MIT CSAIL COMPUTER

il 6.869: Advances in Computer Vision VISION

Antonio Torralba, 2016

Lecture 6
Pyramids
Learned feedforward visual processing

The Gaussian pyramid

512x512 256%256 128x128 64x64 32x32
/ \ V// /)) s
'S ¥, b, E
, Q? N
dL

: (original image)

Image down-sampling

S
-

L 3 - T L

R Y D RO S

¥
f
I f

7/ o
=
(7=

Image

up-sampling
...... ﬂ e =

----- L |

121
] 0242 =
1 121

64x64

Start by inserting zeros 128x128

Convolution and up-sampling as a matrix multiply (1D case)

Vy, = }733@ Insert zeros between pixels, then
apply a low-pass filter, [14 6 4 1]
F,= 6 1 0 0
4 4 0 O
1 6 1 0
0 4 4 0
0O 1 6 1
0O 0 4 4
0O 0 1 6
0O 0 0 4

The Laplacian Pyramid

* Synthesis

— Compute the difference between upsampled
Gaussian pyramid level and Gaussian pyramid
level.

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other level.

Laplacian pyramid algorithm

le = X,

Showing, at full resolution, the information captured at each level
of a Gaussian (top) and Laplacian (bottom) pyramid.

Fag S Fust bar deveds of the Gawssan aod Laphe an pommed. Gawssan syages, wpper ron, ware obdamedy expandeg pavamed amans (g 4)
throagh Grassim st apohitoa. Fach kevd ofthe Laphcnin pymmnd 15 the di ffemence bt neen the cormespondng and ot bigha kevels of the
Cayvesssan paraemd

8

httD'//WWW—bCS mit edu/peoole/adelson/pub Ddfs/nvramid83 Ddf IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31.NO. 4, APRIL 1953

Laplacian pyramid reconstruction algorithm:
recover x, from L,, L,, L; and x,

G# 1s the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
L1 =(I-F1Gl1)xl
L2=(I-F2G2)x2
L3=(I-F3G3)x3

x2 =Gl x1

x3=G2 x2

x4 = G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3=L3+F3 x4
x2 =12+ F2x3
x1 =L1+F1x2

Laplacian pyramid reconstruction algorithm:
recover X, from L,, L,, L; and g;

CEEET
8 | | |

64 32 o8

512 256

=

(Low-pass
residual)

Laplacian pyramid

1-d Laplacian pyramid matrix, for [1 4 6 4 1] low-pass filter

high frequencies

mid-band
frequencies

low frequencies
13

Laplacian pyramid applications

Texture synthesis
Image compression
Noise removal

Also related to SIFT

14

Image blending

(a)

15

Szeliski, Computer Vision, 2010

(a) (c)

@ @) ®

)
Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) ©) 1983 ACM.

Thna firct thran reave chnnar tha hinh madinm and lray fmanancu aarte Af tha T anlanian ecoramid

Image blending

Build Laplacian pyramid for both images: LA, LB
Build Gaussian pyramid for mask: G

Build a combined Laplacian pyramid: L(j) = G(j)

LA(j) + (1-() LB(j)
Collapse L to obtain the blended image

Image pyramlds

Progressively blurred and
subsampled versions of the

&

. . image. Adds scale invariance to
Gaussian fixed-size algorithms.
e
-’
B Shows the information added in
. S Gaussian pyramid at each
° LapIaC|an spatial scale. Useful for noise

reduction & coding.

Those pyramids do not encode orientation

18

Gaussian derivatives: Steerability.

g (x,y) = os(x.y) =X e_xzf3 llllll
R ox 2o’
gg(x,y) -y 3
X, o

o ~ - (=} - ~n w

[

What about other orientations not axis aligned?

Gaussian derivatives: Steerability.

g(xy) gxy) g (x,y)

(-

1L
N

g (x,y) = YAg(X,y) + \3/2g (X,y)

Input 1mage

Gaussian derivatives: Steerability.

For the Gaussian derivatives, any orientation can be obtained
as a linear combination of two basis functions:

gU(x,y) = cos(a)g,(X,y) + sin(a)g,(X,y)

In general, a kernel is steerable, if it can any rotation can be obtained
as a linear combination of N basis functions.

rric

Summing Adaptively
junction filtered image

Steereability of gaussian derivatives, Freeman & Adelson 92

Steerable filters

e N-th order derivatives of Gaussians are
steerable with N basis functions.

