
Lecture	13	
					Image	features,	SIFT	
    Homographies, RANSAC and panoramas 
	

6.819 / 6.869: Advances in Computer Vision 

Antonio Torralba 



Matching with Features 
• Detect feature points in both images 

• Find corresponding pairs 
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Outline 

•  Feature point detection 
– Harris corner detector 
–  finding a characteristic scale:  DoG or 

Laplacian of Gaussian 
•  Local image description 

– SIFT features 

3 



Harris Detector: Some Properties 
•  Not invariant to image scale! 

All points will be 
classified as edges 

Corner ! 
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Scale Invariant Detection 
•  Solution: 

–  Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales) 
 
 

Example: average intensity. For corresponding 
regions (even of different sizes) it will be the same. 

scale = 1/2 

–  For a point in one image, we can consider it as a function of 
region size (circle radius)  
 

f 

region size 

Image 1 f 

region size 

Image 2 



Scale Invariant Detectors 

•  Harris-Laplacian1 
Find local maximum of: 
–  Harris corner detector in 

space (image coordinates) 
–  Laplacian in scale 

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004 
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•  SIFT (Lowe)2 
Find local maximum 
(minimum) of: 

–  Difference of Gaussians in 
space and scale 

scale 

x 

y 

← DoG →

←
 D

oG
 →
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Scale-space example:  3 bumps of different widths. 

1-d bumps 

display as an 
image 

blur with 
Gaussians of 

increasing 
width 

scale 

space 
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Gaussian and difference-of-Gaussian filters 

8 
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scale 

space 

The bumps, filtered by difference-of-
Gaussian filters 
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cross-sections along red lines plotted next slide 

The bumps, filtered by difference-of-
Gaussian filters 

a b c 

1.7 

3.0 

5.2 
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Scales of peak responses are proportional to bump width (the characteristic scale of each bump):  
[1.7, 3, 5.2] ./ [5, 9, 15] = 0.3400    0.3333    0.3467  

sigma = 1.7 

sigma = 3 

sigma = 5.2 

5 9 15 

a 

b 

c 

Diff of Gauss filter giving peak response 
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Scales of peak responses are proportional 
to bump width (the characteristic scale of 
each bump):  
  
[1.7, 3, 5.2] ./ [5, 9, 15] = 0.3400    0.3333    
0.3467  
 
Note that the max response filters each 
has the same relationship to the bump that 
it favors (the zero crossings of the filter 
are about at the bump edges).  So the 
scale space analysis correctly picks out 
the “characteristic scale” for each of the 
bumps.   
 
More generally, this happens for the 
features of the images we analyze. 
 



Scale Invariant Detectors 

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 

•  Experimental evaluation of detectors  
w.r.t. scale change 

Repeatability rate: 
# correspondences 
# possible correspondences 
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Repeatability vs number of scales sampled per octave 

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of 
Computer Vision, 60, 2 (2004), pp. 91-110 



Some details of key point localization 
over scale and space 

•  Detect maxima and minima of 
difference-of-Gaussian in scale 
space 

•  Fit a quadratic to surrounding 
values for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 
2002) 

•  Taylor expansion around point: 

•  Offset of extremum (use finite 
differences for derivatives): 
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Scale and Rotation Invariant 
Detection: Summary 

•  Given: two images of the same scene with a large 
scale difference and/or rotation between them 

•  Goal: find the same interest points independently 
in each image 

•  Solution: search for maxima of suitable functions 
in scale and in space (over the image).  Also, find 
characteristic orientation. 

Methods:  
1.  Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image 

2.  SIFT [Lowe]: maximize Difference of Gaussians over scale and space 



Example of keypoint detection 

http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf 
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Outline 

•  Feature point detection 
– Harris corner detector 
–  finding a characteristic scale 

•  Local image description 
– SIFT features 

18 



Recall: Matching with Features 
•  Problem 1: 

– Detect the same point independently in both images 

no chance to match! 

