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2d	from	3d;		
3d	from	multiple	2d	measurements
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Perspective projection

image plane
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Perspective projection
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Perspective projection:

Virtual image plane



http://www.ider.herts.ac.uk/school/courseware/
graphics/two_point_perspective.html

Vanishing points



Other projection models:   
Orthographic projection
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Three camera projections

(1) Perspective:  

(2) Weak perspective: 

(3) Orthographic: ),(),,(
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Three camera projections

Perspective projection Parallel (orthographic) projection

Weak perspective?



Homogeneous coordinates
Is the perspective projection a linear transformation?

Trick:  add one more coordinate:

Converting from homogeneous coordinates

homogeneous image  
coordinates

• no—division by z is nonlinear

homogeneous world 
coordinates

Slide by Steve Seitz



Perspective Projection
• Projection is a matrix multiply using homogeneous coordinates:

This is known as perspective projection 
• The matrix is the projection matrix

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Orthographic Projection
Special case of perspective projection 

• Also called “parallel projection” 
• What’s the projection matrix?

Image World

Slide by Steve Seitz

          
          ?



Orthographic Projection
Special case of perspective projection 

• Distance from the COP to the PP is infinite 

• Also called “parallel projection” 
• What’s the projection matrix?

Image World

Slide by Steve Seitz



2D Transformations



2D Transformations
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Example: translation



2D Transformations
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Example: translation



2D Transformations
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= +

1
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1 0 tx

0 1 ty
.

=
1 0 tx

0 1 ty

0 0 1

.

Example: translation written 3 ways:  
non-homog                     homog in, non-h out,             homog in, homog out

Now we can chain transformations



Translation and rotation, written in each set of 
coordinates

Non-homogeneous coordinates
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Camera calibration
Use the camera to tell you things about the 

world: 
– Relationship between coordinates in the world 

and coordinates in the image:  geometric 
camera calibration, see Szeliski, section 5.2, 5.3 
for references 

– (Relationship between intensities in the world 
and intensities in the image: photometric image 
formation, see Szeliski, sect. 2.2.)



Camera calibration

• Intrinsic parameters 

• Extrinsic parameters

Image coordinates relative to camera !" Pixel 
coordinates

Camera frame 1 !" Camera frame 2



Camera calibration

• Intrinsic parameters 
• Extrinsic parameters



Intrinsic parameters:  from idealized world coordinates to pixel values

Forsyth&Ponce
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Intrinsic parameters
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Intrinsic parameters
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Intrinsic parameters
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Intrinsic parameters

0

0

 
)sin(

)cot(              

v
z
y

v

u
z
y

z
x

u

+=

+−=

θ

β

θαα

May be skew between 
camera pixel axes (but 
usually this angle is 90 
deg).

v             

θ
u             

vʹ             
uʹ             

vuvuu
vv

)cot()cos(
)sin(

θθ

θ

−=ʹ−=ʹ

=ʹ



  

€ 

! p     =            K              C! p 

Intrinsic parameters, homogeneous coordinates
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Using homogenous coordinates, 
we can write this as:

or:

In camera-based coords
In pixels



Camera calibration

• Intrinsic parameters 
• Extrinsic parameters



World and camera coordinate systems

In the first lecture, we placed the world coordinates in the center of the scene. 



Extrinsic parameters:  translation and rotation of camera frame
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Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

Forsyth&Ponce
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World coordinates
Camera coordinates

pixels
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Other ways to write the same equation
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Projection equation 

• The projection matrix models the cumulative effect of all parameters 
• Useful to decompose into a series of operations
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Summary camera parameters
A camera is described by several parameters 

• Translation T of the optical center from the origin of world coords 
• Rotation R of the image plane 
• focal length f, principle point (x’c, y’c), pixel size (sx, sy) 
• blue parameters are called “extrinsics,”  red are “intrinsics”

• The definitions of these parameters are not completely standardized 
– especially intrinsics—varies from one book to another



do we calculate the camera’s calibration matrix, or 
measure?



Calibration target

Find the position, ui and vi, in pixels, of 
each calibration object feature point.



