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Derivatives	of	Gaussians:	Scale
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Laplacian filter
Made popular by Marr and Hildreth in 1980 in the search for
operators that locate the boundaries between objects.

The Laplacian operator is defined as the sum of the second order 
partial derivatives of a function:

To reduce noise and undefined derivatives, we use the same trick:

Where: 



dx dy laplacian



Comparison	derivative	and	laplacian

Zero crossings



Contrast	Sensitivity	Function
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Vasarely visual illusion
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Image	sharpening	filter
Subtract away the blurred components of the image:

This filter has an overall DC component of 1. It de-emphasizes
the blur component of the image (low spatial frequencies).

The DC component is the mean value of the image  



Input image



Other	“naturally”	occurring	filters



Artistic	effects





Sequences



Sequences

time



Sequences

Cube size = 128x128x90



Cube size = 128x128x90

Sequences



Global	constant	motion

t

f (t) vx

Let’s work on the continuous space-time domain…



Global	constant	motion

A global motion can be written as:

Where:

(vx,vy)





Temporal	Gaussian



Temporal	Gaussian
How could we create a filter that keeps sharp objects that move 
at some velocity (vx , vy) while blurring the rest?

(Note: although some of the analysis is done on continuous variables,
the processing is on done on the discrete domain)



Temporal	Gaussian
How could we create a filter that keeps sharp objects that move 
at some velocity (vx , vy) while blurring the rest?









Space-time	Gaussian	derivatives

Note: we can discretize time derivatives in the same way we
discretized spatial derivatives. For instance:



Cancelling	moving	objects
Can we create a filter that removes objects that move at some 
velocity (vx , vy) while keeping the rest?



Space-time	Gaussian	derivatives
For a global translation, we can write:

Therefore, we can write the temporal derivative of f as a function 
of the spatial derivatives of f0 :

This relation is known as the “Brightness change constraint 
equation”, introduced by Horn & Schunck in 1981 

And from here (using derivatives of f):

+ + =0



Space-time	Gaussian	derivatives
Can could we create a filter that removes objects that move at 
some velocity (vx , vy) while keeping the rest?

Yes, we could create a filter that implements this constraint:

+ + =0

We can create this filter as a combination of Gaussian derivatives:



Space-time	Gaussian	derivatives









Gabor	wavelets	and	quadrature filters



What is a good representation for 
image analysis?

• Fourier transform domain tells you “what”
(textural properties), but not “where”.

• Pixel domain representation tells you 
“where” (pixel location), but not “what”.

• Want an image representation that gives 
you a local description of image events—
what is happening where.



Analysis	of	local	frequency	

(x0, y0)

Fourier basis:

Gabor wavelet:

We can look at the real and imaginary parts:



Gabor	wavelets

u0=0 U0=0.1 U0=0.2



Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric 
(or odd) filters;  these are good 
for detecting odd-phase 
structures like edges.  
Bottom row shows the
symmetric (or even) filters, 
good for detecting line phase 
contours.



Fourier	transform	of	a	Gabor	wavelet

U0=0.1
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Comparing	Human	and	Machine	Perception
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Quadrature filter pairs
A quadrature filter is a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through
origin of the frequency domain.
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Contrast invariance! ! (same energy 
response for white dot on black 
background as for a black dot on a 
white background).

squared magnitude



edge energy 
response to 

an edge



line energy 
response to a 

line
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Local 
energy

Phase ~ 0
Phase ~ 90

edge detector 
output

A contour detector
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Iris	code
Real

Imaginary

Iris codes are compared using Hamming distance

Images from http://cnx.org/content/m12493/latest/John Daugman
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Gabor	filter	measurements	 for	iris	recognition	code
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Gabor wavelet:

Tuning filter orientation:

Space

Fourier domain

Real

Imag

Real

Imag



Second directional derivative of a Gaussian and its quadrature pair



Orientation	analysis

High resolution in
orientation requires
many oriented filters
as basis (high order
gaussian derivatives
or fine-tuned Gabor
wavelets).



Orientation	analysis





Image	pyramids



Image	information	occurs	at	all	
spatial	scales
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Gaussian	filter
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The Gaussian pyramid

For each level
Blur input image with a Gaussian filter
Downsample by a factor of 2
Output downsampled image
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512×512 256×256 128×128 64×64 32×32

The Gaussian pyramid

(original image)



The Gaussian pyramid
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For each level
1. Blur input image with a Gaussian filter

[1, 4, 6, 4, 1]



The Gaussian pyramid

69

For each level
1. Blur input image with a Gaussian filter
2. Downsample image



Downsampling
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Blur

ê2

(no frequency 
content is lost)
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In 1D, one step of the Gaussian pyramid is:

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf



7272
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Convolution and subsampling as a matrix multiply (1D case)

1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0

(Normalization constant of 1/16 omitted for visual clarity.)
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Next pyramid level

1     4     6     4     1     0     0     0

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4
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The combined effect of the two pyramid levels

1     4    10    20   31    40    44    40    31    20    10     4      1      0      0     0     0      0     0     0