We need a repeatable detector  

Good 



Recall: Matching with Features 

•  Problem 2: 
– For each point correctly recognize the 

corresponding one 

? 

We need a reliable and distinctive descriptor 



CVPR 2003 Tutorial 
 

Recognition and Matching Based 
on Local Invariant Features  

David Lowe  
Computer Science Department 
University of British Columbia 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf 



SIFT vector formation 
•  Computed on rotated and scaled version of window 

according to computed orientation & scale 
–  resample the window 

•  Based on gradients weighted by a Gaussian of 
variance half the window (for smooth falloff) 



SIFT vector formation 
•  4x4 array of gradient orientation histograms 

–  not really histogram, weighted by magnitude 
•  8 orientations x 4x4 array = 128 dimensions 
•  Motivation:  some sensitivity to spatial layout, but not 

too much. 

showing only 2x2 here but is 4x4 



Reduce effect of illumination 
•  128-dim vector normalized to 1  
•  Threshold gradient magnitudes to avoid excessive 

influence of high gradients 
–  after normalization, clamp gradients >0.2 
–  renormalize 
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Tuning and evaluating the SIFT descriptors 

Database images were subjected to rotation, scaling, affine stretch, 
brightness and contrast changes, and added noise.  Feature point 
detectors and descriptors were compared before and after the 
distortions, and evaluated for: 

•  Sensitivity to number of histogram orientations 
and subregions. 
•  Stability to noise. 
•  Stability to affine change. 
•  Feature distinctiveness 25 



Sensitivity to number of histogram orientations and 
subregions (n) 



Feature stability to noise 
•  Match features after random change in image scale & 

orientation, with differing levels of image noise 
•  Find nearest neighbor in database of 30,000 features 



Feature stability to affine change 
•  Match features after random change in image scale & 

orientation, with 2% image noise, and affine distortion 
•  Find nearest neighbor in database of 30,000 features 



Affine Invariant Descriptors 

Find affine normalized frame 

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003 

A 

A1 A2 

rotation 

Compute rotational invariant descriptor in this normalized frame 



Distinctiveness of features 
•  Vary size of database of features, with 30 degree 

affine change, 2% image noise 
•  Measure % correct for single nearest neighbor match 



Application of invariant local features to 
object (instance) recognition. 

Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters 

SIFT Features 







SIFT features impact 

A good SIFT features tutorial: 
http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf 
By Estrada, Jepson, and Fleet. 

 
The original SIFT paper:  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf 

SIFT feature paper citations: 
Distinctive image features from scale-invariant keypointsDG Lowe - 

International journal of computer vision, 2004 - Springer 
International Journal of Computer Vision 60(2), 91–110, 2004 cс 
2004 Kluwer Academic Publishers.  Computer Science Department, 
University of British Columbia ...Cited by 16232 (google)  



Now we have 

•  Well-localized feature points 
•  Distinctive descriptor 

•  Now we need to 
– match pairs of feature points in different 

images 
– Robustly compute homographies  

(in the presence of errors/outliers) 



Depth-based ambiguity of position 
Camera A Camera B 

In general, matches are constrained to lie on the epipolar lines, but… 
that’s it?, there are no more constraints? 
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Under what conditions can you know where 
to translate each point of image A to where it 
would appear in camera B (with calibrated 
cameras), knowing nothing about image 
depths? 

Camera A Camera B 



38 

(a) camera rotation 



39 

 and (b) imaging a planar surface 
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Geometry of perspective projection 

pinhole 

sensor plane inverted copy of 
sensor plane 

Let’s look at this scene from above... 



