

MIT CSAIL

6.869: Advances in Computer Vision

Antonio Torralba, 2016

MIT COMPUTER VISION

Lecture 7

Learned feedforward visual processing

Tutorials

- Lunes: 4pm --> Torch
- Martes: 5pm --> TensorFlow
- Miércoles: 5pm--> Torch
- Jueves: 6pm ---> TensorFlow

Single layer network

- Input: column vector x (size n×1) • Output: column vector y (size m×1) X_1 • Layer parameters: X_2 weight matrix W (size n×m)
 - bias vector b ($m \times 1$)
 - Units activation: a = Wx + b

ex. 4 inputs, 3 outputs

• Output: y = f(a) = f(Wx + b)

Training a model: overview

- Given a training dataset {x^m; y^m}_{m=1,...,M}, pick appropriate cost function C.
- Forward-pass (f-prop) training examples through the model to get network output.
- Get error using cost function C to compare outputs to targets y^m
- Use Stochastic Gradient Descent (SGD) to update weights adjusting parameters to minimize loss/energy E (sum of the costs for each training example)

Cost function

- Consider model with *n* layers.
 Layer i has weights W_i.
- Forward pass: takes input x and passes it through each layer F_i:
 x_i = F_i (x_{i-1}, W_i)
- Output of layer i is x_i. Network output (top layer) is x_n.

Cost function

- Consider model with *n* layers.
 Layer i has weights W_i.
- Forward pass: takes input x and passes it through each layer F_i:
 x_i = F_i (x_{i-1}, W_i)
- Output of layer i is x_i. Network output (top layer) is x_n.
- Cost function C compares x_n to y
- Overall energy is the sum of the cost over all training examples:

$$E = \sum_{m=1}^{M} C(x_n^m, y^m)$$

Stochastic gradient descend

- Want to minimize overall loss function **E.** Loss is sum of individual losses over each example.
- In gradient descent, we start with some initial set of parameters θ
- Update parameters: θ^{k+1} ← θ^k + η∇θ.
 k is iteration index, η is learning rate (negative scalar; set semimanually).
- Gradients $\nabla \theta = \frac{\partial E}{\partial \theta}$ computed by *backpropagation*.
- In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

If batchsize=1 then θ is updated after each example.

If batchsize=N (full set) then this is standard gradient descent.

 Gradient direction is noisy, relative to average over all examples (standard gradient descent).

Stochastic gradient descend

- We need to compute gradients of the cost with respect to model parameters w_i
- Back-propagation is essentially chain rule of derivatives back through the model.
- Each layer is differentiable with respect to parameters and input.

Computing gradients

- Training will be an iterative procedure, and at each iteration we will update the network parameters $\theta^{k+1} \leftarrow \theta^k + \eta \nabla \theta$.
- We want to compute the gradients

$$\nabla \theta = \frac{\partial E}{\partial \theta}$$

Where
$$\theta = \{w_1, w_2, \dots, w_n\}$$

Computing gradients

To compute the gradients, we could start by wring the full energy E as a function of the network parameters.

$$E(\theta) = \sum_{m=1}^{M} C\left(F_n\left(F_n\left(F_1\left(x_0^m, w_1\right), w_2\right), w_{n-1}\right), w_n\right), y^m\right)$$

And then compute the partial derivatives... instead, we can use the chain rule to derive a compact algorithm: **back-propagation**

- x column vector of size $[n \times 1]$ $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix}$
- We now define a function on vector x: y = F(x)
- If y is a scalar, then

$$\partial y / \partial x = \begin{bmatrix} \partial y / \partial x_1 & \partial y / \partial x_2 & \cdots & \partial y / \partial x_n \end{bmatrix}$$

The derivative of y is a row vector of size $[1 \times n]$

• If y is a vector [1×m], then (*Jacobian formulation*):

$$\partial y / \partial x = \begin{bmatrix} \partial y_1 / \partial x_1 & \partial y_1 / \partial x_2 & \cdots & \partial y_1 / \partial x_n \\ \vdots & \vdots & & \vdots \\ \partial y_m / \partial x_1 & \partial y_m / \partial x_2 & \cdots & \partial y_n / \partial x_m \end{bmatrix}$$

The derivative of y is a matrix of size $[m \times n]$ (m rows and n columns)

• If y is a scalar and x is a matrix of size [n×m], then

$$\partial y / \partial X = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{n1}} \\ \vdots & \vdots & \vdots \\ \frac{\partial y}{\partial x_{1m}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{nm}} \end{bmatrix}$$

The output is a matrix of size $[m \times n]$

• Chain rule:

