
Lecture	6	
	Pyramids	
	Learned	feedforward	visual	processing		

Antonio Torralba, 2016 
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Image down-sampling 
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Blur 
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Image up-sampling 
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Image up-sampling 

64×64 

Start by inserting zeros 
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Convolution and up-sampling as a matrix multiply (1D case) 
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Insert zeros between pixels, then 
apply a low-pass filter, [1 4 6 4 1] 
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The Laplacian Pyramid 

•  Synthesis 
– Compute the difference between upsampled 

Gaussian pyramid level and Gaussian pyramid 
level. 

–  band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other level. 
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Laplacian pyramid algorithm 
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Showing, at full resolution, the information captured at each level 
of a Gaussian (top) and Laplacian (bottom) pyramid. 

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf 
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and x4 

G# is the blur-and-downsample operator at pyramid level # 
F# is the blur-and-upsample operator at pyramid level # 
 
Laplacian pyramid elements: 
L1 = (I – F1 G1) x1 
L2 = (I – F2 G2) x2 
L3 = (I – F3 G3) x3 
x2 = G1 x1 
x3 = G2 x2 
x4 = G3 x3 
 
 
Reconstruction of original image (x1) from Laplacian pyramid elements: 
x3 = L3 + F3 x4 
x2 = L2 + F2 x3 
x1 = L1 + F1 x2 
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and g3 

+ 

+ 
+ 
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Gaussian pyramid 



Laplacian pyramid 

(Low-pass 
residual) 
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1-d Laplacian pyramid matrix, for [1 4 6 4 1]  low-pass filter 

high frequencies 

mid-band 
frequencies 

low frequencies 



Laplacian pyramid applications 

•  Texture synthesis 
•  Image compression 
•  Noise removal 

•  Also related to SIFT 

14 
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Image	blending	
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Image	blending	

•  Build	Laplacian	pyramid	for	both	images:	LA,	LB	

•  Build	Gaussian	pyramid	for	mask:	G	

•  Build	a	combined	Laplacian	pyramid:	L(j)	=	G(j)	LA(j)	+	(1-G(j))	LB(j)	

•  Collapse	L	to	obtain	the	blended	image		
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Image	pyramids	

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding. 

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance to 
fixed-size algorithms. •  Gaussian	

•  Laplacian	
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Those pyramids do not encode orientation 



Gaussian	derivaLves:	Steerability.	

€ 

gx (x,y) =
∂g(x,y)
∂x

=
−x
2πσ 4 e

−
x 2 +y 2

2σ 2

€ 

gy (x,y) =
∂g(x,y)
∂y

=
−y
2πσ 4 e

−
x 2 +y 2

2σ 2

What about other orientations not axis aligned? 



Input image 

gx(x,y) gy(x,y) g60°(x,y) 

g60°(x,y) = ½gx(x,y) + √3/2gy(x,y)  

Gaussian	derivaLves:	Steerability.	



Steereability of gaussian derivatives, Freeman & Adelson 92 

Gaussian	derivaLves:	Steerability.	

gα(x,y) = cos(α)gx(x,y) + sin(α)gy(x,y)  

For the Gaussian derivatives, any orientation can be obtained 
as a linear combination of two basis functions: 

In general, a kernel is steerable, if it can any rotation can be obtained 
as a linear combination of N basis functions. 



Steereability of gaussian derivatives, Freeman & Adelson 92 

Steerable	filters	

•  N-th	order	derivaLves	of	Gaussians	are	
steerable	with	N	basis	funcLons.	

•  In	general,	if	a	funcLon	can	be	decomposed	as	
a	Fourier	basis	in	polar	coordinates	with	a	
finite	number	of	polar	terms,	then	the	
funcLon	is	steerable.	



Steerable Pyramids 

Simoncelli, Freeman, Adelson 

We can extend the oriented filters into a multi-scale pyramid 



Steerable Pyramids 

Simoncelli, Freeman, Adelson 



Steerable	Pyramid	
We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as  
shown below  

Decomposition 

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html 

…
 



Steerable	Pyramid	
We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as  
shown below  

Decomposition 

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html 

…
 



Steerable	Pyramid	
We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as  
shown below  

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html 

Decomposition Reconstruction 

…
 

…
 



“Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions on Information Theory, 1992

There is also a high pass residual… 



= * 
pixel image 

Over-complete 
representation, 
but non-aliased 
subbands.  