Two cameras with same center of projection 

camera A camera B 

Can generate any synthetic camera view 
as long as it has the same center of projection! 

common pinhole 
position of the cameras 



camera A camera B 

camera A center 

camera B center 

Two cameras with offset centers of projection 



Entrance pupil 
•  Often wrongly called nodal point 
•  When camera is rotated around entrance pupil, there is 

no parallax 
– That is, if two 3D points are superimposed for one 

orientation, they remain superimposed after rotation  
•  Finding the entrance pupil is painful 

–  http://www.reallyrightstuff.com/pano/index.html 

–  http://www.path.unimelb.edu.au/~bernardk/tutorials/360/photo/nodal.html



Recap 
•  When we only rotate the camera (around nodal point) 

depth does not matter  
•  It only performs a 2D warp  

–  one-to-one mapping of the 2D plane 
–  plus of course reveals stuff that was outside the field 

of view 

•  Now we just need to figure out this mapping 

A 
camera 

B 
camera 



Other interpretation 
•  Depth does not matter 
•  We can pretend that each pixel is at a convenient depth 

viewpoint 

•  Three convenient depth distributions: 
–  spherical 
–  planar 
–  cylindrical 

•  We focus on planar 
•  it makes life  

more linear 
•  Still useful for spherical panos 



Aligning images 

– We have established that pairs of images from the 
same viewpoint can be aligned through a simple 2D 
spatial transformation (warp).  

– What kind of transformation? 



Aligning images: translation? 

Translations are not enough to align the images 

left on top right on top 



Image Warping 

Affine 

6 unknowns 

Projective 

8 unknowns 

Translation 

2 unknowns 

figure 2.4, Szeliski 



Homography 
•  Projective – mapping between any two projection 

planes with the same center of projection 
•  called Homography  
•  represented as 3x3 matrix in homogenous coordinates 

PP2 

PP1 

H p p’   

To apply a homography H 
•  Compute     p’ = Hp   (regular matrix multiply) 
•  Convert p’ from homogeneous to  image 

coordinates (divide by w) 
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homography 

P 

Camera 1 
parameters: A1 Camera 0 

parameters: A0 

x0 = A0 P  

x1 = A1 P  

A0 =  

A1 =  



homography 



homography 

How many pairs of points does it take to specify M_10? 



Images of planar 
objects, taken by 
generically offset 
cameras,  are also 
related by a 
homography. 
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camera A 

camera B 

Planar objects 



CSE 576, Spring 2008 Projective Geometry 6 

1 2 3 4 

1 

2 

3 

4 

Measurements on planes 

Approach:  unwarp then measure 
How to unwarp? 



CSE 576, Spring 2008 Projective Geometry 7 

Image rectification 

To unwarp (rectify) an image 
•  solve for homography H given p and p’ 
•  solve equations of the form:  wp’ = Hp 
–  linear in unknowns:  w and coefficients of H 
–  H is defined up to an arbitrary scale factor 
–  how many points are necessary to solve for H? 

p 
p’ 



CSE 576, Spring 2008 Projective Geometry 8 

Solving for homographies 
w 

w 

w 



CSE 576, Spring 2008 Projective Geometry 9 

Solving for homographies 

A h 0 

Defines a least squares problem: 
2n × 9 9 2n 

•  Since h is only defined up to scale, solve for unit vector ĥ 
•  Solution: ĥ = eigenvector of ATA with smallest eigenvalue 
•  Works with 4 or more points 



Image warping with homographies 

image plane below 
black area 
where no pixel 
maps to 

homography so 
that image is 
parallel to floor 

homography so 
that image is 
parallel to right 
wall 



automatic image mosaicing 
•  Basic Procedure 

– Take a sequence of images from the same position. 
•  Rotate the camera about its optical center (entrance pupil). 

– Robustly compute the homography transformation 
between second image and first. 

– Transform (warp) the second image to overlap with first. 
– Blend the two together to create a mosaic. 
–  If there are more images, repeat. 



Robust feature matching through 
RANSAC 

15-463: Computational Photography 
Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from 

 Steve Seitz and Rick Szeliski 

© Krister Parmstrand  
Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation. 



