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Image features, SIFT
Homographies, RANSAC and panoramas



Matching with Features

*Detect feature points in both images

*Find corresponding pairs




Outline

* Feature point detection

— Harris corner detector

— finding a characteristic scale: DoG or
Laplacian of Gaussian

* Local image description
— SIFT features




Harris Detector: Some Properties

* Not invariant to image scale!
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All points will be Corner !
classified as edges

Darya Frolova, Denis Simakov The Weizmann Institute of Science



Scale Invariant Detection

e Solution:

— Design a function on the region (circle), which 1s “scale
invariant” (the same for corresponding regions, even 1f
they are at different scales)

Example: average intensity. For corresponding
regions (even of different sizes) it will be the same.

— For a point in one image, we can consider it as a function of
region size (circle radius)
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Scale Invariant Detectors

: . |
« Harris-Laplacian’ e —
Find local maximum of: .

— Harris corner detector in y
space (image coordinates) / P

— Laplacian in scale

< Laplacian —

<

< Harris —

Indtitute of Science

1zmann

. SIFT (Lowe)? scale > \
Find local maximum [
(minimum) of: S~ /é

— Difference of Gaussians in y a— l
space and scale

In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima

and minima of 6>V 2@ produce the most stable image features compared to a range of other < DOG —
possible image functions, such as the gradient, Hessian, or Harris corner function.
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Darya Frolova, Denis Simakov The We

' K. Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IICV 2004



Scale-space example: 3 bumps of different widths.

bumps: 5,9, 15 wide
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Gaussian and difference-of-Gaussian filters
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The bumps, filtered by difference-of-

dog sigma =

Gaussian filters

bumps: 5, 9, 15 wide
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The bumps, filtered by difference-of-

dog sigma =

Gaussian filters

bumps: 5, 9, 15 wide
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Scales of peak responses are proportional to bump width (the characteristic scale of each bump):
[1.7,3,5.2]./[5,9,15]=0.3400 0.3333 0.3467
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dog, sigma = 1.7

0.15 Scales of peak responses are proportional
04| ] to bump width (the characteristic scale of
0.05 | 5 9 15 each bump):
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Scale Invariant Detectors

« Experimental evaluation of detectors

w.r.t. scale change

1

09}

Repeatability rate:

# correspondences
# possible correspondences

repeatability rate

—e— Harris-Laplacian
—#— SIFT (Lowe)
—o— Harris

i
15
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scale

X | Darya Frolova, Denis Simakov The Weizmann Institute of Science

Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001



Repeatability vs number of scales sampled per octave
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David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110



nup ./ Www.wisdom.we1Zmann.ac.1l/~acniss/vision Springu4/111es/invariantrcaturcs.ppt

Darya Frolova, Denis Simakov The Weizmann Institute of Science

Some details of key point localization
over scale and space

Detect maxima and minima of
difference-of-Gaussian in scale
space

Fit a quadratic to surrounding A
values for sub-pixel and sub-scale

interpolation (Brown & Lowe,
2002)

Taylor expansion around point:

Offset of extremum (use finite
differences for derivatives):

9’DtaD
ox2 0Ox

X =—



Scale and Rotation Invariant
Detection: Summary

» Given: two images of the same scene with a large
scale difference and/or rotation between them

« (Goal: find the same interest points independently
in each 1mage

e Solution: search for maxima of suitable functions
in scale and 1n space (over the image). Also, find
characteristic orientation.

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over
scale, Harris' measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space




Example of keypoint detection

(c)

Figure 12. Robust matching: Harris-Laplace detects 190 and 213 points in the left and right images, respectively (a). 58 points are initially
matched (b). There are 32 inliers to the estimated homography (c), all of which are correct. The estimated scale factor is 4.9 and the estimated
rotation angle is 19 degrees.

http://www.robots.ox.ac.uk/~vgg/research/affine/det eval files/mikolajczyk i1jcv2004.pdf




Outline

* Local image description
— SIFT features

18



Recall: Matching with Features
e Problem 1:

— Detect the same point independently 1n both images

T ) >
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We need a repeatable detector




Recall: Matching with Features

 Problem 2:

— For each point correctly recognize the
corresponding one

We need a reliable and distinctive descriptor




CVPR 2003 Tutornial

Recognition and Matching Based
on Local Invariant Features

David Lowe
Computer Science Department
University of British Columbia

http:// www.cs.ubc.ca/~lowe/papers/ijcv04.pdf




SIFT vector formation

« Computed on rotated and scaled version of window
according to computed orientation & scale

— resample the window

« Based on gradients weighted by a Gaussian of
variance half the window (for smooth falloff)

Image gradients



SIFT vector formation

* 4x4 array of gradient orientation histograms
— not really histogram, weighted by magnitude

« 8 orientations x 4x4 array = 128 dimensions

« Motivation: some sensitivity to spatial layout, but not
too much.