0     0     0      0      1     4     10    20    31    40    44    40   31    20    10     4     1      0     0     0

0     0     0      0      0     0       0     0      1     4      10    20   31    40    44    40    30   16    4     0

0     0     0      0      0     0       0     0      0     0        0      0     1     4     10    20    25   16    4     0
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1D Gaussian pyramid matrix, for  [1 4 6 4 1]  low-pass filter

full-band image, 
highest resolution

lower-resolution 
image

lowest resolution 
image
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Gaussian pyramids used for

• up- or down- sampling images.
• Multi-resolution image analysis

– Look for an object over various spatial scales
– Coarse-to-fine image processing:  form blur 

estimate or the motion analysis on very low-
resolution image, upsample and repeat.  Often a 
successful strategy for avoiding local minima in 
complicated estimation tasks.
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Image down-sampling
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Blur

ê2

Image up-sampling

é2



Image up-sampling

64×64

Start by inserting zeros

1 2 1
2 4 2
1 2 1

=

128×128



Image up-sampling

64×64

1 2 1
2 4 2
1 2 1

=

=



Convolution and up-sampling as a matrix multiply (1D case)

6     1     0     0   

4     4     0     0 

1     6     1     0 

0     4     4     0 

0     1     6     1

0     0     4     4

0     0     1     6

0     0     0     4

Insert zeros between pixels, then 
apply a low-pass filter, [1 4 6 4 1]
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The Laplacian Pyramid

• Synthesis
– Compute the difference between upsampled 

Gaussian pyramid level and Gaussian pyramid 
level.

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other level.
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Laplacian pyramid algorithm

83



Showing, at full resolution, the information captured at each level 
of a Gaussian (top) and Laplacian (bottom) pyramid.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and x4

G# is the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
L1 = (I – F1 G1) x1
L2 = (I – F2 G2) x2
L3 = (I – F3 G3) x3
x2 = G1 x1
x3 = G2 x2
x4 = G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3 = L3 + F3 x4
x2 = L2 + F2 x3
x1 = L1 + F1 x2
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and g3

+

+
+
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Gaussian pyramid



Laplacian pyramid

(Low-pass
residual)
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1-d Laplacian pyramid matrix, for [1 4 6 4 1]  low-pass filter

high frequencies

mid-band 
frequencies

low frequencies



Laplacian pyramid applications

• Texture synthesis
• Image compression
• Noise removal

• Also related to SIFT
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Image	blending



92
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Image	blending

• Build	Laplacian	pyramid	for	both	images:	LA,	LB

• Build	Gaussian	pyramid	for	mask:	G
• Build	a	combined	Laplacian	pyramid:	L(j)	=	G(j)	LA(j)	+	(1-G(j))	 LB(j)

• Collapse	L	to	obtain	the	blended	image	

93



Sampling



Sampling
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Continuous world

Pixels



Sampling
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Sampling
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Sampling
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What	will	be	the	best	sampling	
pattern	in	2D?

Images from: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/retina/retina.html

Retinal fovea
Hexagonal Retina periphery

Random



Sampling
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Continuous image f (x, y)

We can sample it using a rectangular grid as

Tx

Ty



Aliasing
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Let’s start with this continuous image (it is not really continuous…)



Aliasing
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Modeling	the	sampling	process

103

Continuous image f (x, y)

We can sample it using a rectangular grid as

Or a more general sampling pattern

If a = T , b =  0, c =  0, d = T  then we will have a rectangular 
sampling



Modeling	the	sampling	process
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t

t

t

Ts

A convenient writing:

f (t)

Delta train

Sampled signal



Modeling	the	sampling	process
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t tTs

f (t)

Delta train*

The Fourier transform is a convolution…

Interesting property of the delta train: the Fourier transform of a 
delta train of period T is another delta train with period 2π/T



Modeling	the	sampling	process
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tTs

Interesting property of the delta train: the Fourier transform of a 
delta train of period T is another delta train with period 2π/T.
Demo in the class notes.

=

w

1



Modeling	the	sampling	process
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t t tTs

f (t)

× =

w

F (w)

w =

What happens when the repetitions overlap?



Aliasing



Aliasing
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Both waves fit the same samples. Aliasing consists in “perceiving”
the red wave when the actual input was the blue wave. 



Sampling	theorem

The	sampling	theorem		(also	known	as	Nyquist
theorem)	states	that	for	a	signal	to	be	
perfectly	reconstructed	from	it	samples,	the	
sampling	period	Ts has	to	be	Ts >	Tmin/2		where	
Tmin is	the	period	of	the	highest	frequency	
present	in	the	input	signal.

110

F (w)

2π/Tmin

w



Antialising filtering
Before	sampling,	apply	a	low	pass-filter	to	
remove	all	the	frequencies	that	will	produce	
aliasing.

Without antialising
filter.

With antialising
filter.



Modeling	the	2D	sampling	process

112Rectangular sampling Hexagonal sampling



2D	sampling

Images from: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/retina/retina.html

Retinal fovea
Hexagonal Retina periphery

Random


