Lecture 13

Image features, SIFT
Homographies, RANSAC and panoramas
Matching with Features

• Detect feature points in both images
• Find corresponding pairs
Outline

• Feature point detection
 – Harris corner detector
 – finding a characteristic scale: DoG or Laplacian of Gaussian

• Local image description
 – SIFT features
Harris Detector: Some Properties

- Not invariant to image scale!

All points will be classified as edges

Corner!
Scale Invariant Detection

- Solution:
 - Design a function on the region (circle), which is “scale invariant” (the same for corresponding regions, even if they are at different scales)

 Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 - For a point in one image, we can consider it as a function of region size (circle radius)
Scale Invariant Detectors

- **Harris-Laplacian\(^1\)**
 Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

- **SIFT (Lowe)\(^2\)**
 Find local maximum (minimum) of:
 - Difference of Gaussians in space and scale

In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima and minima of \(\sigma^2 \nabla^2 G\) produce the most stable image features compared to a range of other possible image functions, such as the gradient, Hessian, or Harris corner function.

\(^2\) D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
Scale-space example: 3 bumps of different widths.

1-d bumps display as an image

blur with Gaussians of increasing width
Gaussian and difference-of-Gaussian filters
The bumps, filtered by difference-of-Gaussian filters
The bumps, filtered by difference-of-Gaussian filters

cross-sections along red lines plotted next slide
Scales of peak responses are proportional to bump width (the characteristic scale of each bump):

\[
\left[1.7, 3, 5.2\right] \div \left[5, 9, 15\right] = 0.3400 \quad 0.3333 \quad 0.3467
\]

Diff of Gauss filter giving peak response
Scales of peak responses are proportional to bump width (the characteristic scale of each bump):

$$\left[1.7, 3, 5.2\right] \div \left[5, 9, 15\right] = 0.3400 \quad 0.3333 \quad 0.3467$$

Note that the max response filters each have the same relationship to the bump that it favors (the zero crossings of the filter are about at the bump edges). So the scale space analysis correctly picks out the “characteristic scale” for each of the bumps.

More generally, this happens for the features of the images we analyze.
Scale Invariant Detectors

- Experimental evaluation of detectors w.r.t. scale change

Repeatability rate:

\[
\frac{\text{# correspondences}}{\text{# possible correspondences}}
\]

Darya Frolova, Denis Simakov The Weizmann Institute of Science

Repeatability vs number of scales sampled per octave

Some details of key point localization over scale and space

• Detect maxima and minima of difference-of-Gaussian in scale space

• Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown & Lowe, 2002)

• Taylor expansion around point:

\[D(x) = D + \frac{\partial D^T}{\partial x} x + \frac{1}{2} x^T \frac{\partial^2 D}{\partial x^2} x \]

• Offset of extremum (use finite differences for derivatives):

\[\hat{x} = -\frac{\partial^2 D^{-1}}{\partial x^2} \frac{\partial D}{\partial x} \]
Scale and Rotation Invariant Detection: Summary

• **Given:** two images of the same scene with a large scale difference and/or rotation between them
• **Goal:** find the same interest points independently in each image
• **Solution:** search for maxima of suitable functions in scale and in space (over the image). Also, find characteristic orientation.

Methods:

1. **Harris-Laplacian** [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris’ measure of corner response over the image
2. **SIFT** [Lowe]: maximize Difference of Gaussians over scale and space
Example of keypoint detection

Figure 12. Robust matching: Harris-Laplace detects 190 and 213 points in the left and right images, respectively (a). 58 points are initially matched (b). There are 32 inliers to the estimated homography (c), all of which are correct. The estimated scale factor is 4.9 and the estimated rotation angle is 19 degrees.
Outline

• Feature point detection
 – Harris corner detector
 – finding a characteristic scale

• Local image description
 – SIFT features
Recall: Matching with Features

- Problem 1:
 - Detect the same point independently in both images

We need a repeatable detector
Recall: Matching with Features

• Problem 2:
 – For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor
CVPR 2003 Tutorial

Recognition and Matching Based on Local Invariant Features

David Lowe
Computer Science Department
University of British Columbia

SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)
SIFT vector formation

- 4x4 array of gradient orientation histograms
 - not really histogram, weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Showing only 2x2 here but is 4x4
Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize
Tuning and evaluating the SIFT descriptors

Database images were subjected to rotation, scaling, affine stretch, brightness and contrast changes, and added noise. Feature point detectors and descriptors were compared before and after the distortions, and evaluated for:

• Sensitivity to number of histogram orientations and subregions.
• Stability to noise.
• Stability to affine change.
• Feature distinctiveness
Sensitivity to number of histogram orientations and subregions (n)

Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000 keypoints as a function of width of the $n \times n$ keypoint descriptor and the number of orientations in each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and addition of 4% noise.
Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features
Feature stability to affine change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features
Affine Invariant Descriptors

If a wide range of affine invariance is desired, such as for a surface that is known to be planar, then a simple solution is to adopt the approach of Pritchard and Heidrich (2003) in which additional SIFT features are generated from 4 affine-transformed versions of the training image corresponding to 60 degree viewpoint changes. This allows for the use of standard SIFT features with no additional cost when processing the image to be recognized, but results in an increase in the size of the feature database by a factor of 3.

Find affine normalized frame

\[\Sigma_1 = \left< pp^T \right> \]

\[\Sigma_1^{-1} = A_1^T A_1 \]

\[\Sigma_2 = \left< qq^T \right> \]

\[\Sigma_2^{-1} = A_2^T A_2 \]

Compute rotational invariant descriptor in this normalized frame
Distinctiveness of features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match
Application of invariant local features to object (instance) recognition.

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters.
Figure 12: The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints that were used for recognition.
Figure 13: This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and the 640x315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image, with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affine transform used for recognition.
SIFT features impact

SIFT feature paper citations:

Distinctive image features from scale-invariant keypoints
Lowe - International journal of computer vision, 2004 - Springer
International Journal of Computer Vision 60(2), 91–110, 2004
2004 Kluwer Academic Publishers. Computer Science Department,
University of British Columbia ... Cited by 16232 (google)

A good SIFT features tutorial:
By Estrada, Jepson, and Fleet.

The original SIFT paper:
Now we have

• Well-localized feature points
• Distinctive descriptor

• Now we need to
 – match pairs of feature points in different images
 – Robustly compute homographies (in the presence of errors/outliers)
In general, matches are constrained to lie on the epipolar lines, but… that’s it?, there are no more constraints?
Under what conditions can you know where to translate each point of image A to where it would appear in camera B (with calibrated cameras), knowing nothing about image depths?
(a) camera rotation
and (b) imaging a planar surface
Geometry of perspective projection

sensor plane

inverted copy of sensor plane

pinhole

Let’s look at this scene from above...
Two cameras with same center of projection

Can generate any synthetic camera view as long as it has the same center of projection!
Two cameras with offset centers of projection
Entrance pupil

- Often wrongly called nodal point
- When camera is rotated around entrance pupil, there is no parallax
 - That is, if two 3D points are superimposed for one orientation, they remain superimposed after rotation
- Finding the entrance pupil is painful
Recap

• When we only rotate the camera (around nodal point) depth does not matter
• It only performs a 2D warp
 – one-to-one mapping of the 2D plane
 – plus of course reveals stuff that was outside the field of view

• Now we just need to figure out this mapping
Other interpretation

- Depth does not matter
- We can pretend that each pixel is at a convenient depth

- Three convenient depth distributions:
 - spherical
 - planar
 - cylindrical

- We focus on planar
 - it makes life more linear
- Still useful for spherical panos
Aligning images

- We have established that pairs of images from the same viewpoint can be aligned through a simple 2D spatial transformation (warp).
- What kind of transformation?
Aligning images: translation?

Translations are not enough to align the images
Image Warping

Translation: 2 unknowns
Affine: 6 unknowns
Projective: 8 unknowns

figure 2.4, Szeliski
Homography

- Projective – mapping between any two projection planes with the same center of projection
- called Homography
- represented as 3x3 matrix in homogenous coordinates

\[
\begin{bmatrix}
wx' \\
wy' \\
w
\end{bmatrix} = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

\[\mathbf{p}' = \mathbf{H} \mathbf{p}\]

To apply a homography \(\mathbf{H}\)
- Compute \(\mathbf{p}' = \mathbf{H} \mathbf{p}\) (regular matrix multiply)
- Convert \(\mathbf{p}'\) from homogeneous to image coordinates (divide by \(w\))
homography

\[
x_0 = A_0 P \\
x_1 = A_1 P
\]

Camera 1 parameters: \(A_1 \)