* | ¥
%

Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4




Reduce effect of 1llumination

e 128-dim vector normalized to 1

» Threshold gradient magnitudes to avoid excessive
influence of high gradients

— after normalization, clamp gradients >0.2

— renormalize

+ | ¥

%

Image gradients Keypoint descriptor



Tuning and evaluating the SIFT descriptors

Database 1images were subjected to rotation, scaling, affine stretch,
brightness and contrast changes, and added noise. Feature point
detectors and descriptors were compared before and after the
distortions, and evaluated for:

* Sensitivity to number of histogram orientations
and subregions.

* Stability to noise.
* Stability to affine change.

e Feature distinctiveness 25



Sensitivity to number of histogram orientations and
subregions (n)

-

, With 16 orientations
I w ./ With 8 orientations
' With 4 orientations ~ ~

8 8 & 8 8

Correct nearest descriptor (%)

o

1 2 3 4 5

Width n of descriptor (angle 50 deg, noise 4%)
Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000
keypoints as a function of width of the n x n keypoint descriptor and the number of orientations in

each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and
addition of 4% noise.



Feature stability to noise

* Match features after random change in 1mage scale &
orientation, with differing levels of image noise

* Find nearest neighbor 1n database of 30,000 features
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Feature stability to affine change

* Match features after random change in 1mage scale &
orientation, with 2% 1mage noise, and affine distortion

* Find nearest neighbor 1n database of 30,000 features
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Affine Invariant Descriptors

If a wide range of affi ne invariance is desired, such
as for a surface that is known to be planar, then a simple solution is to adopt the approach of
Pritchard and Heidrich (2003) in which additional SIFT features are generated from 4 affi ne-
transformed versions of the training image corresponding to 60 degree viewpoint changes.
This allows for the use of standard SIFT features with no additional cost when processing
the image to be recognized, but results in an increase in the size of the feature database by a
factor of 3.

Find affine normalized frame A

rotation
>

Compute rotational invariant descriptor in this normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003



Distinctiveness of features

* Vary size of database of features, with 30 degree
affine change, 2% image noise

* Measure % correct for single nearest neighbor match
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20

1000 10000 100000
Number of keypoints in database (log scale)



Application of invariant local features to
object (1nstance) recognition.

Image content 1s transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT Features



Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram i1s drawn around each recognized object showing the boundaries of the
original training image under the affi ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.



Figure 13: This example shows location recognition within a complex scene. The training images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
is on the upper right. The recognized regions are shown on the lower image. with keypoints shown
as squares and an outer parallelogram showing the boundaries of the training images under the affi ne
transform used for recognition.



SIFT features impact

SIFT feature paper citations:

Distinctive image features from scale-invariant keypointsDG Lowe -
International journal of computer vision, 2004 - Springer
International Journal of Computer Vision 60(2), 91-110, 2004 cc
2004 Kluwer Academic Publishers. Computer Science Department,
University of British Columbia ...Cited by 16232 (google)

A good SIFT features tutorial:
http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf

By Estrada, Jepson, and Fleet.

The original SIFT paper:
http:// www.cs.ubc.ca/~lowe/papers/1icv04.pdf




Now we have

* Well-localized feature points
 Distinctive descriptor

* Now we need to
— match pairs of feature points in different
images
— Robustly compute homographies
(in the presence of errors/outliers)



Depth-based ambiguity of position @%

Camera A - Camera B

In general, matches are constrained to lie on the epipolar lines, but...
that’s it?, there are no more constraints?



Under what conditions can you know where
to translate each point of image A to where 1t
would appear in camera B (with calibrated

cameras), knowing nothing about image
depths?

o X Nl e
. / Camera A Camera \\

37




(a) camera rotation

38



and (b) 1maging a planar surface

/’ 2 //52
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[ \P3 [/

———
d\ N /
| ~
9cam
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Geometry of perspective projection

sensor plane inverted copy of
sensor plane

=
NNU NEA

Let’s look at this scene from above...