* |n general, if a function can be decomposed as
a Fourier basis in polar coordinates with a
finite number of polar terms, then the

function is steerable.

N

f(re (f‘)) — Z a”(.r)ein.rf)

n=-—N

Steereability of gaussian derivatives, Freeman & Adelson 92

Steerable Pyramids

We can extend the oriented filters into a multi-scale pyramid

Simoncelli, Freeman, Adelson

Steerable Pyramids

Simoncelli, Freeman, Adelson

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as
shown below

Decomposition

O o—
H Bil<) —— O
— L) 2l 0

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as
shown below

Decomposition

O == m
= B} .
[
®
= L) = 2] Byi<) s (O]
H by —— B
H i
—~ Ly{~<o) (= 2] ——0O0

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as
shown below

Decomposition Reconstruction
n Bols) —— . B >u
H By() ——— " . —— Eq{w) B
4 :
° o
H Bi) Q ~———— Bile)
— Ly} = 2] By<s) KO — Byl 2T M Lafw) =
— Bii<) ——— & — Eqlw) [
B — By [
— Li(<) 2| ——DO = 2T o Lylw) =~

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Filter Kernels

Coarsest scalen

Image ’

Finest scale

There is also a high pass residual...

“Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions on Information Theory, 1992

(\U'J

- Steerable pyramid

l
_ / " [——

Multiple —
orientations a% e
— one scale T — *

Stpeyerraarg:g T pixel image

N\
|
|
|

Multiple —
orientations at< —_—

the next scale — | Qver-complete

representation,
but non-aliased
subbands.

29

the nex
scale...

Image pyramlds

Progressively blurred and
subsampled versions of the
image. Adds scale invariance to

* Gaussian fixed-size algorithms.
: Shows the information added in
Gaussian pyramid at each
o Laplacian spatial scale. Useful for noise

reduction & coding.

Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis. But
overcomplete and with HF
residual.

e Steerable pyramid

Image transformations

Gaussian
pyramid

Laplacian
pyramid

Steerable
pyramid

Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html

Eero P. Simoncelli

Associate Investigator,
Howard Hughes Medical Institute

Associate Professor,
Neural Science and Mathematics,
New York University

Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html

—lcv—

Laboratory for Computational Vision
|_Home | People [Research [Publications| Software |

Publicly Available Software Packages

Texture Analysis/Synthesis - Matlab code is available for analyzing and
synthesizing visual textures. README | Contents | Changelog | Source
code (UNIX/PC, gzip'ed tar file)

EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

matlabPyrTools - Matlab source code for multi-scale image processing.
Includes tools for building and manipulating Laplacian pyramids,
QMFANVavelets, and steerable pyramids. Data structures are compatible with
the Matlab wavelet toolbox, but the convolution code (in C) is faster and has
many boundary-handling options. README, Contents, Modification list,
UNIX/PC source or Macintosh source.

The Steerable Pyramid, an (approximately) translation- and rotation-invariant
multi-scale image decomposition. MatLab (see above) and C
implementations are available.

Computational Models of cortical neurons. Macintosh program available.

EPIC - Efficient Pyramid (Wavelet) Image Coder. C source code available.

OBVIUS [Object-Based Vision & Image Understanding System]:
README / Changelog / Doc (225k) / Source Code (2.25M).

CL-SHELL [Ghu Emacs <-> Common Lisp Interface]:
README / Change Log / Source Code (119k). 3 3

YKXYS IN COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

&) Springer

Computer
Vision

A MODERN APPROACH

Chapter 3: Image
Processing

Why use these representations?

Handle real-world size variations with a
constant-size vision algorithm.

Remove noise
Analyze texture
Recognize objects

| abel image features

mage priors can be specified naturally in
terms of wavelet pyramids.

Phase-based Pipeline (SIGGRAPH’13)

Amplitude Phase Gains

Decomposition
High-passresidal |~ T M 10 Tt
: o
3 P g
g -5 g
-2 =] e
o e b3
2 = 3
= = E
— — w
s f 2| g
g P8 g| M
‘ g : % : ~ Output
=)
B =
s HI I
g :
!
Amplitude Phase : ———— :
(a) Low-pass residual (b) (©) (d) (e)

Pyramid

Complex steerable pyramid Temporal filtering inversion

[Simoncelli and Freeman 1995] on phases

http://people.csail.mit.edu/mrub/vidmag/

input motion magnified

input motion magnified

)
.

¥
i o
4

. _\\'"""D&i.;.