Camera 0 parameters: \(A_0 \)

\[
A_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix}
\]

\[
A_1 = A_0 \begin{pmatrix} 3 \times 3 \text{rotation matrix} \end{pmatrix} \end{pmatrix} = A_0 R
\]
we seek \(M_{10} \) such that

\[x_0 = M_{10} x_1 \quad \text{for all } x_0, x_1 \]

\[A_0 p = M_{10} A_0 R p \quad \text{for all } p, \text{ so} \]

\[\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \]

\[A_0 = M_{10} A_0 R \quad \text{mult by } R^{-1} = \begin{pmatrix} \text{inverse rotation} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[A_0 R B = M_{10} \]

\[\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
How many pairs of points does it take to specify M_{10}?
Images of planar objects, taken by generically offset cameras, are also related by a homography.
Measurements on planes

Approach: unwarp then measure

How to unwarp?
Image rectification

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: $wp' = Hp$
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?
Solving for homographies

\[
\begin{bmatrix}
wx'_i \\
w y'_i \\
w
\end{bmatrix}
= \begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]

\[
x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
\begin{bmatrix}
x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\
0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i
\end{bmatrix}
\begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Solving for homographies

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 x_1 & -x'_1 y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1 x_1 & -y'_1 y_1 & -y'_1 \\
 \vdots \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_n x_n & -x'_n y_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & -y'_n x_n & -y'_n y_n & -y'_n \\
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22} \\
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 0 \end{bmatrix}
\]

Defines a least squares problem: \(\text{minimize } \| Ah - 0 \|^2 \)

- Since \(h \) is only defined up to scale, solve for unit vector \(\hat{h} \)
- Solution: \(\hat{h} = \text{eigenvector of } A^T A \) with smallest eigenvalue
- Works with 4 or more points
Image warping with homographies

homography so that image is parallel to floor

homography so that image is parallel to right wall

black area where no pixel maps to
automatic image mosaicing

• Basic Procedure
 – Take a sequence of images from the same position.
 • Rotate the camera about its optical center (entrance pupil).
 – Robustly compute the homography transformation between second image and first.
 – Transform (warp) the second image to overlap with first.
 – Blend the two together to create a mosaic.
 – If there are more images, repeat.
Robust feature matching through RANSAC

© Krister Parmstrand

Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation.

with a lot of slides stolen from Steve Seitz and Rick Szeliski

15-463: Computational Photography
Alexei Efros, CMU, Fall 2005
Feature matching

descriptors for left image feature points
descriptors for right image feature points
Strategies to match images robustly

(a) Working with individual features: For each feature point, find most similar point in other image (SIFT distance)
Reject ambiguous matches where there are too many similar points

(b) Working with all the features: Given some good feature matches, look for possible homographies relating the two images
Reject homographies that don’t have many feature matches.
(a) Feature-space outlier rejection

• Let’s not match all features, but only these that have “similar enough” matches?

• How can we do it?
 – SSD (patch1,patch2) < threshold
 – How to set threshold?
 Not so easy.
Feature matching

• Exhaustive search
 – for each feature in one image, look at all the other features in the other image(s)
 – Usually not so bad

• Hashing
 – compute a short descriptor from each feature vector, or hash longer descriptors (randomly)

• Nearest neighbor techniques
 – k-trees and their variants (Best Bin First)
Feature-space outlier rejection

- A better way [Lowe, 1999]:
 - 1-NN: SSD of the closest match
 - 2-NN: SSD of the second-closest match
 - Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 - That is, is our best match so much better than the rest?
Feature-space outlier rejection

- Can we now compute H from the blue points?
 - No! Still too many outliers…
 - What can we do?
(b) Matching many features--looking for a good homography

What do we do about the “bad” matches?

Note: at this point we don’t know which ones are good/bad
RAndom SAmple Consensus

Select one match, count inliers
Random Sample Consensus

Select one match, count inliers

0 inliers
Random SAmple Consensus

Select one match, count inliers

4 inliers
RAnDom SAmple Consensus

Select one match, count inliers
Keep match with largest set of inliers
At the end: Least squares fit

Find “average” translation vector, but with only inliers
Reference

http://portal.acm.org/citation.cfm?id=358692
RANSAC for estimating homography

RANSAC loop:
Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where $\|p_i', H p_i\| < \varepsilon$
Keep largest set of inliers
Re-compute least-squares H estimate using all of the inliers
Simple example: fit a line

- Rather than homography H (8 numbers)
 fit $y=ax+b$ (2 numbers a, b) to 2D pairs
Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers
Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