40



Two cameras with same center of projection é?f}. )

camera A camera B

common pinhole >
position Ofw ’

Can generate any synthetic camera view
as long as it has the same center of projection!




Two cameras with offset centers of projection CSAIL

camera A camera B

camera A center

camera B center




Entrance pupil &7

« Often wrongly called nodal point

 When camera 1s rotated around entrance pupil, there 1s
no parallax

— That 1s, 1f two 3D points are superimposed for one
orientation, they remain superimposed after rotation

* Finding the entrance pupil 1s painful

—  http://www.reallyrightstuff.com/pano/index.html

—  http://www.path.unimelb.edu.au/~bernardk/tutorials/360/photo/nodal.html

Canon 20D camera
with Really Right
Stuff B20D-L, PCL-1
panning clamp, &
MPR-CL nodal slide.

Note how nodal
slide has been used
to shift camera
backwards so that
optical center of
lens can sit atop
the axis of rotation
(in this case, the
center of the
panning clamp).

MPR-CL Nodal



Recap &7

 When we only rotate the camera (around nodal point)
depth does not matter

It only performs a 2D warp
— one-to-one mapping of the 2D plane

— plus of course reveals stuff that was outside the field

of view A B
S camera

 Now we just need to figure out this mapping



Other interpretation 2

e Depth does not matter
 We can pretend that each pixel 1s at a convenient depth

* Three convenient depth distributions:

— spherical
— planar
— cylindrical

* We focus on planar

e 1t makes life
more linear

 Still useful for spherical pand



CSAIL

— We have established that pairs of images from the
same viewpoint can be aligned through a simple 2D
spatial transformation (warp).

— What kind of transformation?

e ——— R
J 4 / ] -:-imilaritt Q projective —
- @aticn — VY gt [
__---7 ‘.. .i' / —

——— ——" .‘l. --)‘ o
Euclidean \— / —

" affine
N __— -




Aligning images: translation? dige




Image Warping ST,

—

1 / — mm;:n projectvey
translation

i 4

- )
Euclidean Ae

~_ _ —Tigure 2.4, Szeliski <

Translation Affine Projective

2 unknowns 6 unknowns 8 unknowns



Homography 5T,

* Projective — mapping between any two projection
planes with the same center of projection

 called Homography
 represented as 3x3 matrix in homogenous coordinajes

er * sk ok 'x' PP2
2 I E I
p H p
PP1
To apply a homography H

« Compute p’ =Hp (regular matrix multiply)

« Convert p’ from homogeneous to image
coordinates (divide by w)

See Szeliski Sect 2.1.5, Mapping from one camera to another.
=



homography

Camera 1
parameters: A,

|

Camera 0
parameters: A,




homography

we seek M guch toof




homography

How many pairs of points does it take to specify M 10?



Planar objects

CSAIL

From Szeliski book

56

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p=XLZ1)

(a) (b)
Figure 2.1Z A point 1s projected mnto two images: (a) relationship between the 31) point co-
ordinate (XY, Z, 1) and the 2D projected point (z,y, 1, d): (b) planar homography induced
by points all lying on a common plane g - p + cp = 0.

Mapping from one camera to another

What happens when we take two images of a 3D scene from different camera positions or
orientations (Figure 2.12a)? Using the full rank 4 x 4 camera matrix P = K E from (2.64),
we can write the projection from world to screen coordinates as

io ~ I.(()Eop = ﬁop (268)

Assuming that we know the z-buffer or disparity value dj for a pixel in one image, we can
compute the 3D point location p using

p~E;'K, % (2.69)
and then project it into another image yielding
&1 ~ K \Eip= K E\E;'K, 20 = PP, 39 = M 10&0. (2.70)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, as discussed above in (2.66), we can
replace the last row of Py in (2.64) with a general plane equation, fig - p + co that maps
points on the plane to dy = 0 values (Figure 2.12b). Thus, if we set dy = 0, we can ignore
the last column of M ¢ in (2.70) and also its last row, since we do not care about the final
z-buffer depth. The mapping equation (2.70) thus reduces to

Zy ~ H oo, 71)

where H g is a general 3 x 3 homography matrix and &, and ¢ are now 2D homogeneous
coordinates (i.e., 3-vectors) (Szeliski 1996).This justifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;
Szeliski 1996).

