
Lecture	7	
	Learned	feedforward	visual	processing		

Antonio Torralba, 2016 



Tutorials	
•  Lunes:	4pm	-->	Torch	
•  Martes:	5pm	-->	TensorFlow	
•  Miércoles:	5pm-->	Torch	
•  Jueves:	6pm	--->	TensorFlow	



Single	layer	network	
•  Input: column vector x (size n×1) 

•  Layer parameters:  
 weight matrix W (size n×m) 
 bias vector b (m×1) 

•  Units activation: 

€ 

a =Wx + b

•  Output: 

€ 

y = f (a) = f Wx + b( )

•  Output: column vector y (size m×1) 

w1,1 w1,m 

wn,m 
ex. 4 inputs, 3 outputs 

= + 
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Training	a	model:	overview	
•  Given	a	training	dataset	{xm;	ym}m=1,…,M,	pick	
appropriate	cost	funcDon	C.	

•  Forward-pass	(f-prop)	training	examples	
through	the	model	to	get	network	output.	

•  Get	error	using	cost	funcDon	C	to	compare	
outputs	to	targets	ym	

•  Use	StochasDc	Gradient	Descent	(SGD)	to	
update	weights	adjusDng	parameters	to	
minimize	loss/energy	E	(sum	of	the	costs	for	
each	training	example)	
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Cost	funcDon	

•  Consider	model	with	n	layers.	
Layer	i		has	weights	Wi.	

•  Forward	pass:		takes	input	x	and	
passes	it	through	each	layer	Fi:	
	 	xi	=	Fi		(xi-1,	Wi)	

•  Output	of	layer	i	is	xi.	Network	
output	(top	layer)	is	xn.	
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Cost	funcDon	

•  Consider	model	with	n	layers.	
Layer	i		has	weights	Wi.	

•  Forward	pass:		takes	input	x	and	
passes	it	through	each	layer	Fi:	
	 	xi	=	Fi		(xi-1,	Wi)	

•  Output	of	layer	i	is	xi.	Network	
output	(top	layer)	is	xn.	

•  Cost	funcDon	C		compares	xn	to	y	
•  Overall	energy	is	the	sum	of	the	

cost	over	all	training	examples:	

€ 

E = C xn
m,ym( )

m=1

M

∑



StochasDc	gradient	descend	
•  Want	to	minimize	overall	loss	funcDon	E.	Loss	is	sum	of	individual	

losses	over	each	example.	
•  In	gradient	descent,	we	start	with	some	iniDal	set	of	parameters	θ	
•  Update	parameters:	
	k	is	iteraDon	index,	η	is	learning	rate	(negaDve	scalar;	set	semi-
manually).	

•  Gradients																								computed	by	backpropaga+on.	
•  In	StochasDc	gradient	descent,	compute	gradient	on	sub-set	(batch)	

of	data.	
	 	If	batchsize=1	then	θ	is	updated	a^er	each	example.	
	 	If	batchsize=N	(full	set)	then	this	is	standard	gradient	descent.	

•  Gradient	direcDon	is	noisy,	relaDve	to	average	over	all	examples	
(standard	gradient	descent).	
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StochasDc	gradient	descend	

•  We	need	to	compute	gradients	of	the	cost	with	respect	
to	model	parameters	wi	

•  Back-propagaDon	is	essenDally	chain	rule	of	derivaDves	
back	through	the	model.	

•  Each	layer	is	differenDable	with	respect	to	parameters	
and	input.	
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CompuDng	gradients	
•  Training	will	be	an	iteraDve	procedure,	and	at	
each	iteraDon	we	will	update	the	network	
parameters	

•  We	want	to	compute	the	gradients	
	
	
Where				
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€ 

θ = w1,w2,…,wn{ }



CompuDng	gradients	
To	compute	the	gradients,	we	could	start	by	
wring	the	full	energy	E	as	a	funcDon	of	the	
network	parameters.	

	
	

11	

€ 

E θ( ) = C Fn Fn−1 F2 F1 x0
m ,w1( ),w2( ),wn−1( ),wn

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ,ym⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

m=1

M

∑

And then compute the partial 
derivatives… instead, we can use the 
chain rule to derive a compact 
algorithm:  back-propagation 



( 



Matrix calculus 

•  We now define a function on vector x: y = F(x) 
•  If y is a scalar, then  

•  If y is a vector [1×m], then (Jacobian formulation):  

  

€ 

∂y /∂x = ∂y /∂x1 ∂y /∂x2 ! ∂y /∂xn[ ]
The derivative of y is a row vector of size [1×n] 

  

