MIT CSAIL
6.869: Advances in Computer Vision

Antonio Torralba, 2016

Lecture 4
Motion filters Spatial pyramids

Recap

Box filter

Gaussian filter

Binomial filter

$$
\begin{gathered}
\text { [-1 11] } \\
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
\end{gathered}
$$

$g[m, n]$

Derivatives of Gaussians: Scale

$\sigma=2$
$\sigma=4$
$\sigma=8$

Laplacian filter

Made popular by Marr and Hildreth in 1980 in the search for operators that locate the boundaries between objects.

The Laplacian operator is defined as the sum of the second order partial derivatives of a function:

$$
\nabla^{2} \mathbf{I}=\frac{\partial^{2} \mathbf{I}}{\partial x^{2}}+\frac{\partial^{2} \mathbf{I}}{\partial y^{2}}
$$

To reduce noise and undefined derivatives, we use the same trick:
$\nabla^{2} \mathbf{I} \circ g=\nabla^{2} g \circ \mathbf{I}$
Where: $\quad \nabla^{2} g=\frac{x^{2}+y^{2}-2 \sigma^{2}}{\sigma^{4}} g(x, y)$

dx

dy

laplacian

Comparison derivative and laplacian

Contrast Sensitivity Function

Blackmore \& Campbell (1969)
Maximum sensitivity
~6 cycles / degree of visual angle

Things that are very close and large are hard to see

Things far away are hard to see

Vasarely visual illusion

Image sharpening filter

Subtract away the blurred components of the image:

$$
\text { sharpening filter }=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]-\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

This filter has an overall DC component of 1 . It de-emphasizes the blur component of the image (low spatial frequencies).

Input image

Other "naturally" occurring filters

Artistic effects

Sequences

Sequences

time

Sequences

Cube size $=128 \times 128 \times 90$

Sequences

Cube size $=128 \times 128 \times 90$

Global constant motion

Let's work on the continuous space-time domain...

Global constant motion

A global motion can be written as:

$$
f(x, y, t)=f_{0}\left(x-v_{x} t, y-v_{y} t\right)
$$

Where:

$$
f_{0}(x, y)=f(x, y, 0)
$$

$$
\begin{aligned}
f(x, y, t) & =f_{0}\left(x-v_{x} t, y-v_{y} t\right) \\
F\left(w_{x}, w_{y}, w_{t}\right) & =F_{0}\left(w_{x}, w_{y}\right) \delta\left(w_{t}-v_{x} w_{x}-v_{y} w_{y}\right)
\end{aligned}
$$

Temporal Gaussian

$$
g\left(x, y, t ; \sigma_{x}, \sigma_{t}\right)=\frac{1}{(2 \pi)^{3 / 2} \sigma_{x}^{2} \sigma_{t}} \exp -\frac{x^{2}+y^{2}}{2 \sigma_{x}^{2}} \exp -\frac{t^{2}}{2 \sigma_{t}^{2}}
$$

Temporal Gaussian

How could we create a filter that keeps sharp objects that move at some velocity ($\mathbf{v x}, \mathbf{v y}$) while blurring the rest?

(Note: although some of the analysis is done on continuous variables, the processing is on done on the discrete domain)

Temporal Gaussian

How could we create a filter that keeps sharp objects that move at some velocity ($\mathbf{v x}, \mathbf{v y}$) while blurring the rest?

$$
g_{v_{x}, v_{y}}(x, y, t)=g\left(x-v_{x} t, y-v_{y} t, t\right)
$$

Space-time Gaussian derivatives

$$
\begin{aligned}
\frac{\partial g}{\partial t} & =\frac{-t}{\sigma_{t}^{2}} g(x, y, t) \\
\nabla g & =\left(g_{x}(x, y, t), g_{y}(x, y, t), g_{t}(x, y, t)\right)= \\
& =\left(-x / \sigma^{2},-y / \sigma^{2},-t / \sigma_{t}^{2}\right) g(x, y, t)
\end{aligned}
$$

Note: we can discretize time derivatives in the same way we discretized spatial derivatives. For instance:

$$
f[m, n, t]-f[m, n, t-1]
$$

Cancelling moving objects

Can we create a filter that removes objects that move at some velocity ($\mathbf{v x}, \mathbf{v y}$) while keeping the rest?