Feature matching 

? 

descriptors for left image feature points descriptors for right image feature points 
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Strategies to match images robustly 

(a) Working with individual features:  For each feature point, 
find most similar point in other image (SIFT distance) 
Reject ambiguous matches where there are too many similar points 
 

(b) Working with all the features:  Given some good feature 
matches, look for possible homographies relating the two 
images 
Reject homographies that don’t have many feature matches. 

62 



(a) Feature-space outlier 
rejection 

•  Let’s not match all features, but only these that 
have “similar enough” matches? 

•  How can we do it?  
–  SSD (patch1,patch2) < threshold 
–  How to set threshold? 

Not so easy. 



Feature matching 
•  Exhaustive search 

–  for each feature in one image, look at all the 
other features in the other image(s) 

– Usually not so bad 

•  Hashing 
–  compute a short descriptor from each feature 

vector, or hash longer descriptors (randomly) 
•  Nearest neighbor techniques 

–  k-trees and their variants (Best Bin First) 



Feature-space outlier rejection 

•  A better way [Lowe, 1999]: 
–  1-NN: SSD of the closest match 
–  2-NN: SSD of the second-closest match 
–  Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN 
–  That is, is our best match so much better than the rest? 



Feature-space outlier rejection 

•  Can we now compute H from the blue 
points? 
– No!  Still too many outliers…  
– What can we do? 



(b) Matching many features--looking for 
a good homography 

What do we do about the “bad” matches? 

Note: at this point we don’t know which ones are good/bad 

Simplified illustration with translation instead of homography 



RAndom SAmple Consensus 

Select one match, count inliers 



RAndom SAmple Consensus 

Select one match, count inliers 

0 inliers 



RAndom SAmple Consensus 

Select one match, count inliers 

4 inliers 



RAndom SAmple Consensus 

Select one match, count inliers Select one match, count inliers 

Keep match with largest set of inliers 



At the end: Least squares fit 

Find “average” translation vector,  
but with only inliers 
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Reference 

•  M. A. Fischler, R. C. 
Bolles. Random Sample 
Consensus: A Paradigm for 
Model Fitting with 
Applications to Image 
Analysis and Automated 
Cartography. Comm. of the 
ACM, Vol 24, pp 381-395, 
1981. 

•  http://portal.acm.org/
citation.cfm?id=358692  



RANSAC for estimating homography 
RANSAC loop: 
Select four feature pairs (at random) 
Compute homography H (exact) 
Compute inliers where ||pi’, H pi|| < ε 
Keep largest set of inliers 
Re-compute least-squares H estimate using all of 
the inliers 
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Simple example: fit a line 

•  Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs 

75 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 

76 

3 inlier 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 

77 

4 inlier 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 

78 

9 inlier 
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Simple example: fit a line 

•  Pick 2 points 
•  Fit line 
•  Count inliers 

79 

8 inlier 
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Simple example: fit a line 

•  Use biggest set of inliers 
•  Do least-square fit 



RANSAC 

red:  
rejected by 2nd nearest 
neighbor criterion 
blue: 
Ransac outliers 
yellow: 
inliers 



Robustness 
•  Proportion of inliers in our pairs is G (for “good”) 
•  Our model needs P pairs  

   P=4 for homography 
•  Probability that we pick P inliers? 

       GP 
•  Probability that after N RANSAC iterations we 

have not picked a set of inliers? 
    (1-GP)N 
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Robustness: example 
•  Proportion of inliers G=0.5  
•  Probability that we pick P=4 inliers? 

–  0.54=0.0625 (6% chance) 
•  Probability that we have not picked a set of 

inliers? 
– N=100 iterations:  

(1-0.54)100=0.00157 (1 chance in 600) 
– N=1000 iterations: 

1 chance in 1e28 
83 
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Robustness: example 

•  Proportion of inliers G=0.3  
•  Probability that we pick P=4 inliers? 

–  0.34=0.0081 (0.8% chance) 
•  Probability that we have not picked a set of 

inliers? 
– N=100 iterations:  

(1-0.34)100=0.44 (1 chance in 2) 
– N=1000 iterations: 

1 chance in 3400 84 
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Robustness: example 

•  Proportion of inliers G=0.1  
•  Probability that we pick P=4 inliers? 