Camera calibration
From before, we had these equations 
relating image positions, 
u,v, to points at 3-d positions P (in 
homogeneous coordinates):

So for each feature point, i, we have:



Camera calibration
Stack all these measurements of  i=1…n points  

into a big matrix (cluttering vector arrows omitted from P and m):



Showing all the elements:

In vector form: Camera calibration



We want to solve for the unit vector m (the stacked one) 
that minimizes

Q                                  m = 0

The minimum eigenvector of the matrix QTQ gives us that 
(see Forsyth&Ponce, 3.1), because it is the unit vector x that 
minimizes xT QTQ  x.

Camera calibration



Once you have the M matrix, can recover the intrinsic 
and extrinsic parameters.

Camera calibration



Vision systems

One camera
Two cameras N cameras



Stereo	vision

~6cm ~50cm



Depth without objects
Random dot stereograms (Bela Julesz)

Julesz, 1971 



Stereo photography and stereo viewers

Image courtesy of fisher-price.com

Take two pictures of the same subject from two 
slightly different viewpoints and display so that each 
eye sees only one of the images.

Slide credit: Kristen Grauman



Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Slide credit: Kristen Grauman



Anaglyph	pinhole	camera



Autostereograms

Images from magiceye.com

Exploit disparity 
as depth cue 
using single 
image. 

(Single image 
random dot 
stereogram, 
Single image 
stereogram)

Slide credit: Kristen Grauman



My	conundrum	regarding	stereo	
displays

Real	3d	scenes	often	look	to	me	like	thin,	flat	
layers,	stacked	in	depth.		Why	is	that?

48



Estimating	depth	with	stereo

• Stereo:	shape	from	disparities	between	two	views	
• We’ll	need	to	consider:	

– Info	on	camera	pose	(“calibration”)	
– Image	point	correspondences	

scene point

optical 
center

image plane

Slide credit: Kristen Grauman



Geometry for a simple stereo system

• Assume a simple setting:  
– Two identical cameras 
– parallel optical axes 
– known camera parameters (i.e., calibrated cameras).

Ol Or



baseline

optical 
center (left)

optical 
center 
(right)

Focal 
length

World 
point

Depth of p
image point 
(left)

image point 
(right)

Slide credit: Kristen Grauman



• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Similar triangles (pl, P, pr) and 
(Ol, P, Or): 

    

Geometry for a simple stereo 
system

disparity

Slide credit: Kristen Grauman



Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

Slide credit: Kristen Grauman



General case, with calibrated cameras 
• The two cameras need not have parallel optical axes.

Vs.



Stereo correspondence constraints

O O’

p
p’ ?

If we see a point in camera 1, are there any constraints on where we 
will find it on camera 2?

Camera 1 Camera 2



Geometry of two views constrains where the corresponding pixel for some image 
point in the first view must occur in the second view:  

 It must be on the line carved out by a plane connecting the world point  
  and optical centers.  

Why is this useful?

Epipolar constraint

O O’

p
p’ ?



Epipolar constraint

This is useful because it reduces the correspondence 
problem to a 1D search along an epipolar line.

Image from Andrew Zisserman Slide credit: Kristen Grauman



• Epipolar Plane

Epipole

Epipolar Line

Baseline

Epipolar geometry

Epipole

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html Slide credit: Kristen Grauman

• Epipolar plane: plane containing baseline and world point 
• Epipole: point of intersection of baseline with the image plane 
• Epipolar line: intersection of epipolar plane with the image plane 
• Baseline: line joining the camera centers 

• All epipolar lines intersect at the epipole 
• An epipolar plane intersects the left and right image planes in epipolar lines

Epipolar Line

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


Example

Slide credit: Kristen Grauman



Figure from Hartley & Zisserman

Example: parallel cameras

Where are the 
epipoles?

Slide credit: Kristen Grauman



Example: converging cameras

Figure from Hartley & Zisserman Slide credit: Kristen Grauman



• So far, we have the explanation in terms of 
geometry. 

• Now, how to express the epipolar constraints 
algebraically?

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

Main idea

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know : 
how to rotate and translate camera reference frame 1 to get 
to camera reference frame 2. 
Rotation: 3 x 3 matrix R; translation: 3 vector T.

Slide credit: Kristen Grauman



Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know : 
how to rotate and translate camera reference frame 1 to get 
to camera reference frame 2.