Steerable 
pyramid 

Multiple 
orientations at 

one scale   

Multiple 
orientations at 
the next scale   

the next 
scale…   

Steerable	pyramid	
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Image	pyramids	

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding. 

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance to 
fixed-size algorithms. 

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.  But 
overcomplete and with HF 
residual. 

•  Gaussian	

•  Laplacian	

	

•  Steerable	pyramid	



Image	transformaLons	

DFT 

Gaussian 
pyramid 

Laplacian 
pyramid 

Steerable 
pyramid 



Matlab	resources	for	pyramids	(with	tutorial)	

http://www.cns.nyu.edu/~eero/software.html 
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Matlab	resources	for	pyramids	(with	tutorial)	

http://www.cns.nyu.edu/~eero/software.html 
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Chapter 3: Image 
Processing 



Why	use	these	representaLons?	

•  Handle	real-world	size	variaLons	with	a	
constant-size	vision	algorithm.	

•  Remove	noise	

•  Analyze	texture	
•  Recognize	objects	
•  Label	image	features	
•  Image	priors	can	be	specified	naturally	in	
terms	of	wavelet	pyramids.	
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Phase-based	Pipeline	(SIGGRAPH’13)	

Complex	steerable	pyramid	
[Simoncelli	and	Freeman	1995]	

Temporal	filtering		

on	phases	

Phase	Amplitude	

http://people.csail.mit.edu/mrub/vidmag/ 

Gains	

Pyramid	
inversion	



input								 	 	 	 	moAon	magnified	



input								 	 	 	 	moAon	magnified	



Lecture 6 
 Learned feedforward visual processing (Deep learning)  

Antonio Torralba, 2016 



What is the best representation? 

•  All the previous representation are manually 
constructed.  

•  Could they be learnt from data? 



Linear filtering pyramid architecture 
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Convolutional neural network architecture 
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+ 

+ 
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43 

http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/
2011_Nagy_Pace_FR.pdf.  Photo by George Nagy 

http://www.manhattanrarebooks-science.com/rosenblatt.htm 
Minsky and Papert 

PDP book 

AI winter 

Krizhevsky, 
Sutskever, 
Hinton 

Perceptrons, 1958 

Perceptrons 



Perceptrons, 1958 
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Minsky and Papert pointed out many limitations of single-layer 
Perceptrons.  Among them:  very difficult to compute 

“connectedness” 
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Perceptrons PDP book 

AI winter 

Krizhevsky, 
Sutskever, 
Hinton 

Minsky and Papert, Perceptrons, 1972 

Minsky and Papert 



Parallel Distributed Processing (PDP), 1986 
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Perceptrons 

AI winter 

Krizhevsky, 
Sutskever, 
Hinton 

Minsky and Papert 

PDP book 



XOR problem 
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Inputs Output 

0       0                          0 
1       0                          1 
0       1                          1 
1       1                          0 

PDP authors pointed to the backpropagation algorithm 
as a breakthrough, allowing multi-layer neural networks to be 
trained.  Among the functions that a multi-layer network can 
represent but a single-layer network cannot:  the XOR function. 

0                1 

0 
   

   
   

   
   

1 



LeCun conv nets, 1998 
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http://yann.lecun.com/exdb/lenet/index.html 
Demos: 
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http://pub.clement.farabet.net/ecvw09.pdf 

C Farabet, C Poulet, Y LeCun 

Computer Vision Workshops 

(ICCV Workshops), 2009 IEEE 

12th International .. 

Neural networks to 
recognize handwritten 
digits?  yes 
 
Neural networks for 
tougher problems?  
not really 



NIPS 2000 

•  NIPS,  Neural Information Processing 
Systems, is the premier conference on 
machine learning.  Evolved from an 
interdisciplinary conference to a machine 
learning conference. 