€ 

∂y /∂x =

∂y1 /∂x1 ∂y1 /∂x2 ! ∂y1 /∂xn
" " "

∂ym /∂x1 ∂ym /∂x2 ! ∂yn /∂xm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

•  x column vector of size [n×1] 

  

€ 

x =

x1
x2
!
xn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

The derivative of y is a matrix of size [m×n] 
(m rows and n columns) 



Matrix calculus 

•  If y is a scalar and x is a matrix of size [n×m], then  

  

€ 

∂y /∂X =

∂y /∂x11 ∂y /∂x21 ! ∂y /∂xn1
" " "

∂y /∂x1m ∂y /∂x12 ! ∂y /∂xnm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

The output is a matrix of size [m×n] 



Matrix calculus 
•  Chain rule: 

For the function: z = h(x) = f (g(x)) 

and writing z=f(u), and u=g(x):  

h’(x) = f’ (g(x)) g’(x) Its derivative is: 

with p = length vector u = |u|,  m = |z|,  and  n = |x| € 

dz
dx x=a

=
dz
du u=g(a )

⋅
du
dx x=a

[m×n] [m×p] [p×n] 

Example, if |z|=1, |u| = 2, |x|=4  

= h’(x) = 



Matrix calculus 
•  Chain rule: 

For the function: h(x) = fn(fn-1(…(f1(x)) )) 

With  u1= f1(x) 
 ui = fi(ui-1) 
 z  = un= fn(un-1)  

  

€ 

dz
dx x=a

=
dz
dun−1 un−1 = fn−1 (un−2 )

⋅
dun−1
dun−2 un−2 = fn−2 (un−3 )

⋅…⋅
du2
du1 u1 = f1 (a )

⋅
du1
dx x=a

The derivative becomes a product of matrices: 

(exercise: check that all the matrix dimensions work fine) 



) 



CompuDng	gradients	
The	energy	E	is	the	sum	of	the	costs	associated	
to	each	training	example	xm,	ym	

	
	
Its	gradient	with	respect	to	the	networks	
parameters	is:	
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€ 

E θ( ) = C xn
m ,ym;θ( )

m=1

M

∑

€ 

∂E
∂θ i

=
C xn

m,ym;θ( )
∂θ im=1

M

∑

is how much E varies when the parameter θi is varied. 



CompuDng	gradients	
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€ 

C xn,y;θ( ) = C Fn xn−1,wn( ),y( )

We could write the cost function to get the gradients: 

If we compute the gradient with respect to the parameters of  
the last layer (output layer) wn, using the chain rule: 

  

€ 

θ = w1,w2,!,wn[ ]with 

€ 

∂C
∂wn

=
∂C
∂xn

⋅
∂xn
∂wn

=
∂C
∂xn

⋅
∂Fn xn−1,wn( )

∂wn

(how much the cost changes when we change wn: is the product between how much the cost 
changes when we change the output of the last layer and how much the output changes when we 
change the layer parameters.) 



CompuDng	gradients:	cost	layer	
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If we compute the gradient with respect to the parameters of  
the last layer (output layer) wn, using the chain rule: 

€ 

∂C
∂wn

=
∂C
∂xn

⋅
∂xn
∂wn

=
∂C
∂xn

⋅
∂Fn xn−1,wn( )

∂wn

€ 

C(xn,y) =
1
2
xn − y

2

For example, for an Euclidean loss: 

€ 

∂C
∂xn

= xn − y

The gradient is: 

Will depend on the  
layer structure and 
non-linearity. 



CompuDng	gradients:	layer	i	
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€ 

C xn,y;θ( ) = C Fn Fn−1 F2 F1 x0,w1( ),w2( ),wn−1( ),wn
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ,y⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

We could write the full cost function to get the gradients: 

If we compute the gradient with respect to wi, using the chain rule: 

  

€ 

∂C
∂wi

=
∂C
∂xn

⋅
∂xn
∂xn−1

⋅
∂xn−1
∂xn−2

⋅…⋅
∂xi+1
∂xi

⋅
∂xi
∂wi

€ 

∂C
∂xi

And this can be 
computed iteratively! 

€ 

∂Fi xi−1,wi( )
∂wi

This is easy. 