4 inliers
Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

9 inlier
Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

8 inliers
Simple example: fit a line

- Use biggest set of inliers
- Do least-square fit
RANSAC

red:
rejected by 2nd nearest neighbor criterion
blue:
Ransac outliers
yellow:
inliers
Robustness

• Proportion of inliers in our pairs is G (for “good”)
• Our model needs P pairs
 \[P = 4 \text{ for homography} \]
• Probability that we pick P inliers?
 \[G^P \]
• Probability that after N RANSAC iterations we have not picked a set of inliers?
 \[(1 - G^P)^N \]
Robustness: example

• Proportion of inliers $G=0.5$
• Probability that we pick $P=4$ inliers?
 – $0.5^4=0.0625$ (6% chance)
• Probability that we have not picked a set of inliers?
 – $N=100$ iterations:
 $(1-0.5^4)^{100}=0.00157$ (1 chance in 600)
 – $N=1000$ iterations:
 1 chance in $1e28$
Robustness: example

- Proportion of inliers $G=0.3$
- Probability that we pick $P=4$ inliers?
 - $0.3^4=0.0081$ (0.8% chance)
- Probability that we have not picked a set of inliers?
 - $N=100$ iterations:
 - $(1-0.3^4)^{100}=0.44$ (1 chance in 2)
 - $N=1000$ iterations:
 - 1 chance in 3400
Robustness: example

• Proportion of inliers $G=0.1$
• Probability that we pick $P=4$ inliers?
 – $0.1^4=0.0001$ (0.01% chances, 1 in 10,000)
• Probability that we have not picked a set of inliers?
 – $N=100$ iterations: $(1-0.1^4)^{100}=0.99$
 – $N=1000$ iterations: 90%
 – $N=10,000$: 36%
 – $N=100,000$: 1 in 22,000
Robustness: conclusions

- Effect of number of parameters of model/number of necessary pairs
 - Bad exponential
- Effect of percentage of inliers
 - Base of the exponential
- Effect of number of iterations
 - Good exponential
RANSAC recap

- For fitting a model with low number P of parameters (8 for homographies)
- Loop
 - Select P random data points
 - Fit model
 - Count inliers
 (other data points well fit by this model)
- Keep model with largest number of inliers
Example: Recognising Panoramas

M. Brown and D. Lowe, University of British Columbia

“Recognising Panoramas”?
RANSAC for Homography
RANSAC for Homography
RANSAC for Homography
Finding the panoramas
Finding the panoramas
Finding the panoramas
Finding the panoramas
Welcome to AutoStitch. If you have an iPhone, please check out our new iPhone version of AutoStitch below! If you're looking for the Windows demo version, you can download it using the link above, or read on to find out more about AutoStitch. Thanks for visiting!
Benefits of Laplacian image compositing

Figure 7. Comparison of linear and multi-band blending. The image on the right was blended using multi-band blending using 5 bands and $\sigma = 5$ pixels. The image on the left was linearly blended. In this case matches on the moving person have caused small misregistrations between the images, which cause blurring in the linearly blended result, but the multi-band blended image is clear.
Photo Tourism:
Exploring Photo Collections in 3D

Noah Snavely
Steven M. Seitz
 University of Washington
Richard Szeliski
 Microsoft Research
Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006
Rendering
Photo Tourism overview

Input photographs

Scene reconstruction

Photo Explorer

Relative camera positions and orientations
Point cloud
Sparse correspondence
Photo Tourism overview

Input photographs → Scene reconstruction → Photo Explorer

[Note: change to Trevi for consistency]
Scene reconstruction

• Automatically estimate
 – position, orientation, and focal length of cameras
 – 3D positions of feature points
Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
Feature detection

Detect features using SIFT [Lowe, IJCV 2004]
Feature matching

Match features between each pair of images
Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987] to estimate fundamental matrices between pairs

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry. See also the fundamental matrix song: [http://danielwedge.com/fmatrix/])
Structure from motion

minimize $f(R, T, P)$

p_1, p_2, p_3, p_4, p_5, p_6, p_7

p_1, p_2, p_3, p_4, p_5, p_6, p_7

Camera 1 R_1, t_1

Camera 2 R_2, t_2

Camera 3 R_3, t_3
Links

- Code available: http://phototour.cs.washington.edu/bundler/
- http://phototour.cs.washington.edu/
- http://livelabs.com/photosynth/
- http://www.cs.cornell.edu/~snavely/