•  For the NIPS 2000 conference:  
–  title words predictive of paper acceptance:  

“Belief Propagation” and “Gaussian”. 
–  title words predictive of paper rejection:  

“Neural” and “Network”. 
52 

Perceptrons 

Minsky and Papert 

PDP book Krizhevsky, 
Sutskever, 
Hinton 

AI winter 



53 

Perceptrons 

Minsky and Papert 

PDP book 

Krizhevsky, Sutskever, and Hinton, NIPS 2012 

AI winter 

Krizhevsky, 
Sutskever, 
Hinton 



Slide from Rob Fergus, NYU



Krizhevsky, Sutskever, and Hinton, NIPS 2012 
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Test Nearby images, according to NN features 

Krizhevsky, Sutskever, and Hinton, NIPS 2012 



Research enthusiasm for artificial neural networks 

57 

Perceptrons, 
1958 

Minsky and Papert, 
1972 

PDP book, 
1986 

AI winter, 
2000 

Krizhevsky, 
Sutskever, 
Hinton, 2012 

time 

enthusiasm 

28 years 

Geoff Hinton’s 
citations 



Neural networks 

•  Neural nets composed of layers of 
artificial neurons. 
•  Each layer computes some 
function of layer beneath. 
•  Inputs mapped in feed-forward 
fashion to output. 
•  Consider only feed-forward 
neural models at the moment, i.e. 
no cycles 



An	individual	neuron	
•  Input:	x		(n×1	vector)	
•  Parameters:	weights	w		(n×1	vector),	bias	b		

(scalar)	

•  AcLvaLon:	a		=	Pn	i=1	x	iwi		+	b	.	
•  Note	a		is	a	scalar.	
•  MulLplicaLve	interacLon	

•  between	weights	and	input.	

•  Point-wise	non-linear	funcLon:	

•  	(:	),	e.g.		(:	)	=	tanh	(:	).	
•  Output:	

•  y		=	f		(a	)	=		(	

•  Pn	
•  i=1	xiwi		+	b	)	

•  Can	think	of	bias	as	weight	w0	,	

•  connected	to	constant	input	1:	

•  y		=	f		(	~	wT		[1;	x	]).	



An	individual	neuron	(unit)	

+ 

w1 

w2 

w3 

wn 

a y=f(a) 

•  Input: vector x (size n×1) 

•  Unit parameters: vector w (size n×1) 
        bias b (scalar) 

•  Unit activation: 

€ 

a = xiwi + b
i=1

n
∑

•  Output: 

€ 

y = f (a) = f xiwi + b
i=1

n
∑( )

f(.) is a point-wise non-linear function. E.g.: 

€ 

f (a) = tanh(a) =
ea − e−a

ea + e−a

Can think of bias as weight w0, connected  
to constant input 1:  y  = f  ([w0, w]T  [1; x ]). 

…
 

b 

x1 

x2 

x3 

xn 

1 



Single	layer	network	
•  Input: column vector x (size n×1) 

•  Layer parameters:  
 weight matrix W (size n×m) 
 bias vector b (m×1) 

•  Units activation: 

€ 

a =Wx + b

•  Output: 

€ 

y = f (a) = f Wx + b( )

•  Output: column vector y (size m×1) 

w1,1 w1,m 

wn,m 
ex. 4 inputs, 3 outputs 

= + 



Non-lineariLes:	sigmoid	

€ 

f (a) = sigmoid(a) =
1

1+ e−a
•  Interpretation as ring rate of 
neuron 

•  Bounded between [0,1] 

•  Saturation for large +ve,-ve inputs 

•  Gradients go to zero 

•  Outputs centered at 0.5 (poor 
conditioning) 

•  Not used in practice 



Non-lineariLes:	tanh	

•  Bounded between [-1,+1] 

•  Saturation for large +ve,-ve inputs 

•  Gradients go to zero 

•  Outputs centered at 0 

•  Preferable to sigmoid 

€ 

f (a) = tanh(a) =
ea − e−a

ea + e−a

tanh(x) = 2 sigmoid(2x) −1 



Non-lineariLes:	recLfied	linear	(ReLU)	
•  Unbounded output (on positive side) 

•  Efficient to implement: 

•  Also seems to help convergence (see 
6x speedup vs tanh in Krizhevsky et 
al.) 

•  Drawback: if strongly in negative 
region, unit is dead forever (no 
gradient). 

•  Default choice: widely used in 
current models. 

€ 

f (a) =max(a,0)

€ 

f '(a) =
df
da

=
0 a < 0
1 a ≥ 0
⎧ 
⎨ 
⎩ 



Non-lineariLes:	Leaky	ReLU	
•  where α is small (e.g. 0.02) 

•  Efficient to implement: 

•  Also known as probabilistic ReLU 
(PReLU) 

•  Has non-zero gradients everywhere 
(unlike ReLU) 

•  α can also be learned (see 
Kaiming He et al. 2015). 