BackpropagaDon	

  

€ 

∂C
∂wi

=
∂C
∂xn

⋅
∂xn
∂xn−1

⋅
∂xn−1
∂xn−2

⋅…⋅
∂xi+1
∂xi

⋅
∂xi
∂wi

€ 

∂C
∂xi

€ 

∂Fi xi−1,wi( )
∂wi

€ 

∂C
∂xi−1

=
∂C
∂xi

⋅
∂xi
∂xi−1

If we have the value of           we can compute the gradient at the  
layer bellow as:  

€ 

∂C
∂xi

€ 

∂Fi xi−1,wi( )
∂xi−1

Gradient  
layer i 

Gradient  
layer i-1 



Hidden layer i Fi(xi-1, Wi)  

Fi+1  

Fi-1  
€ 

∂Fi(xi−1,wi)
∂xi−1

€ 

∂Fi(xi−1,wi)
∂wi

•  For layer i, we need the derivatives: 

•  We compute the outputs 

xi 

€ 

xi = Fi(xi−1,wi)

€ 

∂C
∂xi−1

€ 

∂C
∂xi−1

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂xi−1
•  The weight update equation is: 

€ 

∂C
∂wi

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂wi

BackpropagaDon:	layer	i	

€ 

wi
k+1← wi

k +ηt
∂E
∂wi

(sum over all 
 training examples 
to get E) 

Forward 
pass 

Backward 
pass 

•  Layer i has two inputs (during training) 

€ 

∂C
∂xi

€ 

∂C
∂xi

xi-1 

xi-1 



F1(x0, W1)  

F2(x1, W2)  

Fi(xi-1, Wi)  

Fn(xn-1, Wn)  

x0 

x1 

x2 
xi-1 

xi 
xn-1 …

 
…

 

xn (output) 

(input) 

E 

C(Xn,Y) 

y 

BackpropagaDon:	summary	
•  Forward	pass:	for	each	

training	example.	Compute	
the	outputs	for	all	layers	

•  Backwards	pass:	compute	
cost	derivaDves	iteraDvely	
from	top	to	boeom:	

•  Compute	gradients	and	
update	weights.		

€ 

xi = Fi(xi−1,wi)

€ 

∂C
∂xi−1

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂xi−1

€ 

∂C
∂xi

€ 

∂C
∂xn

€ 

∂C
∂x2

€ 

∂C
∂x1

€ 

∂C
∂xi−1



Linear	Module	
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F(xin, W)  

xout 

€ 

∂C
∂xout

xin 

€ 

∂C
∂xin € 

xout = F(xin ,W ) =Wxin

With	W	being	a		
matrix	of	size		
|xout|×|xin|	

€ 

∂xouti
∂xin j

=Wij

• 	Forward	propagaDon:		

• 	Backprop	to	input:		

If	we	look	at	the	j	component	of	output	xout,	with	respect	to	the	i	component	of	the	input,	xin:	

€ 

∂C
∂xin

=
∂C
∂xout

⋅
∂F(xin ,W )

∂xin
=
∂C
∂xout

⋅
∂xout
∂xin

€ 

∂F(xin ,W )
∂xin

=W

Therefore:	

€ 

∂C
∂xin

=
∂C
∂xout

⋅W



Linear	Module	
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• 	Backprop	to	weights:		

€ 

∂C
∂W

=
∂C
∂xout

⋅
∂F(xin ,W )

∂W
=
∂C
∂xout

⋅
∂xout
∂W

F(xin, W)  

xout 

€ 

∂C
∂xout

xin 

€ 

∂C
∂xin

If	we	look	at	how	the	parameter	Wij	changes	the	cost,	only	the	i	component	of	the	output	
will	change,	therefore:	

€ 

∂C
∂Wij

=
∂C
∂xouti

⋅
xouti
∂Wij

€ 

xout = F(xin ,W ) =Wxin• 	Forward	propagaDon:		

€ 

=
∂C
∂xouti

⋅ xin j

€ 

∂xouti
∂Wij

= xin j

€ 

Wij
k+1←Wij

k +ηt
∂E
∂Wij

(sum over all 
 training examples 
to get E) 

And	now	we	can	update	the	weights	(by	summing	over	all	the	training	examples):	

€ 

∂C
∂W

= xin ⋅
∂C
∂xout



Linear	Module	

xout 

€ 

∂C
∂xout

xin 

€ 

∂C
∂xin€ 

xout =Wxin

€ 

∂C
∂xin

=
∂C
∂xout

⋅W

€ 

∂C
∂W

= xin ⋅
∂C
∂xout

Weight	updates	

€ 

W k+1←W k +ηt
∂E
∂W
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T



Pointwise	funcDon	
F(xin, W)  

xout 

€ 

∂C
∂xout

xin 

€ 

∂C
∂xin

• 	Forward	propagaDon:		

€ 

xouti = h(xini + bi)
h	=	an	arbitrary	funcDon,	bi	is	a	bias	term.	