-
“ .S

b
a

] 4
| &,‘

MIT CSAIL COMPUTER

il 6.869: Advances in Computer Vision VISION

Antonio Torralba, 2016

Lecture 6
Learned feedforward visual processing (Deep learning)

What 1s the best representation?

 All the previous representation are manually
constructed.

* Could they be learnt from data?

Linear filtering pyramid architecture

z\x

()0
oﬁ .

Convolutional neural network architecture

42

Perceptrons,

http://www.ecse.rpi.edu/homepages/nagy/PDF chrono/
2011 Nagy Pace FR.pdf. Photo by George Nagy

Perc ons

http://www.manhattanrarebooks-science.com/rosenblatt.htm

Perceptrons, 1958

S

44

Minsky and Papert pointed out many limitations of single-layer
Perceptrons. Among them: very difficult to compute
“connectedness”

45

Expanded Edibon

Perceptrons

Marvin L. Minsky
Seymour A. Papert

V=IO +

FOR BUYING OPTIONS, START HERE

Select Shipping Destination :

Paperback | $35.00 Short | £24.95 |
ISBN: 9780262631112 | 308 pp. | 6 x
8.9 in | December 1987

Perc ns

Minsky afd Papert

and Papert, Perceptrons, 1972

Perceptrons, expanded edition

An Introduction to Computational Geometry
By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects" or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind."

46

Parallel Distributed Processing (PDP), 1986
PARALLEL DISTRIBUTED \
_ PROCESSING |

Explorations i the Mt

+ V‘()lllllll 1+« Foundatit

DAVID E. RUMELHART, JAMES L. MdCLELLAND.,
L "AND THE PDP RESEARCH GROUP

XOR problem

Inputs Output

—_—0 = O

—_—— O O

O = =
0

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can

represent but a single-layer network cannot: the XOR function.
48

LeCun conv nets, 1998

PROC. OF THE IEEE, NOVEMBER 1998 7

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT

6@28x28

32x32 S2:f. maps C5: layer gg. layer OUTPUT
120 84 10

APy, ITTT_rrr

’ Full coanection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://vann.lecun.com/exdb/lenet/index.html

49

.‘...(.h..vd.;u..a J.~1 i™
SR O O N, %%
Sad TRl
N /lo . ,f/Al . .‘IJ p——
VYR RERR 2

s O ARV AR RN ML A

5«. Q._aa

F BT EREIUE O N MR T TN e e

7 F

.\S' -.h., N & .mu

ﬁ@.m@ua&@

The grev-level of the output label represents

9.

gnized by LeNe

1 noisy characters correctly reco

Examples of unusual, distorted, an

Fig. 13,

the penalty (lighter for higher penalties).

input

Neural networks to
recognize handwritten

— — o1t ?
multiscale / edge‘ detécted | - digits? yes
Neural networks for
tougher problems?
not really

C Farabet, C Poulet, Y LeCun

Computer Vision Workshops

- An FPGA Based Stream Procéséotfor/EgiléddydsRegl?Dimé-ikion

Convolutional Networks
12th International ..
Clément Farabet, Cyril Poulet and Yann LeCun
Courant Institute of Mathematical Sciences, New York University

{cfarabet, yann}@cs.nyu.edu

http://www.cs.nyu.edu/~yann
J

http://pub.clement.farabet.net/ecvw09.ndf

NIPS 2000

* NIPS, Neural Information Processing
Systems, 1s the premier conference on
machine learning. Evolved from an
interdisciplinary conference to a machine
learning conference.

 For the NIPS 2000 conference:

— title words predictive of paper acceptance:
“Belief Propagation” and “Gaussian”.

— title words predictive of paper rejection:

Perc;pﬁ‘ ns PDP‘ 00k

52
Minsky a Papert APwinter

Krizhevsky, Sutskever, and Hinton, NIPS 2012

s 3 K .
197 192 128 2048 2048 \dense
13 \ 13
. 3 » j\ -
.....,__'_-_ . 3 ".)\ 3 ':..- .--.‘-,.‘ A
- 13 o[U ’ 13 dense | |dense
E | \ 1000
192 192 128 Max | -
Max 58 Max pooling 2948 2048
pooling pooling

53

ImageNet Classification 2012

» Krizhevsky et al. -- 16.4% error (top-5)

* Next best (non-convnet) — 26.2% error

Krizhevsky, Sutskever, and Hinton, NIPS 2012

miie

motor scooter

mite container motor scooter leopard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

