters that have oriented responses and where synthesis is easy. It is possible 1©
produce a set of filters such that reconstructing a layer from its components involves filtering the
image a second time with the same filter (as Figure 9.15 suggests). An efficient implementation
of these pyramids is available at http: //www.cis -upenn.edu/~eero/steerpyr.html. The

design process is described in detail in Karasaridis and Simoncelli (1996) and Simoncelli and
Freeman (1995).

9.3 APPLICATION: SYNTHESIZING TEXTURES FOR RENDERING

Renderings of object models look more realistic if they are textured (it's worth thinking about
why this should be true,

even though the point is Wwidely accepted as obvious). There are & va-

Sec. 9.3

Ar

Sec. 9.3

Application: Synthesizing Textures for Rendering 203

Figure 9.12 The image on the top shows a detail from an image of a zebra,
chosen because it has a stripes at somewhat different scales and orientations.
This has been convolved with the kernel in the center, which is a Gabor filter
kernel. The image at the bottom shows the absolute value of the result; notice
that the response is large when the spatial frequency of the bars roughly matches
that windowed by the Gaussian in the Gabor filter kernel (i.e., the stripes in the
kernel are about as wide as, and at about the same orientation as, the three stripes
in the kernel). When the stripes are larger or smaller, the response falls off; thus,
the filter is performing a kind of local spatial frequency analysis. This filter is one
of a quadrature pair (it is the symmetric component). The response of the anti-
symmetric component is similarly frequency selective. The two responses can be
seen as the two components of the (complex valued) local Fourier transform, so
that magnitude and phase information can be extracted from them.

riety of techniques for texture mapping; the basic idea is that when an object is rendered, the
reflectance value used to shade a pixel is obtained by reference to a texture map. Some system
of coordinates is adopted on the surface of the object to associate the elements of the texture
map with points on the surface. Different choices of coordinate system yield renderings that look
quite different, and it is not always easy to ensure that the texture lies on a surface in a natural
way (for example, consider painting stripes on a zebra—where should the stripes go to yield a
natural pattern?). Despite this issue, texture mapping seems to be an important trick for making
rendered scenes look more realistic.

Texture mapping demands textures, and texture mapping a large object may require a sub-
stantial texture map. This is particularly true if the object is close to the view, meaning that
the texture on the surface is seen at a high resolution, so that problems with the resolution of
the texture map will become obvious. Tiling texture images can work poorly, because it can be
difficult to obtain images that tile well—the borders have to line up, and even if they did, the

204

Texture

Filter Kernels

Image

Finest scale

Figure 9.13 An oriented pyramid, formed from the image at the top left,
with four orientations per layer. This is obtained by firstly decomposing an
image into subbands which represent bands of spatial frequency (as with the
Laplacian pyramid), and then applying oriented filters (top right) to these
subbands to decompose them into a set of distinct images, each of which
represents the amount of energy at a particular scale and orientation in the
image. Notice how the orientation layers have strong responses to the edges
in particular directions, and weak responses at other directions. Code for con-
structing oriented pyramids, written and distributed by Eero Simoncelli, can be
found at http://www.cis.upenn.edu/~eero/steerpyr.html. Reprinted

from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions

on Information Theory, 1992, © 1992, IEEE

Laplacian

ramid o
Py i iR g BB
Layer

S[PAY] PIWRIAJ PAIUALIO

\“» By —_—

Figure 9.14 The oriented pyramid is obtained by taking layers of the Laplacian

Pyramid' and then applying oriented filters (represented in this schematic draw-
ing by boxes). Each layer of the Laplacian

frequencies; the oriented filters decom
a set of orientations.

pyramid represents a range of spatial
pose this range of spatial frequencies into

Coarsest scale u

Chap. 9

Sec. 9.3

App

Sec. 9.3

Application: Synthesizing Textures for Rendering 205

Laplacian
£ B, » Pyramid
~
o Layer
2
& el L)
s
<
g
8
= B;
o
<
2
p—— B,

Figure 9.15 In the oriented pyramid, synthesis is possible by refiltering the lay-
ers and then adding them, as this schematic indicates. This property is obtained
by appropriate choice of filters.

resulting periodic structure can be annoying. It is possible to buy image textures from a variety
of sources, but an ideal would be to have a program that can generate large texture images from
a small example. Quite sophisticated programs of this form can be built, and they illustrate the
usefulness of representing textures by filter outputs.

9.3.1 Homogeneity

The general strategy for texture synthesis is to think of a texture as a sample from some proba-
bility distribution and then to try and obtain other samples from that same distribution. To make
this approach practical, we need to obtain a probability model from the sample texture. The first
thing to do is assume that the texture is homogenous. This means that local windows of the texture
“look the same”, from wherever in the texture they were drawn. More formally, the probability
distribution on values of a pixel is determined by the properties of some neighborhood of that
pixel, rather than by, say, the position of the pixel.