Images of planar
objects, taken by
generically offset
cameras, are also
related by a
homography.

camera A




Measurements on planes

N

IIIIIIIIIIIIII
Wl
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|||||||||‘|||
1 2 3

’
4
4 A
&

|

Approach: unwarp then measure

How to unwarp?
CSE 576, Spring 2008 Projective Geometry 6



Image rectification

(

To unwarp (rectify) an image

solve for homography H given p and p’

solve equations of the form: wp’ = Hp
linear in unknowns: w and coefficients of H

H is defined up to an arbitrary scale factor

how many points are necessary to solve for H?

CSE 576, Spring 2008 Projective Geometry




Solving for homographies

W] hoo ho1 hoz | | %
wyi | & | h1io h11 hio Y;
w hoo ho1 hoo 1
i = hoow; + ho1y; + ho2
hoox; + ho1y; + hoo
y = hiox; + h11y; + hi2

hoox; + ho1y; + hoo

zi(hoox; + ho1y; + hoo)
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yi(hooz; + ho1y; + hoo) = hioz; + h11y; + h1o

z; y; 1 0 0O O —xfixi —x;yi —x;]
7

O 0 0 «;, y; 1 —yé%‘ _?J;yi —Y;

CSE 576, Spring 2
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Solving for homographies

hoo
] _ | ho1 L
rz1y y17 1 O O O —x'lxl —az’lyl —x’l hoo 0
O 0 O 21 y1 1 —yioz1 —vivi —vi | | hio 0
i hfll = i
n yn 1 0 O O —zlan —axlyn —xl, h1io 0
| 0 0 0 @n yn 1 —yhzn —ynyn —un | | hoo | O]
ho1
| h22 |
A h 0
2nx9 9 2n

Defines a least squares problem:  minimize ||[Ah — 0|2

« Since h is only defined up to scale, solve for unit vector h
- Solution: h = eigenvector of ATA with smallest eigenvalue
 Works with 4 or more points

CSE 576, Spring 2008 Projective Geometry



warping with homographies “<i.
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homography so
that image 1s
parallel to floor

>

homo graphyXA

that image 1s
parallel to right
wall

black area
where no pixel
maps to




automatic image mosaicing v

» Basic Procedure
— Take a sequence of images from the same position.

» Rotate the camera about its optical center (entrance pupil).

— Robustly compute the homography transformation
between second 1mage and first.

— Transform (warp) the second 1image to overlap with first.
— Blend the two together to create a mosaic.
— If there are more 1mages, repeat.



Robust feature matching through
RANSAC

© Krister Parmstrand

Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation.

with a lot of slides stolen from 15-463: Computational Photography
Steve Seitz and Rick Szeliski Alexei Efros, CMU, Fall 2005



Feature matchln




Strategies to match images robustly

(a) Working with individual features: For each feature point,
find most similar point in other image (SIFT distance)

Reject ambiguous matches where there are too many similar points

(b) Working with all the features: Given some good feature
matches, look for possible homographies relating the two
images

Reject homographies that don’t have many feature matches.

62



(a) Feature-space outlier
rejection
» Let's not match all features, but only these that

have “similar enough” matches?

e How can we do 1t?
— SSD (patchl,patch2) < threshold
— How to set threshold?
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Feature matching

 Exhaustive search

— for each feature 1n one 1image, look at all the
other features in the other image(s)

— Usually not so bad

* Hashing

— compute a short descriptor from each feature
vector, or hash longer descriptors (randomly)

* Nearest neighbor techniques
— k-trees and their variants (Best Bin First)



Feature-space outlier rejection

* A better way [Lowe, 1999]:
— I-NN: SSD of the closest match
— 2-NN: SSD of the second-closest match
— Look at how much better 1-NN 1s than 2-NN, e.g. 1-NN/2-NN
— That1s, is our best match so much better than therest?

: : . . : — — —incorrect matches | .

n
T

FEN
T

w

probability density

0 _

I =l = —]= = 7 1 1 1 1
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
1-NN/2-NN squared error



Feature-space outlier rejection

W o

=520

K7 .