» : -
gr e mushroom cnerry adagascar cat
convertible agaric dalmatian squirrel monkey
| grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagonj gill fungus |ffordshire bullterrier indri
fire engine | dead-man’s-fingers currant howler monkey

95

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Research enthusiasm for artificial neural networks

28 years
- > .
Krizhevsky,
Perceptrons, PDP book, Sutskever,

1958 1986 Hinton, 2012 N

Y Geoff Hinton’s
. Minsky and Papert, Al winter, Citations
enthusiasm 1972 2000 Google Scholar
Q

time ; C.itat.ion indices All Since 2009
Citations 92677 31224
h-index 102 71

i10-index 239 177

2006 2007 2008 2009 2010 2011 2012 2013 2014

Neural networks

* Neural nets composed of layers of Input Output
artificial neurons.

* Each layer computes some
function of layer beneath.

* Inputs mapped in feed-forward
fashion to output.

* Consider only feed-forward
neural models at the moment, 1.e.
no cycles

An individual neuron

Input: x (nx1 vector)

Parameters: weights w (nx1 vector), bias b
(scalar)

Activation:a =Pni=1xiwi +b.
Note a is a scalar.
Multiplicative interaction
between weights and input.
Point-wise non-linear function:

(:),e.g. (:)=tanh (:).

Output:
y=f(a)=
Pn

i=1 xiwi +b)

Can think of bias as weight w0,

connected to constant input 1:
y =f (~wT [1;x]).

An individual neuron (unit)

X1
* Input: vector x (size nx1) Wi

* Unit parameters: vector w (size nx1) X0

bias b (scalar) \
X3—)O W3

a =1
y=1(a)
L
* Unit activation: a = 2 1xlwl+b : /G
X_1_1_>O AWV

* Qutput:y = f(a) = f(z XW, +b | 5

3

f(.) 1s a point-wise non-linear function. E.g.:

e’ —e ™

£(a) = tanh(a) =

—-da

e’ +e

Can think of bias as weight w,,, connected
to constant input 1: y =f ([w,, w]' [1;x]).

Single layer network

* Input: column vector x (size nx1)

Input Output
layer layer

* Qutput: column vector y (size mx1)

* Layer parameters:
weight matrix W (size nxm)
bias vector b (mx1)

e Units activation: a=Wx+b

ex. 4 inputs, 3 outputs

BI-HEEEEN-B

* Qutput: y=f(a)= f(Wx + b)

Non-linearities: sigmoid

1 * Interpretation as ring rate of
neuron

f(a) = sigmoid(a) =

—-da

l+e

A

* Bounded between [0,1]
{ — sigmoid(x)

* Saturation for large +ve,-ve inputs

0.5 * Gradients go to zero

* Outputs centered at 0.5 (poor
conditioning)

Y

6 4 -2 2 4 6
* Not used 1n practice

Non-linearities: tanh

ea _e—a
f(a) =tanh(a) = ———
e’ +e
y = tanh(z)
1 1
2 4 ¢

* Bounded between [-1,+1]
* Saturation for large +ve,-ve inputs

* Gradients go to zero

1. Outputs centered at 0

* Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) —1

Non-linearities:

f(a) = max(a,0)

rectified linear (ReLU)

61
y = RelLU(z)
4*
2__
6 -4 -2 > 4 ¢

* Unbounded output (on positive side)

» Efficient to implement:

df][O a<(

f'(a)=£— 1 a=0

* Also seems to help convergence (see
6x speedup vs tanh in Krizhevsky et

al.)

* Drawback: if strongly in negative
region, unit 1s dead forever (no
gradient).

* Default choice: widely used in
current models.

Non-linearities: Leaky RelLU

{ max(0,a) a>0 * where o is small (e.g. 0.02)
f(a) =

amin(0,a) a <0 : :
» Efficient to implement:

61 df |-a a<0
= PRelLU ! = =

1 * Also known as probabilistic ReLU
(PReLU)

2 1
* Has non-zero gradients everywhere

P——— | —— (unlike ReLU)
-6 —4 =2 2 4 6

* a. can also be learned (see
Kaiming He et al. 2015).

Multiple layers

* Neural networks are composed of
multiple layers of neurons.

Input Hidden Output
layer layer layer

* Acyclic structure. Basic model
assumes full connections between
layers.

* Layers between input and output are
called hidden.