• 	Backprop	to	input:		

€ 

∂C
∂xini

=
∂C
∂xouti

⋅
∂xouti
∂xini

=
∂C
∂xouti

⋅ h'(xini + bi)

• 	Backprop	to	bias:		

€ 

∂C
∂bi

=
∂C
∂xouti

⋅
∂xouti
∂bi

=
∂C
∂xouti

⋅ h'(xini + bi)

We	use	this	last	expression	to	update	the	bias.	

€ 

tanh'(x) =1− tanh2(x)For	hyperbolic	tangent:	

For	ReLU:		h(x)		=	max(0,x)				h’(x)	=	1	[x>0]	

Some	useful	derivaDves:	



Pointwise	funcDon	

xout 

€ 

∂C
∂xout

xin 

€ 

∂C
∂xin

Weight	updates	

€ 

bi
k+1← bi

k +ηt
∂E
∂bi€ 

xouti = h(xini + bi)

€ 

∂C
∂xini

=
∂C
∂xouti

⋅ h'(xini + bi)

€ 

∂C
∂bi

=
∂C
∂xouti

⋅ h'(xini + bi)



Euclidean	cost	module	

C 

€ 

∂C
∂C

=1

xin 

€ 

∂C
∂xin

€ 

C =
1
2
xin − y

2

€ 

∂C
∂xin

= xin − y

y 



Back	propagaDon	example	
node 1 

node 2 

node 3 

node 4 

node 5 

w13=1 
0.2 

-3 

1 

1 

-1 

Training data: 

input 

desired output 

1.0     0.1                           0.5 
node 1 node 2 node 5 

input 

output 

tanh	

tanh	

linear	

Learning	rate	=	-0.2	(because	we	used	posiDve	increments)	

Euclidean	loss	

Exercise:	run	one	iteraDon	of	back	propagaDon	



Back	propagaDon	example	

node 1 

node 2 

node 3 

node 4 

node 5 

w13=1.04 

0.16 

-3 

1 

1.02 

-0.99 

input output 

tanh	

tanh	

linear	

node 1 

node 2 

node 3 

node 4 

node 5 

w13=1 
0.2 

-3 

1 

1 

-1 

input output 

tanh	

tanh	

linear	

A^er	one	iteraDon	(rounding	to	two	digits):	



Neocognitron 
Fukushima (1980). Hierarchical multilayered neural network  

S-cells work as feature-extracting cells. They resemble simple cells of the 
primary visual cortex in their response.  

C-cells, which resembles complex cells in the visual cortex, are inserted in the 
network to allow for positional errors in the features of the stimulus. The input 
connections of C-cells, which come from S-cells of the preceding layer, are fixed 
and invariable. Each C-cell receives excitatory input connections from a group 
of S-cells that extract the same feature, but from slightly different positions. The 
C-cell responds if at least one of these S-cells yield an output.  



Neocognitron 

Learning is done greedily for each layer  



Multistage Hubel-Wiesel Architecture  

Slide: Y.LeCun 

•  Stack multiple stages of simple cells / complex cells 
layers 

•  Higher stages compute more global, more invariant 
features 

•  Classification layer on top 
 
History: 
•  Neocognitron [Fukushima 1971-1982] 
•  Convolutional Nets [LeCun 1988-2007]  
•  HMAX [Poggio 2002-2006] 
•  Many others…. 
 



Convolutional Neural Networks 

•  LeCun et al. 1989 

•  Neural network with 
specialized connectivity 
structure 



Overview of Convnets 

•  Feed-forward:  
–  Convolve input 
–  Non-linearity (rectified linear) 
–  Pooling (local max) 

•  Supervised 
•  Train convolutional filters by  

back-propagating classification error 

Input Image 

Convolution (Learned) 

Non-linearity 

Pooling 

LeCun et al. 1998 

Feature maps 



Convnet Successes 

•  Handwritten text/digits 
–  MNIST      (0.17% error [Ciresan et al. 2011]) 
–  Arabic & Chinese   [Ciresan et al. 2012] 

•  Simpler  recognition benchmarks 
–  CIFAR-10  (9.3% error [Wan et al. 2013]) 
–  Traffic sign recognition 

•  0.56% error vs 1.16% for humans [Ciresan et al. 2011] 

•  But less good at more complex datasets 
–  E.g. Caltech-101/256 (few training examples)  



Application to ImageNet 

[NIPS 2012] 

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009]  

•  ~14 million labeled images, 20k classes 

•  Images gathered from Internet 

•  Human labels via Amazon Turk  



Goal 

  

Validation classification

[Krizhevsky et al. NIPS 2012] 

•  Image Recognition 
– Pixels à Class Label 



Krizhevsky et al. [NIPS2012] 