An assumption of homogeneity means that we can construct a model for the texture out-
side the boundaries of our example region, based on the properties of our example region. The
assumption often applies to natural textures over a reasonable range of scales. For example, the
stripes on a zebra's back are homogenous, but remember that those on its back are vertical and
those on its legs, horizontal. We can use the example texture to obtain the probability model for
the synthesized texture in various ways; we describe only one here.

9.3.2 Synthesis by Sampling Local Models

As Efros and Leung (1999) point out, the example image can serve as a a probability model.
Assume for the moment that we have every pixel in the synthesized image, except one. To obtain
a probability model for the value of that pixel, we could match a neighborhood of the pixel to
the example image. Every matching neighborhood in the example image has a possible value for
the pixel of interest. This collection of values is a conditional histogram for the pixel of interest.
By drawing a sample uniformly and at random from this collection, we obtain the value that is

consistent with the example image.
Finding Matching Image Neighbourhoods The essence of the matter is to take

some form of neighbourhood around the pixel of interest, and to compare it to neighbourhoods
in the example image. The size and shape of this neighbourhood is significant, because it codes

206

Texture

Figure 9.16 Efros’ texture synthesis algorithm (Algorithm 9.3) matches neigh-
bourhoods of the image being synthesized to the example image, and then
chooses at random amongst the possible values reported by matchin g neighbour-
hoods. This means that the algorithm can reproduce complex spatial structures,
as these examples indicate. The small block on the left is the example texture;
the algorithm synthesizes the block on the right. Note that the synthesized text
looks like text; it appears to be constructed of words of varying lengths that
are spaced like text; and each word looks as though it is composed of letters
(though this illusion fails as one looks closely). Figure from Texture Synthesis by

Non-parametric Sampling, A. Efros and TK. Leung, Proc. Int. Conf. Computer
Vision, 1999 © 1999, IEEE

Figure 9.17 The size of the lmage neighbourhood to be matched makes a sig-
niﬁcam.difference in Algorithm 9.3. In the figure, the textures at the right are
.ﬁynthes_lzed from the small blocks on the left. using neighbourhoods that are
increasingly large as one moves to the right. If very small neighbourhoods
are match_ed. then the algorithm cannot capture large scale effects easily. For
example, in the case of the Spotty texture, if the neighbourhood is too small
to capture the spot structure (and so sees only pieces of curve), the algorithm
synthesizes a texture consisting of curve segments. As the neiﬂl;bourhood gets
larger, the algorithm can capture the spot structure, but not tI:e even s ucing.
With very large neighbourhoods. the spacing is captured as well. F,',\,t.,fe frrm;

Texture Synthesis by Non-parametric Sampling, A. Efros and TK Leung, Proc.
Int. Conf. Computer Vision, | 999 © 1999, IEEE : a2 I

Chap.9

Sec. 9.4 S

9.4 SHAPE F

Shape from Texture 207

the range over which pixels can affect one another’s values directly (see Figure 9.17). Efros uses
a square neighborhood, centered at the pixel of interest.

The similarity between two image neighbourhoods can be measured by forming the sum
of squared differences of corresponding pixel values. This value is small when the neighbour-
hoods are similar, and large when they are different (it is essentially the length of the difference
vector). Of course, the value of the pixel to be synthesized is not counted in the sum of squared
differences.

Synthesizing Textures using Neighbourhoods Now we know how to obtain the
value of a single missing pixel: choose uniformly and at random amongst the values of pixels in
the example image whose neighborhoods match the neighbourhood of our pixel (i.e., where the
sum of squared differences between the two neighbour hoods is smaller than some threshold).

Generally, we need to synthesize more than just one pixel. Usually, the values of some
pixels in the neighborhood of the pixel to be synthesized are not known—these pixels need to be
synthesized too. One way to obtain a collection of examples for the pixel of interest is to count
only the known values in computing the sum of squared differences, and to adjust the threshold
pro rata. The synthesis process can be started by choosing a block of pixels at random from the

example image, yielding Algorithm 9.3.

Algorithm 9.3: Non-parametric Texture Synthesis

Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score
Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods
end
end

9.4 SHAPE FROM TEXTURE

A patch of texture of viewed frontally looks very different from a same patch viewed at a glancing
angle, because foreshortening causes the texture elements (and the gaps between them!) to shrink
more in some directions than in others. This suggests that we can recover some shape information
from texture, at the cost of supplying a texture model. This is a task at which humans excel
(Figure 9.18). Remarkably, quite gengral texture modle]s appear to s'upp]y enoulgh infor'mation to
infer shape. This is most easily seen for planes (Secthn 9.4.1); while the details remain opaque
in the case of curved surfaces, the general issues remain the same.