Slide credit: Kristen Grauman



From geometry to algebra

TRXX' +=

TTRXTXT ×+×=ʹ×

RXT×=

( ) ( )RXTXXTX ×⋅ʹ=ʹ×⋅ʹ

0=
Normal  to the plane

Slide credit: Kristen Grauman



From geometry to algebra

TRXX' +=

TTRXTXT ×+×=ʹ×

RXT×=

( ) ( )RXTXXTX ×⋅ʹ=ʹ×⋅ʹ

0=
Normal  to the plane

Slide credit: Kristen Grauman



Aside:  cross product

Vector cross product takes two vectors 
and returns a third vector that’s 
perpendicular to both inputs. 

So here, c is perpendicular to both a and 
b, which means the dot product = 0.

Slide credit: Kristen Grauman



Matrix form of cross product

Can be expressed as a matrix multiplication.
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Slide credit: Kristen Grauman



Essential matrix

( ) 0=×⋅ʹ RXTX

( ) 0=⋅ʹ RXTX x

E is called the essential matrix, and it relates 
corresponding image points between both cameras, 
given the rotation and translation. 
If we observe a point in one image, its position in the 
other image is constrained to lie on line defined by 
above. 
Note: these points are in camera coordinate systems.

Let RTE x=

0=ʹ EXX T



x and x’ are scaled versions of X and X’



E is called the essential matrix, and it relates corresponding image points 
between both cameras, given the rotation and translation. 

If we observe a point in one image, its position in the other image is 
constrained to lie on line defined by above. 

Note: these points are in camera coordinate systems.

Let

pts x and x’ in the image planes are scaled versions of X and X’.



0   0  0 
0   0  d 
0 –d  0

Essential matrix example: parallel 
cameras

For the parallel cameras, 
image of any point must lie 
on same horizontal line in 
each image plane.

Slide credit: Kristen Grauman



image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)

What about when cameras’ optical axes are not 
parallel?

Slide credit: Kristen Grauman



Stereo image rectification: example

Source: Alyosha Efros



Stereo image rectification

Reproject image planes onto a common 
 plane parallel to the line between optical 

centers 
Pixel motion is horizontal after this 

transformation 
Two homographies (3x3 transforms), one for 

each input image reprojection 
See Szeliski book, Sect. 2.1.5, Fig. 2.12, and 

“Mapping from one camera to another” p. 
56:

Adapted from Li Zhang

In practice, it is 
convenient if image 
scanlines (rows) are the 
epipolar lines.

Slide credit: Kristen Grauman
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Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows

Slide credit:  Rick Szeliski
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Image block matching
How do we determine correspondences? 

• block matching or SSD (sum squared differences) 
 
 
d is the disparity (horizontal motion) 
 
 

How big should the neighborhood be?
Slide credit:  Rick Szeliski
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Neighborhood size

Smaller neighborhood: more details 
Larger neighborhood:  fewer isolated mistakes 
 
 
 
 

        w = 3  w = 20

Slide credit:  Rick Szeliski



80CSE 576, Spring 2008 Stereo matching

Matching criteria

Raw pixel values (correlation) 
Band-pass filtered images [Jones & Malik 92] 
“Corner” like features [Zhang, …] 
Edges [many people…] 
Gradients [Seitz 89;  Scharstein 94] 
Rank statistics [Zabih & Woodfill 94]

Slide credit:  Rick Szeliski
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Local evidence framework

For every disparity, compute raw matching costs 
 
 
Why use a robust function? 
• occlusions, other outliers 
 

Can also use alternative match criteria

Slide credit:  Rick Szeliski
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Local evidence framework

Aggregate costs spatially 
 
 

Here, we are using a box filter 
(efficient moving average 
implementation) 

Can also use weighted average, 
[non-linear] diffusion…

Slide credit:  Rick Szeliski
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Local evidence framework

Choose winning disparity at each pixel 
 

Interpolate to sub-pixel accuracy

d

E(d)

d*

Slide credit:  Rick Szeliski
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Active stereo with structured light

Project “structured” light patterns onto the object 
• simplifies the correspondence problem

camera 2

camera 1

projector

camera 1

projector

Li Zhang’s one-shot stereo

Slide credit:  Rick Szeliski

Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition Using Color Structured 
Light and Multi-pass Dynamic Programming. In Proceedings of the 1st International 
Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), Padova, Italy, 
June 19-21, 2002, pp. 24-36.
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Li Zhang, Brian Curless, and Steven M. Seitz
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