* Various names used:
* Articial Neural Nets (ANN)

* Multi-layer Perceptron (MLP)
* Fully-connected network

* Neurons typically called units.

Example: 3 layer MLP

* By convention, number of layers Input Hiddenl Hidden2 Output
layer layer layer layer

1s hidden + output (1.e. does not
include mput).

* So 3-layer model has 2 hidden
layers.

* Parameters:
weight matrices W ;W,; W,
bias vectors by; b,; bs.

Multiple layers

(output) X,

Output layer n

Output
layer
py—l
bot

Hidden layer 1

Hidden layer 1

Input layer ~ (input) X,

Architecture selection

How to pick number of layers and units/layer?

e Active area of research

* For fully connected models 2 or 3 layers
seems the most that can be effectively trained

(more later).
* Regarding number of units/layer:
— Parameters grows with (units/layer)?.

— With large units/layer, can easily overt.

Representational power of two-layer network

Figure 5.3 lllustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(z) = z?, (b)
f(z) = sin(z), (¢), f(z) = |z,
and (d) f(z) = H(z) where H(z)
Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in z over the interval
(—1,1) and the cormresponding val-
ues of f(z) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
threedashedcurves

Neural Networks for ~ \
Pattern Recognition

Christopher M. Bishop (d)

i—a blas

5 = Z Wis tanh(WIer -+ WO:)
i=2

Representational power

* 1 layer? Linear decision surface.

e 2+ |ayers? In theory, can represent any

function. Assuming non-trivial non-linearity.
— Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

— Bengio, Courville, Goodfellow book

http://www.deeplearningbook.org/contents/mlp.html

— Simple proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

— D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

e Butissue is efficiency: very wide two layers vs
narrow deep model? In practice, more layers
helps.

Training a model: overview

Given dataset {x; vy}, pick appropriate cost
function C.

Forward-pass (f-prop) training examples
through the model to get network output.

Get error using cost function C to compare
output to targets y

Use Stochastic Gradient Descent (SGD) to
update weights adjusting parameters to
minimize loss/energy E (sum of the costs for
each training example)

Cost function

Consider model with N layers. (output) | x
Layer i has vector of weights Wi.

Forward pass: takes input x and

passes it through each layer F;:
X = Fi (X0 W)

Output of layer i is x,. Network

output (top layer) is x...

(input) X,

Cost function

Consider model with N layers.

Layer i has vector of weights Wi.

Forward pass: takes input x and

passes it through each layer F;:
X = Fi (X0 W)
Output of layer i is x,. Network
output (top layer) is x...
Cost function C compares x_ toy

Overall energy is the sum of the
cost over all training examples:

M
E = EC(X,’:‘,ym)
m=1

E
?

C(Xp ¥)

(output) X,

(input) X,

Stochastic gradient descend

Want to minimize overall loss function E. Loss is sum of individual
losses over each example.

In gradient descent, we start with some initial set of parameters 6
Update parameters: gk+1 . gk 1 V4

k is iteration index, n is learning rate (scalar; set semi-manually).
Gradients V¢ _ % computed by b-prop.

In Stochastic gradient descent, compute gradient on sub-set
(batch) of data.

If batchsize=1 then 0 is updated after each example.
If batchsize=N (full set) then this is standard gradient descent.

Gradient direction is noisy, relative to average over all examples
(standard gradient descent).

Stochastic gradient descend

* We need to compute gradients of the cost with respect
to model parameters w,

* Back-propagation is essentially chain rule of derivatives
back through the model.

* Each layer is differentiable with respect to parameters
and input.

Computing gradients

* Training will be an iterative procedure, and at
each iteration we will update the network
parameters gk+1 . gk 4 Vg

 We want to compute the gradients

__ OE
Vo = 2%

Where 6 = {wl,wz,...,wn}

Computing gradients

To compute the gradients, we could start by

wring the full energy E as a function of the
network parameters.