» Can we now compute H from the blue
points?
— No! Still too many outliers...
— What can we do?



(b) Matching many features--looking for
a good homography

Simplified illustration with translation instead of homography

What do we do about the “bad” matches?

Note: at this point we don’ t know which ones are good/bad




RAndom SAmple Consensus

Select one match, count inliers




RAndom SAmple Consensus

Select one match, count inliers

O inliers




RAndom SAmple Consensus

Select one match, count inliers

4 inliers




RAndom SAmple Consensus

Select one match, count inliers

Keep match with largest set of inliers



At the end: Least squares fit

m “‘“*

ol

i_!.f'f | Jl‘ &
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Find “average” translation vector,
but with only inliers



Reference
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Bolles. Random Sample
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Image Processing Editor

Random Sample
Consensus: A
Paradigm for Model
Fitting with
Applications to Image
Analysis and
Automated
Cartography

Martin A. Fischler and Robert C. Bolles
SRI International

A new paradigm, Random Sample Consensus
(Ransac), for fitting a model to experimental data is
introduced. ®ANSAC Is up-blc of qu.nw

hi ﬁ(l I of

gross errors, and is thus l‘nlly sulted ﬁu npplkillam
in automsated image analysis where interpretation is
based om the data provided by error-prone feature
detectors, A major portion of this paper describes the
application of Kansac to the Location Determination
Problem (LDPx Given an Image deplcting a set of
landmarks with known locations, determine that point
in space from which the image was obtaised. In
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L Istroduction

We introduce a new parsdigm, Random Sample
Consensus (RANSAC), for fitting a model 10 experimental
data; and illustrate s use in woene analysss and auto-
mated cartography. The application discussed, the loca
tion determanation problem (LDP), is treated at a level
beyond that of & mere example of the use of the xansac
paradigm; mew basic findings concerning the condstions
under which the LDP can be solved are peesented and
a comprehensive approach to the sobution of this problem
that we anticipate will have nearderm peactical appls-
catsons is described.

To a large extent, scene analysis (and, ia fact, scsence
in gemeral) s o d with the Lterp on of seased
data in terms of a set of predefined models. Comceptually,
interpretaticn wnvalves two distnct activites: First, there
is the problem of finding 1he best match betwees the
data and one of the available models (the classification
problem); Second, there is the peoblem of computing the
besz values for the free parameters of the selecied model
(the parameter estissation problem). Is practice, these
1wo problems are 0ot independent—s solution 10 the
parameter estimation problem is often required to solve
the chassification problem

Classical tech: for p such
as bewst squares, optimize (according to a specified cb
jective function) the fie of a functional description
{(model) to ali of the presented data. These technigoes
have no internal mechanssms for detecting and rt)«ting
gross errors. They are averaging techaiques that rely on
the ption (the ption) that the
maximem expected deviation o( any datum from the
assumed model i a direct function of the size of the data
set. and thus regardless of the size of the data set, there
will always be encugh good values to smooth ost any
gross deviations.

In many practical i blems the
smoothing a;sumpnon does not hold: ie, lhe data con-
tain uncompensated gross errors. To deal with thas situ-
ation, soveral heuristics have been proposed The tech-
nique usually employed is some variation of first using
all the data to derive the model parameters, then locating
lln, datum that is farthest from agreement with 1he
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RANSAC for estimating homography

RANSAC loop:

Sclect four feature pairs (at random)
Compute homography H (exact)
Compute inliers where ||p;’, Hp;| < &
Keep largest set of inliers

Re-compute least-squares H estimate using all of
the inliers



Simple example: fit a line

« Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

O
O
O OO O
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Simple example: fit a line

* Pick 2 points
* Fit line

+ o Count inliers

3 inlier o ©
O O
O O
O
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Simple example: fit a line

* Pick 2 points
* Fit line

+ o Count inliers

4 inlier ® O
—_— OO O

o© O O
O
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+ o Count inliers

Simple example

* Pick 2 points
* Fit line

O inlier

. f1t a line
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+ o Count inliers

Simple example

* Pick 2 points
* Fit line

8 inlier

. f1t a line
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Simple example: fit a line

* Use biggest set of inliers

* Do least-square fit
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Robustness

Proportion of inliers in our pairs is G (for “good”)
Our model needs P pairs
P=4 for homography
Probability that we pick P iliers?
GP
Probability that after N RANSAC iterations we
have not picked a set of inliers?