€ 

f '(a) =
df
da

=
−α a < 0
1 a > 0

⎧ 
⎨ 
⎩ € 

f (a) =
max(0,a) a > 0
αmin(0,a) a < 0
⎧ 
⎨ 
⎩ 



MulLple	layers	
•  Neural networks are composed of 
multiple layers of neurons. 

•  Acyclic structure. Basic model 
assumes full connections between 
layers. 

•  Layers between input and output are 
called hidden. 

•  Various names used: 
•  Articial Neural Nets (ANN) 
•  Multi-layer Perceptron (MLP) 
•  Fully-connected network 

•  Neurons typically called units. 



Example:	3	layer	MLP	

•  By convention, number of layers 
is hidden + output (i.e. does not 
include input). 

•  So 3-layer model has 2 hidden 
layers. 

•  Parameters:  
 weight matrices W1;W2;W3 
 bias vectors b1; b2; b3. 



MulLple	layers	

Input layer 

Hidden layer 1 

Hidden layer i 

Output layer n 

F1(x0, W1)  

Fi(xi-1, Wi)  

Fn(xn-1, Wn)  

x0 

x1 

xi-1 

xi 
xn-1 …

 
…

 

xn 

…
 

…
 

(output) 

(input) 

…
 



Architecture	selecLon	

•  AcLve	area	of	research	
•  For	fully	connected	models	2	or	3	layers	
seems	the	most	that	can	be	effecLvely	trained	
(more	later).	

•  Regarding	number	of	units/layer:	
– Parameters	grows	with	(units/layer)2	.	
– With	large	units/layer,	can	easily	overt.	

How to pick number of layers and units/layer? 



RepresentaLonal	power	of	two-layer	network	

70 In Out 
1 

2 

3 

4 

5 bias 



RepresentaLonal	power	
•  1	layer?	Linear	decision	surface.	
•  2+	layers?	In	theory,	can	represent	any	
funcLon.	Assuming	non-trivial	non-linearity.	
–  Bengio	2009,	

hgp://www.iro.umontreal.ca/~bengioy/papers/hml.pdf	

–  Bengio,	Courville,	Goodfellow	book	
	 	hgp://www.deeplearningbook.org/contents/mlp.html	

–  Simple	proof	by	M.	Neilsen	
hgp://neuralnetworksanddeeplearning.com/chap4.html	

–  	D.	Mackay	book		
	 	 	hgp://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf	

•  But	issue	is	efficiency:	very	wide	two	layers	vs	
narrow	deep	model?	In	pracLce,	more	layers	
helps.	
	



Training	a	model:	overview	

•  Given	dataset	{x;	y},	pick	appropriate	cost	
funcLon	C.	

•  Forward-pass	(f-prop)	training	examples	
through	the	model	to	get	network	output.	

•  Get	error	using	cost	funcLon	C	to	compare	
output	to	targets	y	

•  Use	StochasLc	Gradient	Descent	(SGD)	to	
update	weights	adjusLng	parameters	to	
minimize	loss/energy	E	(sum	of	the	costs	for	
each	training	example)	



F1(x0, W1)  

F2(x1, W2)  

Fi(xi-1, Wi)  

Fn(xn-1, Wn)  

x0 

x1 

x2 
xi-1 

xi 
xn-1 …

 
…

 

xn (output) 

(input) 

Cost	funcLon	

•  Consider	model	with	N		layers.	
Layer	i		has	vector		of	weights	Wi.	

•  Forward	pass:		takes	input	x	and	
passes	it	through	each	layer	Fi:	
	 	xi	=	Fi		(xi-1,	Wi)	

•  Output	of	layer	i	is	xi.	Network	
output	(top	layer)	is	xn.	



F1(x0, W1)  

F2(x1, W2)  

Fi(xi-1, Wi)  

Fn(xn-1, Wn)  

x0 

x1 

x2 
xi-1 

xi 
xn-1 …

 
…

 

xn (output) 

(input) 

E 

C(xn, y) 

y 

Cost	funcLon	

•  Consider	model	with	N		layers.	
Layer	i		has	vector		of	weights	Wi.	

•  Forward	pass:		takes	input	x	and	
passes	it	through	each	layer	Fi:	
	 	xi	=	Fi		(xi-1,	Wi)	

•  Output	of	layer	i	is	xi.	Network	
output	(top	layer)	is	xn.	