For the function: z = h(x) = f(g(x))Its derivative is: h'(x) = f'(g(x))g'(x)and writing z=f(u), and u=g(x): $\frac{dz}{dx}\Big|_{x=a} = \frac{dz}{du}\Big|_{u=g(a)} \cdot \frac{du}{dx}\Big|_{x=a}$ $[m \times n]$ $[m \times p]$ $[p \times n]$ with p = length vector u = |u|, m = |z|, and n = |x|Example, if |z|=1, |u|=2, |x|=4

• Chain rule:

For the function: $h(x) = f_n(f_{n-1}(...(f_1(x))))$

With
$$u_1 = f_1(x)$$

 $u_i = f_i(u_{i-1})$
 $z = u_n = f_n(u_{n-1})$

The derivative becomes a product of matrices:

$$\frac{dz}{dx}\Big|_{x=a} = \frac{dz}{du_{n-1}}\Big|_{u_{n-1}=f_{n-1}(u_{n-2})} \cdot \frac{du_{n-1}}{du_{n-2}}\Big|_{u_{n-2}=f_{n-2}(u_{n-3})} \cdot \cdots \cdot \frac{du_2}{du_1}\Big|_{u_1=f_1(a)} \cdot \frac{du_1}{dx}\Big|_{x=a}$$

(exercise: check that all the matrix dimensions work fine)

Computing gradients

The energy E is the sum of the costs associated to each training example x^m, y^m

$$E(\theta) = \sum_{m=1}^{M} C(x_n^m, y^m; \theta)$$

Its gradient with respect to the networks parameters is:

$$\frac{\partial E}{\partial \theta_i} = \sum_{m=1}^M \frac{C(x_n^m, y^m; \theta)}{\partial \theta_i}$$

is how much E varies when the parameter θ_i is varied.

Computing gradients

We could write the cost function to get the gradients:

$$C(x_n, y; \theta) = C(F_n(x_{n-1}, w_n), y)$$

with $\theta = [w_1, w_2, \cdots, w_n]$

If we compute the gradient with respect to the parameters of the last layer (output layer) w_n , using the chain rule:

$$\frac{\partial C}{\partial w_n} = \frac{\partial C}{\partial x_n} \cdot \frac{\partial x_n}{\partial w_n} = \frac{\partial C}{\partial x_n} \cdot \frac{\partial F_n(x_{n-1}, w_n)}{\partial w_n}$$

(how much the cost changes when we change w_n : is the product between how much the cost changes when we change the output of the last layer and how much the output changes when we change the layer parameters.)

Computing gradients: cost layer

If we compute the gradient with respect to the parameters of the last layer (output layer) w_n , using the chain rule:

$$\frac{\partial C}{\partial w_n} = \frac{\partial C}{\partial x_n} \cdot \frac{\partial x_n}{\partial w_n} = \frac{\partial C}{\partial x_n} \cdot \frac{\partial F_n(x_{n-1}, w_n)}{\partial w_n}$$

For example, for an Euclidean loss:

$$C(x_{n}, y) = \frac{1}{2} \|x_{n} - y\|^{2}$$

Will depend on the layer structure and non-linearity.

The gradient is:

$$\frac{\partial C}{\partial x_n} = x_n - y$$

Computing gradients: layer i

We could write the full cost function to get the gradients:

$$C(x_{n}, y; \theta) = C\left(F_{n}\left(F_{n-1}\left(F_{2}\left(F_{1}(x_{0}, w_{1}), w_{2}\right), w_{n-1}\right), w_{n}\right), y\right)$$

If we compute the gradient with respect to w_i , using the chain rule:

$$\frac{\partial C}{\partial w_{i}} = \frac{\partial C}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial x_{n-1}} \cdot \frac{\partial x_{n-1}}{\partial x_{n-2}} \cdot \dots \cdot \frac{\partial x_{i+1}}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial w_{i}}$$
$$\frac{\partial C}{\partial x_{i}}$$
$$\frac{\partial F_{i}(x_{i-1}, w_{i})}{\partial w_{i}}$$
$$\frac{\partial W_{i}}{\partial w_{i}}$$
This is easy.

Backpropagation: layer i

Forward Backward pass pass

- Layer i has two inputs (during training) $\mathbf{x}_{i-1} \qquad \frac{\partial C}{\partial x_i}$ • For layer i, we need the derivatives: $\frac{\partial F_i(x_{i-1}, w_i)}{\partial x_{i-1}} \qquad \frac{\partial F_i(x_{i-1}, w_i)}{\partial w_i}$ • We compute the outputs $x_{i} = F_{i}(x_{i-1}, w_{i})$ $\frac{\partial C}{\partial x_{i-1}} = \frac{\partial C}{\partial x_i} \cdot \frac{\partial F_i(x_{i-1}, w_i)}{\partial x_{i-1}}$
- The weight update equation is:

$$\frac{\partial C}{\partial w_i} = \frac{\partial C}{\partial x_i} \cdot \frac{\partial F_i(x_{i-1}, w_i)}{\partial w_i}$$
$$w_i^{k+1} \leftarrow w_i^k + \eta_t \frac{\partial E}{\partial w_i} \qquad \text{(sum over all training examples to get E)}$$