–  0.14=0.0001 (0.01% chances, 1 in 10,000) 
•  Probability that we have not picked a set of 

inliers? 
– N=100 iterations:  (1-0.14)100=0.99 
– N=1000 iterations: 90% 
– N=10,000: 36% 
– N=100,000: 1 in 22,000 

85 
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Robustness: conclusions 

•  Effect of number of parameters of model/
number of necessary pairs 
– Bad exponential 

•  Effect of percentage of inliers 
– Base of the exponential 

•  Effect of number of iterations 
– Good exponential 

86 
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RANSAC recap 

•  For fitting a model with low number P of 
parameters (8 for homographies) 

•  Loop 
– Select P random data points 
– Fit model 
– Count inliers  

(other data points well fit by this model) 
•  Keep model with largest number of inliers 

87 



Example: Recognising 
Panoramas 

M. Brown and D. Lowe,  
University of British Columbia 

    * M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant 
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007 (pdf 3.5Mb 
| bib)    * M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th 
International Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice, 
France, 2003 (pdf 820kb | ppt | bib)  



“Recognising Panoramas”? 



RANSAC for Homography 



RANSAC for Homography 



RANSAC for Homography 



Finding the panoramas 



Finding the panoramas 



Finding the panoramas 



Finding the panoramas 



Results 
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Benefits of Laplacian image compositing 

M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant 
Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007 



© 2006 Noah Snavely 

Photo Tourism: 
Exploring Photo Collections in 3D 

Noah Snavely      
Steven M. Seitz  
    University of Washington  

Richard Szeliski  
    Microsoft Research    

© 2006 Noah Snavely 



© 2006 Noah Snavely 

15,464  

76,389  

37,383  



© 2006 Noah Snavely 

Movie 



© 2006 Noah Snavely 

Rendering 



© 2006 Noah Snavely 

Photo Tourism overview 

Scene 
reconstruction 

 
 
 
 
 

Photo 
Explorer Input photographs 

[Note: change to Trevi for 
consistency] 

Relative camera positions 
and orientations 

Point cloud 

Sparse correspondence 



© 2006 Noah Snavely 

Photo Tourism overview 

Scene 
reconstruction 

 
 
 
 
 

Photo 
Explorer 

Input photographs 

[Note: change to Trevi for 
consistency] 



© 2006 Noah Snavely 

Scene reconstruction 
•  Automatically estimate  

–  position, orientation, and focal length of cameras 
–  3D positions of feature points 

Feature detection 

Pairwise 
feature matching 

Incremental 
structure 

from motion 

Correspondence 
estimation 



© 2006 Noah Snavely 

Feature detection 
Detect features using SIFT [Lowe, IJCV 2004] 



© 2006 Noah Snavely 

Feature detection 
Detect features using SIFT [Lowe, IJCV 2004] 



© 2006 Noah Snavely 

Feature detection 

Detect features using SIFT [Lowe, IJCV 2004] 



© 2006 Noah Snavely 

Feature matching 

Match features between each pair of images 



© 2006 Noah Snavely 

Feature matching 
Refine matching using RANSAC [Fischler & Bolles 1987] 
to estimate fundamental matrices between pairs 

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry.   

See also the fundamental matrix song:  http://danielwedge.com/fmatrix/ ) 



© 2006 Noah Snavely 

Structure from motion 

Camera 1 

Camera 2 

Camera 3 
R1,t1 

R2,t2 

R3,t3 

p1 

p4 

p3 

p2 

p5 

p6 

p7 

minimize 
f (R, T, P) 



© 2006 Noah Snavely 

Links   

•  Code available: http://phototour.cs.washington.edu/bundler/ 
•  http://phototour.cs.washington.edu/ 
•  http://livelabs.com/photosynth/ 
•  http://www.cs.cornell.edu/~snavely/ 