•  7 hidden layers, 650,000 neurons, 60,000,000 parameters 
•  Trained on 2 GPUs for a week 

•  Same model as LeCun’98 but: 
  -   Bigger model  (8 layers) 
-  More data    (106 vs 103 images) 
-  GPU implementation (50x speedup over CPU) 
-  Better regularization (DropOut) 



ImageNet Classification 2012 

•  Krizhevsky et al. -- 16.4% error (top-5) 
•  Next best (non-convnet) – 26.2% error 
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How convnets work 

•  Operations in each layer 

•  Architecture 

•  Training 

•  Results 





Filtering 

•  Convolutional 
–  Dependencies are local  
–  Translation invariance 
–  Tied filter weights (few params) 

Input Feature Map 

.

.

.













Pooling 

•  Spatial Pooling 
– Non-overlapping / overlapping regions 
– Sum or max 
– Boureau et al. ICML’10 for theoretical analysis 

Max 

Sum 



Pooling  

Feature
Map 1 

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

•  Pooling across feature groups 
•  Additional form of inter-feature competition 
•  MaxOut Networks [Goodfellow et al. ICML 2013] 



Role of Pooling  

•  Spatial pooling 
–  Invariance to small 

transformations 
–  Larger receptive fields  

(see more of input) 

Zeiler, Fergus [arXiv 2013] 
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Translation 
 
Videos from: http://ai.stanford.edu/~quocle/
TCNNweb 

Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. 
Koh, A.Y. Ng  
Tiled Convolutional Neural Networks. 
NIPS, 2010 

Visualization technique from 
[Le et al. NIPS’10]: 





Normalization 

Filters Input 

•  Contrast normalization 
•  See Divisive Normalization in Neuroscience  



•  Contrast normalization (across feature maps) 
– Local mean = 0, local std. = 1, “Local” à 7x7 

Gaussian  
– Equalizes the features maps 

Normalization 

Feature Maps 
 

Feature Maps 
After Contrast Normalization 



Role of Normalization  

•  Introduces local competition between features 
–   “Explaining away” in graphical models 

–    Just like top-down models 
–    But more local mechanism 

•  Also helps to scale activations at each layer better for 
learning 
–  Makes energy surface more isotropic 
–  So each gradient step makes more progress 

•  Empirically, seems to help a bit (1-2%) on ImageNet 

•  Recent models do not use normalization 

 
 
 
  





Overview of Convnets 

•  Feed-forward:  
–  Convolve input 
–  Non-linearity (rectified linear) 
–  Pooling (local max) 

•  Supervised 
•  Train convolutional filters by  

back-propagating classification error 

Input Image 

Convolution (Learned) 

Non-linearity 

Pooling 

LeCun et al. 1998 

Feature maps 



Architecture 

•  Big issue: how to select 
– Depth 
– Width 
– Parameter count 

•  Manual tuning of features has turn into 
manual tuning of Architectures 
 

 
 



How we choose the architecture? 

•  Many hyper-parameters: 
•  – # layers, # feature maps 
•  Cross-validation 
•  Grid search (need lots of GPUs) 
•  Smarter strategies: 

 – Random [Bergstra & Bengio JMLR 2012] 
 – Gaussian processes [Hinton] 



How important is Depth 

•  “Deep” in Deep Learning 

•  Ablation study 

•  Tap off features 



Architecture of Krizhevsky et al.  

•  8 layers total 

•  Trained on Imagenet 
dataset [Deng et al. 
CVPR’09] 

•  18.2% top-5 error  

•  Our reimplementation: 
 18.1% top-5 error 
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Architecture of Krizhevsky et al.  

•  Remove top fully 
connected layer  
– Layer 7 

•  Drop 16 million 
parameters 

•  Only 1.1% drop in 
performance! 
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Architecture of Krizhevsky et al.  

•  Remove both fully 
connected layers  
– Layer 6 & 7 

•  Drop ~50 million 
parameters 

•  5.7% drop in performance 

Input Image 

Layer 1: Conv + Pool 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 



Architecture of Krizhevsky et al.  

•  Now try removing upper 
feature extractor layers: 
– Layers 3 & 4 

•  Drop ~1 million parameters 

•  3.0% drop in performance 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Softmax Output 

Layer 2: Conv + Pool 

Layer 5: Conv + Pool 

Layer 7: Full 



Architecture of Krizhevsky et al.  

•  Now try removing upper 
feature extractor layers & fully 
connected: 
– Layers 3, 4, 6 ,7 

•  Now only 4 layers 

•  33.5% drop in performance 
 
à Depth of network is key 
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