Antonio Torralba and Bill Freeman

Lecture 11

Geometry, Camera Calibration, and Stereo.

2d from 3d;

3d from multiple 2d measurements

Perspective projection

Virtual image plane

Perspective projection

Similar triangles: $\mathrm{y} / \mathrm{f}=\mathrm{Y} / \mathrm{Z}$

$$
y=f Y / Z
$$

Perspective projection:

$$
(X, Y, Z) \Rightarrow\left(f \frac{X}{Z}, f \frac{Y}{Z}\right)
$$

Vanishing points

http://www.ider.herts.ac.uk/school/courseware/ graphics/two_point_perspective.html

Other projection models: Orthographic projection

Three camera projections

3-d point 2-d image position
(1) Perspective: $\quad(x, y, z) \rightarrow\left(\frac{f x}{z}, \frac{f y}{z}\right)$
(2) Weak perspective:

$$
(x, y, z) \rightarrow\left(\frac{f x}{z_{0}}, \frac{f y}{z_{0}}\right)
$$

(3) Orthographic:

$$
(x, y, z) \rightarrow(x, y)
$$

Three camera projections

Perspective projection

Parallel (orthographic) projection

Weak perspective?

Homogeneous coordinates

Is the perspective projection a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

This is known as perspective projection

- The matrix is the projection matrix

Perspective Projection

How does scaling the projection matrix change the transformation?

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)} \\
& {\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \quad=\left[\begin{array}{c}
f x \\
f y \\
z
\end{array}\right] \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)}
\end{aligned}
$$

Orthographic Projection

Special case of perspective projection

- Also called "parallel projection"
- What's the projection matrix?

Orthographic Projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

2D Transformations

2D Transformations

Example: translation

$$
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{t}
$$

$$
\text { ". } \cdot \text {. }
$$

2D Transformations

Example: translation

$$
\begin{aligned}
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{t} & \boldsymbol{x}^{\prime}=[\boldsymbol{I} & \boldsymbol{t}] \overline{\boldsymbol{x}} \\
& =+\frac{\mathrm{tx}}{\mathrm{ty}} & =\begin{array}{ccc|c}
1 & 0 & \mathrm{tx} \\
0 & 1 & \mathrm{ty}
\end{array}
\end{aligned}
$$

2D Transformations

Example: translation written 3 ways: non-homog

$$
\begin{aligned}
x^{\prime} & =x+t \\
& =\square^{t y}
\end{aligned}
$$

homog in, non-h out,

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{t}
\end{array}\right] \overline{\boldsymbol{x}}
$$

$$
=\begin{array}{l|l|l|}
1 & 0 & \text { tx } \\
\hline 0 & 1 & \mathrm{ty}
\end{array}
$$

1
homog in, homog out $\overline{\boldsymbol{x}}^{\prime}=\left[\begin{array}{cc}\boldsymbol{I} & \boldsymbol{t} \\ \boldsymbol{0}^{T} & 1\end{array}\right] \overline{\boldsymbol{x}}$

Now we can chain transformations

Translation and rotation, written in each set of

 coordinatesNon-homogeneous coordinates

$$
{ }^{B} \vec{p}={ }_{A}^{B} R^{A} \vec{p}+{ }_{A}^{B} \vec{t}
$$

Homogeneous coordinates

from

$$
\begin{gathered}
{ }^{B} \vec{p}={ }_{A}^{B} C{ }^{A} \vec{p} \\
{ }_{A}^{B} C=\left(\begin{array}{ccc|c|c|c}
- & - & - \\
- & { }_{A}^{B} R & - & \begin{array}{c}
B \\
A \\
A \\
-
\end{array} & - & - \\
\hline 0 & 0 & 0 & 1 \\
1
\end{array}\right)
\end{gathered}
$$

Camera calibration

Use the camera to tell you things about the world:

- Relationship between coordinates in the world and coordinates in the image: geometric camera calibration, see Szeliski, section 5.2, 5.3 for references
- (Relationship between intensities in the world and intensities in the image: photometric image formation, see Szeliski, sect. 2.2.)