Space-time Gaussian derivatives

For a global translation, we can write:

$$
f(x, y, t)=f_{0}\left(x-v_{x} t, y-v_{y} t\right)
$$

Therefore, we can write the temporal derivative of f as a function of the spatial derivatives of f_{0} :

$$
\frac{\partial f}{\partial t}=\frac{\partial f_{0}}{\partial t}=-v_{x} \frac{\partial f_{0}}{\partial x}-v_{y} \frac{\partial f_{0}}{\partial y}
$$

And from here (using derivatives of f):

$$
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}=0
$$

This relation is known as the "Brightness change constraint equation", introduced by Horn \& Schunck in 1981

Space-time Gaussian derivatives

Can could we create a filter that removes objects that move at some velocity ($\mathbf{v x}, \mathbf{v y}$) while keeping the rest?

Yes, we could create a filter that implements this constraint:

$$
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}=0
$$

We can create this filter as a combination of Gaussian derivatives:

$$
\begin{aligned}
h\left(x, y, t ; v_{x}, v_{y}\right) & =g_{t}+v_{x} g_{x}+v_{y} g_{y} \\
& =\nabla g\left(1, v_{x}, v_{y}\right)^{T}
\end{aligned}
$$

Space-time Gaussian derivatives

$$
h\left(x, y, t ; v_{x}, v_{y}\right)=g_{t}+v_{x} g_{x}+v_{y} g_{y}
$$

Gabor wavelets and quadrature filters

What is a good representation for

 image analysis?- Fourier transform domain tells you "what" (textural properties), but not "where".
- Pixel domain representation tells you "where" (pixel location), but not "what".
- Want an image representation that gives you a local description of image eventswhat is happening where.

Analysis of local frequency

$h\left(x, y ; x_{0}, y_{0}\right)=e^{-\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2 \sigma^{2}}}$
Fourier basis:

$$
e^{j 2 \pi u_{0} x}
$$

Gabor wavelet:

$$
\psi(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} e^{j 2 \pi u_{0} x}
$$

We can look at the real and imaginary parts:

$$
\begin{aligned}
& \psi_{c}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \cos \left(2 \pi u_{0} x\right) \\
& \psi_{s}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \sin \left(2 \pi u_{0} x\right)
\end{aligned}
$$

Gabor wavelets

$$
\psi_{c}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \cos \left(2 \pi u_{0} x\right)
$$

$$
\psi_{s}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \sin \left(2 \pi u_{0} x\right)
$$

Gabor filters at different scales and spatial frequencies

Top row shows anti-symmetric (or odd) filters; these are good for detecting odd-phase structures like edges.
Bottom row shows the symmetric (or even) filters, good for detecting line phase contours.

Fourier transform of a Gabor wavelet

$$
\mathrm{U}_{0}=0
$$

$$
\psi_{c}(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \cos \left(2 \pi u_{0} x\right)
$$

Comparing Human and Machine Perception

Operations
2D Fourier Plane

Low-pass spatial filtering

Sampling, more low-pass filtering, temporal low/bandpass filtering, λ filtering, gain control, response compression

Spatiotemporal bandpass filtering, λ filtering, multiple parallel representations

Simple cells: orientation, phase, motion, binocular disparity, \& λ filtering

FIGURE 1 Schematic overview of the processing done by the early visual system. On the left, are some of the major structures to be discussed; in the middle, are some of the major operations done at the associated structure; in the right, are the 2-D Fourier representations of the world, retinal image, and sensitivities typical of a ganglion and cortical cell.