(1-GP)N



Robustness: example

* Proportion of inliers G=0.5
* Probability that we pick P=4 inliers?
~0.5=0.0625 (6% chance)
* Probability that we have not picked a set of
inliers?
— N=100 1terations:
(1-0.5%)199=0.00157 (1 chance 1n 600)

— N=1000 1terations:
1 chance 1n 1e28
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* Proportion of inliers G=0.3
* Probability that we pick P=4 inliers?
—0.3*=0.0081 (0.8% chance)
* Probability that we have not picked a set of
inliers?
— N=100 1terations:
(1-0.3919=0.44 (1 chance in 2)

— N=1000 1terations:
1 chance in 3400 -



Robustness: example

* Proportion of inliers G=0.1

* Probability that we pick P=4 1nhers‘?
—0.14=0.0001 (0.01% chances, 1 1n 10,000)

* Probability that we have not picked a set of
inliers?
— N=100 iterations: (1-0.1%)!9°=0.99
— N=1000 1terations: 90%
—N=10,000: 36%
—N=100,000: 1 1n 22,000
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Robustness: conclusions

« Effect of number of parameters of model/
number of necessary pairs

— Bad exponential

» Effect of percentage of inliers
— Base of the exponential

o Effect of number of iterations
— Good exponential
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RANSAC recap

* For fitting a model with low number P of
parameters (8 for homographies)
* Loop
— Select P random data points
— Fit model

— Count 1nliers
(other data points well fit by this model)

« Keep model with largest number of inliers
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Example: Recognising
Panoramas

M. Brown and D. Lowe,
University of British Columbia

* M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007 (pdf 3.5Mb
| bib) * M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th
International Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice,
France, 2003 (pdf 820kb | ppt | bib)



“Recognising Panoramas”?
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Homography




RANSAC for Homography




Finding the panoramas




Finding the panoramas




dnoramas



Finding the panoramas




Results




AUT OSTIETCH

AutoStitch | Gallery | Download (Windows demo) | Buy Autopano | Licensing | Press | FAQ | Publications

AutoStitch :: a new dimension in automatic image stitching

AutoStitch “Autestich | Panoramas

Serratus
P4 ThuOct 4. 201

Welcome to AutoStitch. If you have an iPhone, please check out
our new iPhone version of AutoStitch below! If you're looking for
the Windows demo version, you can download it using the link
above, or read on to find out more about AutoStitch. Thanks for
visiting!



Benefits of Laplacian image compositing

(a) Linear blending (b) Multi-band blending

Figure 7. Comparison of linear and multi-band blending. The image on the right was blended using multi-band blending
using 5 bands and 0 = 5 pixels. The image on the left was linearly blended. In this case matches on the moving
person have caused small misregistrations between the images, which cause blurring in the linearly blended result, but
the multi-band blended 1mage 1s clear.

M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant 99
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007



Photo Tourism:
Exploring Photo Collections in 3D

Noah Snavely
Steven M. Seitz

University of Washington

Richard Szeliski

Microsoft Research
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Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
Uniwversity of Washington Microsoft Research
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Rendering
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Photo Tourism overview
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Photo Tourism overview
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Scene reconstruction

* Automatically estimate

— position, orientation, and focal length of cameras

— 3D positions of feature points

[ Feature detection ]

Pairwise
feature matching

]

Correspondence
estimation

]

-

~N

Incremental

structure

from motion

\_

J




Feature detection

Detect features using SIFT [Lowe, |JCV 2004]

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, |JCV 2004]

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

© 2006 Noah Snavely



Feature matching

Match features between each pair of images

© 2006 Noah Snavely



Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987]
to estimate fundamental matrices between pairs

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry.

See also the fundamental matrix song: http://danielwedge.com/fmatrix/)

© 2006 Noah Snavely



Structure from motion

O
Pre. oP; minimize
// \ \\\ ‘
/// \\ \\\?2 f (R, T, P)

Camera 1 Camera 3

R19t1 R39t3

Camera 2

RZ 9t2

© 2006 Noah Snavely



Links

Code available: http://phototour.cs.washington.edu/bundler/

http://phototour.cs.washington.edu/

http://livelabs.com/photosynth/

http://www.cs.cornell.edu/~snavely/