•  Cost	funcLon	C		compares	xn	to	y	
•  Overall	energy	is	the	sum	of	the	

cost	over	all	training	examples:	

€ 

E = C xn
m,ym( )

m=1

M

∑



StochasLc	gradient	descend	
•  Want	to	minimize	overall	loss	funcLon	E.	Loss	is	sum	of	individual	

losses	over	each	example.	

•  In	gradient	descent,	we	start	with	some	iniLal	set	of	parameters	θ	

•  Update	parameters:	
	k	is	iteraLon	index,	η	is	learning	rate	(scalar;	set	semi-manually).	

•  Gradients																								computed	by	b-prop.	

•  In	StochasLc	gradient	descent,	compute	gradient	on	sub-set	
(batch)	of	data.	

	 	If	batchsize=1	then	θ	is	updated	aher	each	example.	

	 	If	batchsize=N	(full	set)	then	this	is	standard	gradient	descent.	

•  Gradient	direcLon	is	noisy,	relaLve	to	average	over	all	examples	
(standard	gradient	descent).	 75	



StochasLc	gradient	descend	

•  We	need	to	compute	gradients	of	the	cost	with	respect	
to	model	parameters	wi	

•  Back-propagaLon	is	essenLally	chain	rule	of	derivaLves	
back	through	the	model.	

•  Each	layer	is	differenLable	with	respect	to	parameters	
and	input.	

76	



CompuLng	gradients	

•  Training	will	be	an	iteraLve	procedure,	and	at	
each	iteraLon	we	will	update	the	network	
parameters	

•  We	want	to	compute	the	gradients	

	

	

Where				

77	

  

€ 

θ = w1,w2,…,wn{ }



CompuLng	gradients	

To	compute	the	gradients,	we	could	start	by	
wring	the	full	energy	E	as	a	funcLon	of	the	
network	parameters.	
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€ 

E θ( ) = C Fn Fn−1 F2 F1 x0
m ,w1( ),w2( ),wn−1( ),wn

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ,ym⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

m=1

M

∑

And then compute the partial 
derivatives… instead, we can use the 
chain rule to derive a compact 
algorithm:  back-propagation 



( 



Matrix calculus 

•  We now define a function on vector x: y = F(x) 
•  If y is a scalar, then  

•  If y is a vector [1×m], then (Jacobian formulation):  

  

€ 

∂y /∂x = ∂y /∂x1 ∂y /∂x2 ! ∂y /∂xn[ ]
The derivative of y is a row vector of size [1×n] 

  

€ 

∂y /∂x =

∂y1 /∂x1 ∂y1 /∂x2 ! ∂y1 /∂xn
" " "

∂ym /∂x1 ∂ym /∂x2 ! ∂yn /∂xm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

•  x column vector of size [n×1] 

  

€ 

x =

x1
x2
!
xn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

The derivative of y is a matrix of size [m×n] 
(m rows and n columns) 



Matrix calculus 
•  Chain rule: 

For the function: z = h(x) = f (g(x)) 

and writing z=f(u), and u=g(x):  

h’(x) = f’ (g(x)) g’(x) Its derivative is: 

with p = length vector u = |u|,  m = |z|,  and  n = |x| € 

dz
dx x=a

=
dz
du u=g(a )

⋅
du
dx x=a

[m×n] [m×p] [p×n] 

Example, if |z|=1, |u| = 2, |x|=4  

= h’(x) = 



Matrix calculus 
•  Chain rule: 

For the function: h(x) = fn(fn-1(…(f1(x)) )) 

With  u1= f1(x) 
 ui = fi(ui-1) 
 z  = un= fn(un-1)  

  

€ 

dz
dx x=a

=
dz
dun−1 un−1 = fn−1 (un−2 )

⋅
dun−1
dun−2 un−2 = fn−2 (un−3 )

⋅…⋅
du2
du1 u1 = f1 (a )

⋅
du1
dx x=a

The derivative becomes a product of matrices: 

(exercise: check that all the matrix dimensions work fine) 



) 



CompuLng	gradients	

The	energy	E	is	the	sum	of	the	costs	associated	
to	each	training	example	xm,	ym	

	

	

Its	gradient	with	respect	to	the	networks	
parameters	is:	

84	

€ 

E θ( ) = C xn
m ,ym;θ( )

m=1

M

∑

€ 

∂E
∂θ i

=
C xn

m,ym;θ( )
∂θ im=1

M

∑

is how much E varies when the parameter θi is varied. 