Fig. 5. Top row: illustrations of empirical 2-D receptive field profiles measured by J. P. Jones and L. A. Palmer (personal communication) in simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor elementary function for each neuron, described by (10). Bottom row: residual error of the fit, indistinguishable from random error in the Chisquared sense for 97 percent of the cells studied.

Quadrature filter pairs

A quadrature filter is a complex filter whose real part is related to its imaginary part via a Hilbert transform along a particular axis through origin of the frequency domain.

Contrast invariance!! (same energy response for white dot on black background as for a black dot on a white background).

energy
 response to a line

A contour detector

Iris code

Iris codes are compared using Hamming distance

Setting the Bits in an IrisCode

$$
\begin{aligned}
& h_{\text {fLu }}=1 \text { if } \operatorname{Re} \int_{\rho} \int_{\phi} e^{-j \omega\left(\theta_{0}-\phi\right)} e^{-(r 0-\rho)^{2} / \mathrm{x}^{2}} e^{-\left(\theta_{0}-\phi\right)^{2} / \beta^{2}} I(\rho, \phi) \rho d \rho d \phi \geq 0 \\
& h_{\text {fic }}=0 \text { if } \operatorname{Re} \int_{\rho} \int_{\phi} e^{-j \omega\left(\theta_{0}-\phi\right)} e^{-(r 0-\rho)^{2} / \alpha^{2}} e^{-\left(\theta_{0}-\phi\right)^{2} / \beta^{2}} I(\rho, \phi) \rho d \rho d \phi<0 \\
& h_{\text {Iru }}=1 \text { if } \operatorname{Im} \int_{\rho} \int_{\phi} e^{-j \omega\left(\theta_{0}-\phi\right)} e^{-(r 0-\rho)^{2} / \alpha^{2}} e^{-\left(\theta_{0}-\phi\right)^{2} / \beta^{2}} I(\rho, \phi) \rho d \rho d \phi \geq 0 \\
& h_{\text {Iru }}=0 \text { if } \operatorname{Im} \int_{\rho} \int_{\phi} e^{-j \omega\left(\theta_{0}-\phi\right)} e^{-\left(r_{0}-\rho\right)^{2} / \alpha^{2}} e^{-\left(\theta_{0}-\phi\right)^{2} / \beta^{2}} I(\rho, \phi) \rho d \rho d \phi<0
\end{aligned}
$$

Phase-Quadrant Iris Demodulation Code

Gabor filter measurements for iris recognition code

Hamming Distances for Authentics and Imposters

Gabor wavelet:

$$
\psi(x, y)=e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} e^{j 2 \pi u_{0} x}
$$

Tuning filter orientation:

$$
\begin{gathered}
x^{\prime}=\cos (\alpha) x+\sin (\alpha) y \\
y^{\prime}=-\sin (\alpha) x+\cos (\alpha) y
\end{gathered}
$$

Real

(i) 11 11

Space

Second directional derivative of a Gaussian and its quadrature pair

(a) Original image

(b) real component of filtered image
(c) imaginary component of filtered image

(d) sum of the squares of (b) and (c)

Orientation analysis

(a)

(b)

(c)

(d)

(e)

High resolution in

(f)
orientation requires many oriented filters as basis (high order gaussian derivatives or fine-tuned Gabor wavelets).

Orientation analysis

(a)

(b)

Fig. 10. Measures of orientation derived from G_{4} and H_{4} steerable filter outputs: (a) Input image for orientation analysis; (b) angular average of oriented energy as measured by G_{4}, H_{4} quadrature pair. This is an oriented features detector; (c) conventional measure of orientation: dominant orientation piotted at each point. No dominant orientation is found at the line intersection or corners; (d) oriented energy as a function of angle, shown as a polar plot for a sampling of points in the image (a). Note the multiple orientations found at intersection points of lines or edges and at comers, shown by the florets there.