E
?

m=1

M
E(0) = EC(Fn(Fn_l(Fz(E(X(Tawl),wz),wn_l),wn),ym) (outpm)‘&n —
X,

%xi

And then compute the partial e
derivatives... instead, we can use the s
chain rule to derive a compact T

algorithm: back-propagation oy

i<

Matrix cal

X

* X column vector of size [nx1]

X =

X,

X

n

culus

* We now define a function on vector x: y = F(x)

* [fy 1s a scalar, then

dyldx =|aylax, dylox,

The derivative of y 1s a row vector of size [1xn]

&y/&xn]

* [f y 1s a vector [1xm], then (Jacobian formulation):

dy/ox =

-é)yl/é)xl oy, 1 0x,

dy,, [ox, dy, [dx,

d.)}l /é)xn -

ay, /&xm_

The derivative of y 1s a matrix of size [m*n]

(m rows and n columns)

Matrix calculus

* Chain rule:
For the function: z = h(x) = f (g(x))

Its derivative 1s: h’(x) =’ (g(x)) g’ (X)

and writing z=f(u), and u=g(x):

i _de| du
dx|_, dul,_.., dx._,
/ A N

[mxn] [mxp] [p>n]
with p = length vector u = |u|, m =|z|, and n = [x]

Example, if |z|=1, |u| = 2, |x|=4

= HHEH - Il EEEE

Matrix calculus
e Chain rule:
For the function: h(x) = f (f_,(...(f;(X))))

With u,=1,(x)
u; = fi(u;,)
Z = un: fn(un—l)

The derivative becomes a product of matrices:

%
dx

dz

— . dun -1
x=a dun—l

_du,

" du,

 du,

dx
u =f(a)

dun—2 x=a

Up-1 =fn—l (un—Z)) =fn—2 (un—3)

(exercise: check that all the matrix dimensions work fine)

Computing gradients

The energy E is the sum of the costs associated
to each training example x™, y™

E(0) = iC(xZ“,ym;H)

Its gradient with respect to the networks
parameters is:

OE & C(xr.y":6)
20, D

m=1 l

1s how much E varies when the parameter 0, 1s varied.

Computing gradients

We could write the cost function to get the gradients:
C(x,.5:0) = C(F, (x,.w,).7)
with 6 = [wl,wz,- --,wn]

If we compute the gradient with respect to the parameters of
the last layer (output layer) w,, using the chain rule:

Joc dC ox, JC ﬁFn(xn_l,wn)
ow dx. ow. ow

n n n n n

(how much the cost changes when we change wn, is the product between how much the cost
changes when we change the output of the last layer, times how much the output changes when
we change the layer parameters.)

Computing gradients: cost layer

If we compute the gradient with respect to the parameters of
the last layer (output layer) w , using the chain rule:

oC 9C ox, oC OF,(x, .w,)

ow.— dx, ow, X, ow,
Will depend on the
For example, for an Euclidean loss: layer structure and
1 non-linearity.

The gradient 1s:

>y
ox n

n

Computing gradients: layer |
We could write the full cost function to get the gradients:

C(xn,y;G) = C(Fn(Fn—l(FZ(E(xO’Wl)’WZ)’Wn—l)’Wn)’y)
If we compute the gradient with respect to w,, using the chain rule:

o JC ox, ox,, dx, O

l

ow, ox, ox _, dx,_, Ox, ow,

l n

\ J
|

oC é’Fl.(xl._l,wl.)
ox, ow,
And this can be This 1s easy.

computed iteratively!

Backpropagation

JdC dC ox, ox,, ox,, O,

l

ow, dx, dx _, dx,_, Ox, Ow,

l n

\ J
|

dC &F.(xl._l,wl.)

- l

X, ow.

l

If we have the value of £ we can compute the gradient at the
layer bellow as: X,

dC ~ doC o oX,
Gradi§nt Gradient or, (x i1 »Wi)
layer i-1 layer i

ox._,

Backpropagation: layer i

* Layer 1 has two inputs (during training)

x, %
Fii _ oX,
gsc ° Forlayer 1, we need the derivatives:
X1 é’—.)(fl é)F;(Xi_l,Wi) 07Fl.(xl._1,wl.)
Hidden layer i Fi(Xi-la Wi) 0X;_y ow,
* We compute the outputs
X.
i-1 dC
— x, =Fi(x,_,w))
ox; |
dC dC JF(x;, W)
Fi| ox, , ox, ox,
Forward Backward . The weight update equation is:
pass pass JdC dC JF,(x; W)
ow, ox, ow,
&E sum Over a
w lk He w lk + n— (training exegnples

é’wi to get E)

Backpropagation: summary 3

* Forward pass: for each C(X,,Y)

training example. Compute
the outputs for all layers

X = Fz(x

(output) X,
i1>W;)
* Backwards pass: compute

cost derivatives iteratively
from top to bottom:

dC JdC IF,(x,_.,w))
ox._, Ox, X, ,

l

« Compute gradients and
update weights.