Camera calibration

- Intrinsic parameters

Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

- Extrinsic parameters

Camera frame $1 \longleftrightarrow \rightarrow$ Camera frame 2

Camera calibration

- Intrinsic parameters
- Extrinsic parameters

Intrinsic parameters: from idealized world coordinates to pixel values

Perspective projection

$$
\begin{aligned}
& u=f \frac{x}{z} \\
& v=f \frac{y}{z}
\end{aligned}
$$

Intrinsic parameters

$$
\begin{array}{ll}
\begin{array}{l}
\text { But "pixels" are in some } \\
\text { arbitrary spatial units }
\end{array} & u=\alpha \frac{x}{z} \\
& v=\alpha \frac{y}{z}
\end{array}
$$

Intrinsic parameters

$\begin{array}{ll}\begin{array}{l}\text { Maybe pixels are not } \\ \text { square }\end{array} & u=\alpha \frac{x}{z} \\ & v=\beta \frac{y}{z}\end{array}$

Intrinsic parameters

$\begin{aligned} & \text { The origin of our camera } \\ & \text { pixel coordinates may be }\end{aligned} \quad u=\alpha \frac{x}{z}+u_{0}$ somewhere other than under the camera optical axis.

$$
v=\beta \frac{y}{z}+v_{0}
$$

Intrinsic parameters

May be skew between camera pixel axes (but usually this angle is 90 deg).

$$
\begin{aligned}
& u=\alpha \frac{x}{z}-\alpha \cot (\theta) \frac{y}{z}+u_{0} \\
& v=\frac{\beta}{\sin (\theta)} \frac{y}{z}+v_{0}
\end{aligned}
$$

Intrinsic parameters, homogeneous coordinates

Using homogenous coordinates, we can write this as:

$$
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\alpha & -\alpha \cot (\theta) & u_{0} & 0 \\
0 & \frac{\beta}{\sin (\theta)} & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

In pixels
$\vec{p} \quad=\quad \mathrm{K}$
In camera-based coords

Camera calibration

- Intrinsic parameters
- Extrinsic parameters

World and camera coordinate systems

In the first lecture, we placed the world coordinates in the center of the scene.

Extrinsic parameters: translation and rotation of camera frame

$$
{ }^{C} \vec{p}={ }_{W}^{C} R^{W} \vec{p}+{ }_{W}^{C} \vec{t}
$$

$$
\left({ }^{c} \vec{p}\right)=\left(\begin{array}{cccc}
- & - & - \\
- & { }_{W}^{C} R & - \\
- & - & - & - \\
\hline 0 & 0 & 0 & 1
\end{array}\right)\binom{{ }_{W} \vec{t}}{1}\left({ }^{W} \vec{p}\right)
$$

Non-homogeneous coordinates

Homogeneous coordinates

Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

$$
\begin{aligned}
& \vec{p}=\underbrace{\left(\begin{array}{cc}
C \\
W \\
W_{1} & { }_{1}^{C} \vec{t}
\end{array}{ }^{W}\right.}_{000} \vec{p} \\
& \vec{p}=M^{W} \vec{p}
\end{aligned}
$$

Other ways to write the same equation

 pixel coordinates$$
\begin{aligned}
& \vec{p}=M^{W} \vec{p} \\
& \left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{lll}
\cdot & m_{1}^{T} & \cdot \\
\cdot & m_{2}^{T} & \cdot \\
\cdot & m_{3}^{T} & \cdot
\end{array}\right)\left(\begin{array}{c}
W \\
p_{x} \\
p_{p} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)
\end{aligned}
$$

Conversion back from homogeneous coordinates leads to.

Summary camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($\mathrm{x}_{\mathrm{c}}{ }^{\prime}, \mathrm{y}^{\prime}{ }_{c}$), pixel size $\left(\mathrm{s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{X}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\begin{aligned}
& \Pi= {\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right] } \\
& \text { intrinsics } \quad \text { projection } \text { rotation } \\
& \text { translation }
\end{aligned}
$$

- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another
do we calculate the camera's calibration matrix, or measure?

Calibration target

The Opti-CAL Calibration Target Image Find the position, u_{i} and v_{i}, in pixels, of each calibration object feature point.