Image pyramids

Image information occurs at all spatial scales

Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

The Gaussian pyramid

For each level
Blur input image with a Gaussian filter
Downsample by a factor of 2
Output downsampled image

The Gaussian pyramid

The Gaussian pyramid

For each level

1. Blur input image with a Gaussian filter

$$
[1,4,6,4,1]
$$

The Gaussian pyramid

For each level

1. Blur input image with a Gaussian filter
2. Downsample image

Downsampling

Blur

(no frequency content is lost)

70

In 1 D , one step of the Gaussian pyramid is:

GAUSSIAN PYRAMID

Fig 1. A one-dimensional graphic representation of the process which generates a Gaussian pyramid Each row of dots represents nodes within a level of the pyramid. The value of each node in the zero level is just the gray level of a corresponding image pixel. The value of each node in a high level is the weighted average of node values in the next lower level. Note that node spacing doubles from level to level, while the same weighting pattern or "generating kernel" is used to generate all levels.

Convolution and subsampling as a matrix multiply (1D case)

$$
x_{2}=G_{1} x_{1}
$$

$G_{1}=$

1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0

(Normalization constant of $1 / 16$ omitted for visual clarity.)

Next pyramid level
 $$
x_{3}=G_{2} x_{2}
$$

$$
G_{2}=
$$

$$
\begin{array}{llllllll}
1 & 4 & 6 & 4 & 1 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
0 & 0 & 1 & 4 & 6 & 4 & 1 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 4 & 6 & 4
\end{array}
$$

$$
\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 4
\end{array}
$$

The combined effect of the two pyramid levels

$$
\begin{aligned}
& x_{3}=G_{2} G_{1} x_{1} \\
& G_{2} G_{1}= \\
& \begin{array}{ccccccccccccccccccccc}
1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 31 & 20 & 10 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 31 & 20 & 10 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 30 & 16 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 10 & 20 & 25 & 16 & 4 & 0
\end{array}
\end{aligned}
$$

1D Gaussian pyramid matrix, for [14641] low-pass filter

Gaussian pyramids used for

- up- or down- sampling images.
- Multi-resolution image analysis
- Look for an object over various spatial scales
- Coarse-to-fine image processing: form blur estimate or the motion analysis on very lowresolution image, upsample and repeat. Often a successful strategy for avoiding local minima in complicated estimation tasks.

Image down-sampling

Image up-sampling

Image up-sampling

64×64

121
○ $242=$ 121

128×128

Image up-sampling

Convolution and up-sampling as a matrix multiply (1D case)

$$
\begin{gathered}
y_{2}=F_{3} x_{3} \begin{array}{c}
\text { Insert zeros between pixels, then } \\
\text { apply a low-pass filter, }[14641]
\end{array} \\
F_{3}=\begin{array}{lllll}
6 & 1 & 0 & 0 \\
4 & 4 & 0 & 0 \\
1 & 6 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 1 & 6 & 1 \\
0 & 0 & 4 & 4 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 4
\end{array} \\
81
\end{gathered}
$$

The Laplacian Pyramid

- Synthesis
- Compute the difference between upsampled Gaussian pyramid level and Gaussian pyramid level.
- band pass filter - each level represents spatial frequencies (largely) unrepresented at other level.

Laplacian pyramid algorithm

Showing, at full resolution, the information captured at each level of a Gaussian (top) and Laplacian (bottom) pyramid.

 through Gazssin intapolition. Each level of the Lapheim pyrumid is the difference bet ween the convespoeding and next highar levels of the Ganssian pramid.

Laplacian pyramid reconstruction algorithm: recover x_{1} from $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and x_{4}

[^0]Reconstruction of original image (x 1) from Laplacian pyramid elements:
$\mathrm{x} 3=\mathrm{L} 3+\mathrm{F} 3 \mathrm{x} 4$

$\mathrm{x} 2=\mathrm{L} 2+\mathrm{F} 2 \mathrm{x} 3$
$\mathrm{x} 1=\mathrm{L} 1+\mathrm{F} 1 \mathrm{x} 2$

Laplacian pyramid reconstruction algorithm: recover x_{1} from $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and g_{3}

| 512 | 256 | 128 | 64 | 32 | 16 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | | | | | | |

1-d Laplacian pyramid matrix, for [14641] low-pass filter

high frequencies

low frequencies

Laplacian pyramid applications

- Texture synthesis
- Image compression
- Noise removal
- Also related to SIFT

Image blending

(a)

(b)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) (c) 1983 ACM.
Tha firet thran rowe chrove tha hioh madimm and lrwy frommanev narte af tha I anlarian muramid

Image blending

- Build Laplacian pyramid for both images: LA, LB
- Build Gaussian pyramid for mask: G
- Build a combined Laplacian pyramid: $L(j)=G(j) L A(j)+(1-G(j)) L B(j)$
- Collapse L to obtain the blended image

Sampling

Sampling

Sampling

Sampling

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sampling

What will be the best sampling pattern in 2D?

Digital Logic (Interface, Timing, Processing, Output)

Retinal fovea
Hexagonal

Random

Sampling

Continuous image $f(x, y)$
We can sample it using a rectangular grid as

$$
f[n, m]=f\left(n T_{x}, m T_{y}\right)
$$

Aliasing

Let's start with this continuous image (it is not really continuous...)

Modeling the sampling process

Continuous image $f(x, y)$
We can sample it using a rectangular grid as

$$
f[n, m]=f\left(n T_{x}, m T_{y}\right)
$$

Or a more general sampling pattern

$$
f[n, m]=f(a n+b m, c n+d m)
$$

If $\mathrm{a}=\mathrm{T}, \mathrm{b}=0, \mathrm{c}=0, \mathrm{~d}=\mathrm{T}$ then we will have a rectangular sampling

Modeling the sampling process

Modeling the sampling process

The Fourier transform is a convolution...

Interesting property of the delta train: the Fourier transform of a delta train of period T is another delta train with period $2 \pi / \mathrm{T}$

Modeling the sampling process

$$
\delta_{T_{s}}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \longleftrightarrow \Delta_{T_{s}}(w)=\frac{2 \pi}{T_{s}} \sum_{k=-\infty}^{\infty} \delta\left(w-k \frac{2 \pi}{T_{s}}\right)
$$

Interesting property of the delta train: the Fourier transform of a delta train of period T is another delta train with period $2 \pi / \mathrm{T}$. Demo in the class notes.

Modeling the sampling process

What happens when the repetitions overlap?

Aliasing

Aliasing

Both waves fit the same samples. Aliasing consists in "perceiving" the red wave when the actual input was the blue wave.

Sampling theorem

The sampling theorem (also known as Nyquist theorem) states that for a signal to be perfectly reconstructed from it samples, the sampling period T_{s} has to be $T_{s}>T_{\min } / 2$ where $T_{\text {min }}$ is the period of the highest frequency present in the input signal.

Antialising filtering

Before sampling, apply a low pass-filter to remove all the frequencies that will produce aliasing.

Without antialising filter.

With antialising filter.

Modeling the 2D sampling process

 $f[n, m]=f(a n+b m, c n+d m)$$$
\widehat{f}(x, y)=f(x, y) \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x-a n-b m, y-c n-d m)
$$

2D sampling

[^0]: G\# is the blur-and-downsample operator at pyramid level \# F\# is the blur-and-upsample operator at pyramid level \#

 Laplacian pyramid elements:
 $\mathrm{L} 1=(\mathrm{I}-\mathrm{F} 1 \mathrm{G} 1) \mathrm{x} 1$
 $\mathrm{L} 2=(\mathrm{I}-\mathrm{F} 2 \mathrm{G} 2) \mathrm{x} 2$
 $\mathrm{L} 3=(\mathrm{I}-\mathrm{F} 3 \mathrm{G} 3) \mathrm{x} 3$
 $\mathrm{x} 2=\mathrm{G} 1 \mathrm{x} 1$
 $\mathrm{x} 3=\mathrm{G} 2 \mathrm{x} 2$
 $\mathrm{x} 4=\mathrm{G} 3 \mathrm{x} 3$