Backpropagation: summary

 Forward pass: for each training example. Compute the outputs for all layers

 $x_i = F_i(x_{i-1}, w_i)$

 Backwards pass: compute cost derivatives iteratively from top to bottom:

$$\frac{\partial C}{\partial x_{i-1}} = \frac{\partial C}{\partial x_i} \cdot \frac{\partial F_i(x_{i-1}, w_i)}{\partial x_{i-1}}$$

• Compute gradients and update weights.

Linear Module

• Forward propagation: $x_{out} = F(x_{in}, W) = Wx_{in}$

25

Backprop to input:

$$\frac{\partial C}{\partial x_{in}} = \frac{\partial C}{\partial x_{out}} \cdot \frac{\partial F(x_{in}, W)}{\partial x_{in}} = \frac{\partial C}{\partial x_{out}} \cdot \frac{\partial x_{out}}{\partial x_{in}}$$

If we look at the j component of output x_{out}, with respect to the i component of the input, x_{in}:

$$\frac{\partial x_{out_i}}{\partial x_{in_j}} = W_{ij} \longrightarrow \frac{\partial F(x_{in}, W)}{\partial x_{in}} = W$$

Therefore:
$$\frac{\partial C}{\partial x_{in}} = \frac{\partial C}{\partial x_{out}} \cdot W$$

$\frac{\partial C}{\partial u}$ Linear Module

$$\frac{\partial C}{\partial W} = \frac{\partial C}{\partial x_{out}} \cdot \frac{\partial F(x_{in}, W)}{\partial W} = \frac{\partial C}{\partial x_{out}} \cdot \frac{\partial x_{out}}{\partial W}$$

If we look at how the parameter W_{ii} changes the cost, only the i component of the output will change, therefore:

And now we can update the weights (by summing over all the training examples):

$$W_{ij}^{k+1} \leftarrow W_{ij}^{k} + \eta_t \frac{\partial E}{\partial W_{ij}} \quad ($$

sum over all training examples o get E)

Linear Module

 $h = an arbitrary function, b_i is a bias term.$

• Backprop to input: $\frac{\partial C}{\partial x_{in}} = \frac{\partial C}{\partial x_{out}} \cdot \frac{\partial x_{out_i}}{\partial x_{in}} = \frac{\partial C}{\partial x_{out_i}} \cdot h'(x_{in_i} + b_i)$

• Backprop to bias:
$$\frac{\partial C}{\partial b_i} = \frac{\partial C}{\partial x_{out_i}} \cdot \frac{\partial x_{out_i}}{\partial b_i} = \frac{\partial C}{\partial x_{out_i}} \cdot h'(x_{in_i} + b_i)$$

We use this last expression to update the bias.

Some useful derivatives:

For hyperbolic tangent: $tanh'(x) = 1 - tanh^2(x)$

For ReLU: h(x) = max(0,x) h'(x) = 1 [x>0]

Pointwise function

Euclidean cost module

Back propagation example

Learning rate = -0.2 (because we used positive increments)

Euclidean loss

Training data:input
node 1desired output
node 51.00.10.5

Exercise: run one iteration of back propagation

Back propagation example

After one iteration (rounding to two digits):

Neocognitron

Fukushima (1980). Hierarchical multilayered neural network

S-cells work as feature-extracting cells. They resemble simple cells of the primary visual cortex in their response.

C-cells, which resembles complex cells in the visual cortex, are inserted in the network to allow for positional errors in the features of the stimulus. The input connections of C-cells, which come from S-cells of the preceding layer, are fixed and invariable. Each C-cell receives excitatory input connections from a group of S-cells that extract the same feature, but from slightly different positions. The C-cell responds if at least one of these S-cells yield an output.

Neocognitron

 $\begin{array}{c} {}^{21}7 & 7 & 7 \\ {}^{22} & 2 & 2 & 2 \\ {}^{23} & 2 & 2 & 2 \\ {}^{23} & 2 & 2 & 2 \\ \end{array}$ 24 25 L 20-27 .-28 29 " (((() 31 32-ر_ در $\begin{array}{c}
^{14} \\
^{15} \\
^{15} \\
^{16} \\
^{16} \\
^{16} \\
^{16} \\
^{16} \\
^{16} \\
^{16} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18} \\
^{18}$ "국국국

Learning is done greedily for each layer

Multistage Hubel-Wiesel Architecture

- Stack multiple stages of simple cells / complex cells layers
- Higher stages compute more global, more invariant features
- Classification layer on top

History:

- Neocognitron [Fukushima 1971-1982]
- Convolutional Nets [LeCun 1988-2007]
- HMAX [Poggio 2002-2006]
- Many others....

Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure

Overview of Convnets

Feature maps

Pooling

Non-linearity

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by
 back-propagating classification errc Convolution (Learned)

Convnet Successes

- Handwritten text/digits
 - MNIST (0.17% error [Ciresan et al. 2011])
 - Arabic & Chinese [Ciresan et al. 2012]
- Simpler recognition benchmarks
 - CIFAR-10 (9.3% error [Wan et al. 2013])
 - Traffic sign recognition
 - 0.56% error vs 1.16% for humans [Ciresan et al. 20]
- But less good at more complex datasets
 - E.g. Caltech-101/256 (few training examples)

Application to ImageNet

- ~14 million labeled images, 20k class
- Images gathered from Internet
- Human labels via Amazon Turk

ImageNet Classification with Deep Convolutional Neural Networks [NIPS 2012]

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Goal

Image Recognition – Pixels → Class Label

[Krizhevsky et al. NIPS 2012]

Krizhevsky et al. [NIPS2012]

- Same model as LeCun'98 but:
 - Bigger model (8 layers)
 - More data $(10^6 \text{ vs } 10^3 \text{ images})$
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)

- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week

ImageNet Classification 2012

- Krizhevsky et al. -- 16.4% error (top-5)
- Next best (non-convnet) 26.2% error

How convnets work

- Operations in each layer
- Architecture
- Training
- Results

Filtering

- Convolutional
 - Dependencies are local
 - Translation invariance
 - Tied filter weights (few params)

Feature Map

Filtering

• Local

– Each unit layer above look at local window

– But no weight tying

Filters

• E.g. face recognition

Non-Linearity

- Rectified linear function
 - Applied per-pixel
 output = max(0,input)

Input feature map

Output feature map

Non-Linearity

twrh(x)

-0.5

- Other choices:
 - Tanh

.....

Sigmoid: 1/(1+exp(-x))PReLU

[Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Kaiming He et al. arXiv:1502.01852v1.pdf, Feb 2015]

$$f(y_i) = \begin{cases} y_i, & \text{if } y_i > 0\\ a_i y_i, & \text{if } y_i \le 0 \end{cases}$$

$$f(y) = y$$

$$f(y) = y$$

(X)0.6 (X)pioulity 0.4

0.2

Pooling

- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis

Pooling

- Pooling across feature groups
 - Additional form of inter-feature competition
 - MaxOut Networks [Goodfellow et al. ICML 2013]

Role of Pooling

- Spatial pooling
 - Invariance to small transformations
 - Larger receptive fields Visual@Patronte@fringlet}rom [Le et al. NIPS'10]:

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/

Normalization

- Contrast normalization
 - See Divisive Normalization in Neuroscience

Filters

Normalization

 Contrast normalization (across feature maps)
 Local mean = 0, local std. = 1, "Local" → 7x7 Gaussian

Feature Maps

Feature Maps After Contrast Normalization

Role of Normalization

- Introduces local competition between features
 - "Explaining away" in graphical models
 - Just like top-down models
 - But more local mechanism
- Also helps to scale activations at each layer better for learning
 - Makes energy surface more isotropic
 - So each gradient step makes more progress

- Empirically, seems to help a bit (1-2%) on ImageNet
- Recent models do not use normalization

Normalization across Data

Batch Normalization

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Overview of Convnets

Feature maps

Pooling

Non-linearity

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by
 back-propagating classification errc Convolution (Learned)

Architecture

- Big issue: how to select
 - Depth
 - Width
 - Parameter count
- Manual tuning of features has turn into manual tuning of Architectures

How we choose the architecture?

- Many hyper-parameters:
- – # layers, # feature maps
- Cross-validation
- Grid search (need lots of GPUs)
- Smarter strategies:
 - Random [Bergstra & Bengio JMLR 2012]
 - Gaussian processes [Hinton]

How important is Depth

- "Deep" in Deep Learning
- Ablation study
- Tap off features

- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR'09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error

- Remove top fully connected layer
 Layer 7
- Drop 16 million
 parameters
- Only 1.1% drop in performance!

- Remove both fully connected layers

 Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance

- Now try removing upper feature extractor layers: – Layers 3 & 4
- Drop ~1 million parameters
- 3.0% drop in performance

- Now try removing upper feature extractor layers & fully connected:
 - -Layers 3, 4, 6,7
- Now only 4 layers
- 33.5% drop in performance

 \rightarrow Depth of network is key