CompuLng	gradients	

85	

€ 

C xn,y;θ( ) = C Fn xn−1,wn( ),y( )

We could write the cost function to get the gradients: 

If we compute the gradient with respect to the parameters of  
the last layer (output layer) wn, using the chain rule: 

  

€ 

θ = w1,w2,!,wn[ ]with 

€ 

∂C
∂wn

=
∂C
∂xn

⋅
∂xn
∂wn

=
∂C
∂xn

⋅
∂Fn xn−1,wn( )

∂wn

(how much the cost changes when we change wn, is the product between how much the cost 
changes when we change the output of the last layer, times how much the output changes when 
we change the layer parameters.) 
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If we compute the gradient with respect to the parameters of  
the last layer (output layer) wn, using the chain rule: 

€ 

∂C
∂wn

=
∂C
∂xn

⋅
∂xn
∂wn

=
∂C
∂xn

⋅
∂Fn xn−1,wn( )

∂wn

€ 

C(xn,y) =
1
2
xn − y

2

For example, for an Euclidean loss: 

€ 

∂C
∂xn

= xn − y

The gradient is: 

Will depend on the  
layer structure and 
non-linearity. 
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€ 

C xn,y;θ( ) = C Fn Fn−1 F2 F1 x0,w1( ),w2( ),wn−1( ),wn
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ,y⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

We could write the full cost function to get the gradients: 

If we compute the gradient with respect to wi, using the chain rule: 

  

€ 

∂C
∂wi

=
∂C
∂xn

⋅
∂xn
∂xn−1

⋅
∂xn−1
∂xn−2

⋅…⋅
∂xi+1
∂xi

⋅
∂xi
∂wi

€ 

∂C
∂xi

And this can be 
computed iteratively! 

€ 

∂Fi xi−1,wi( )
∂wi

This is easy. 



BackpropagaLon	

  

€ 

∂C
∂wi

=
∂C
∂xn

⋅
∂xn
∂xn−1

⋅
∂xn−1
∂xn−2

⋅…⋅
∂xi+1
∂xi

⋅
∂xi
∂wi

€ 

∂C
∂xi

€ 

∂Fi xi−1,wi( )
∂wi

€ 

∂C
∂xi−1

=
∂C
∂xi

⋅
∂xi
∂xi−1

If we have the value of           we can compute the gradient at the  
layer bellow as:  

€ 

∂C
∂xi

€ 

∂Fi xi−1,wi( )
∂xi−1

Gradient  
layer i 

Gradient  
layer i-1 



Hidden layer i Fi(xi-1, Wi)  

Fi+1  

Fi-1  
€ 

∂Fi(xi−1,wi)
∂xi−1

€ 

∂Fi(xi−1,wi)
∂wi

•  For layer i, we need the derivatives: 

•  We compute the outputs 

xi 

€ 

xi = Fi(xi−1,wi)

€ 

∂C
∂xi−1

€ 

∂C
∂xi−1

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂xi−1
•  The weight update equation is: 

€ 

∂C
∂wi

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂wi

BackpropagaLon:	layer	i	

€ 

wi
k+1← wi

k +ηt
∂E
∂wi

(sum over all 
 training examples 
to get E) 

Forward 
pass 

Backward 
pass 

•  Layer i has two inputs (during training) 

€ 

∂C
∂xi

€ 

∂C
∂xi

xi-1 

xi-1 



F1(x0, W1)  

F2(x1, W2)  

Fi(xi-1, Wi)  

Fn(xn-1, Wn)  

x0 

x1 

x2 
xi-1 

xi 
xn-1 …

 
…

 

xn (output) 

(input) 

E 

C(Xn,Y) 

y 

BackpropagaLon:	summary	
•  Forward	pass:	for	each	

training	example.	Compute	
the	outputs	for	all	layers	

•  Backwards	pass:	compute	
cost	derivaLves	iteraLvely	
from	top	to	bogom:	

•  Compute	gradients	and	
update	weights.		

€ 

xi = Fi(xi−1,wi)

€ 

∂C
∂xi−1

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂xi−1

€ 

∂C
∂xi

€ 

∂C
∂xn

€ 

∂C
∂x2

€ 

∂C
∂x1

€ 

∂C
∂xi−1