Camera calibration

From before, we had these equations relating image positions, u, v, to points at 3 -d positions P (in homogeneous coordinates):

$$
\begin{aligned}
& u=\frac{\vec{m}_{1} \cdot \vec{P}}{\vec{m}_{3} \cdot \vec{P}} \\
& v=\frac{\vec{m}_{2} \cdot \vec{P}}{\vec{m}_{3} \cdot \vec{P}}
\end{aligned}
$$

So for each feature point, i, we have:

$$
\begin{aligned}
& \left(\vec{m}_{1}-u_{i} \vec{m}_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(\vec{m}_{2}-v_{i} \vec{m}_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

Camera calibration

Stack all these measurements of $\mathrm{i}=1 \ldots \mathrm{n}$ points

$$
\begin{aligned}
& \left(\vec{m}_{1}-u_{i} \vec{m}_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(\vec{m}_{2}-v_{i} \vec{m}_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

into a big matrix (cluttering vector arrows omitted from P and m):

$$
\left(\right)\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

In vector form: $\left(\begin{array}{ccc}P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\ \ldots & \ldots & \ldots \\ P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}\end{array}\right)\left(\begin{array}{l}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)$

Camera calibration

Showing all the elements:
$\left(\begin{array}{cccccccccccccc}P_{1 . x} & P_{1 y} & P_{1 z} & 1 & 0 & 0 & 0 & 0 & -u_{1} P_{1 x} & -u_{1} P_{1 y} & -u_{1} P_{1 z} & -u_{1} \\ 0 & 0 & 0 & 0 & P_{1 x} & P_{1 y} & P_{1 z} & 1 & -v_{1} P_{1 x} & -v_{1} P_{1 y} & -v_{1} P_{1 z} & -v_{1} \\ P_{n x} & P_{n y} & P_{n z} & 1 & 0 & 0 & 0 & 0 & -u_{n} P_{n x} & -u_{n} P_{n y} & -u_{n} P_{n z} & -u_{n} \\ 0 & 0 & 0 & 0 & P_{n x} & P_{n y} & P_{n z} & 1 & -v_{n} P_{n x} & -v_{n} P_{n y} & -v_{n} P_{n z} & -v_{n}\end{array}\right)\left(\begin{array}{l}m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)$

$$
\begin{aligned}
& \text { Q } \quad \mathrm{m}=0
\end{aligned}
$$

We want to solve for the unit vector m (the stacked one) that minimizes $|Q m|^{2}$
The minimum eigenvector of the matrix $\mathrm{Q}^{\mathrm{T}} \mathrm{Q}$ gives us that (see Forsyth\&Ponce, 3.1), because it is the unit vector x that minimizes $x^{T} Q^{T} Q x$.

Camera calibration

Once you have the M matrix, can recover the intrinsic and extrinsic parameters.

$$
M=\left(\begin{array}{cc}
\alpha r_{1}^{T}-\alpha \cot O \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & c: t_{x}-\alpha \cot \Delta t_{y}+u_{0} t_{i} \\
\frac{\beta}{\sin \theta} r_{2}^{T}-t_{0} \boldsymbol{r}_{3}^{T} & \beta \\
r_{3}^{T} & \sin \theta^{t_{y}} v_{0} t_{z} \\
t_{z}
\end{array}\right)
$$

Vision systems

One camera

Two cameras

N cameras

Stereo vision

Depth without objects

Random dot stereograms (Bela Julesz)

1	[:	\checkmark	1	\because	?	1 \|	0	1
	-	0		0	1	P	;	¢	5
コ	c	-	1	6	,	1	\%	1	0
:	1	0	Y			.	c	5	
1	1	1	\times	$\stackrel{1}{2}$				0	1
3	G	,	\times	.	.	*	,	1	0
1	1	1	r	\bigcirc	0	4	*	c	
1	${ }_{i}$	s	1	1	c	1	1	0	1
1	1	3	c	1	1	0	1	1	1
	1	-	c	,	:	1	1	,	a

Julesz, 1971

	0		G		1	¢	0			0		1
1	4	0	1		2		c		1	a		2
5	9	1	1		0	1	1	1	0	1		5
s	7	c	*		K	-	4		\times	a		1
9	1	1	\%		<	4			Y	-		
5	5	1	\pm		2	. 7	,		r	1		0
1	1				c	,	\cdots	,	x	\bigcirc		1
1		c	1		:	0		1	1	5		1
1	1	3	0		,			v	1			1
0	1	:	n			1		1	1	;		u

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Image courtesy of fisher-price.com

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Anaglyph pinhole camera

Autostereograms

Exploit disparity as depth cue using single image.

(Single image random dot stereogram, Single image stereogram)

My conundrum regarding stereo

displays

Real 3d scenes often look to me like thin, flat layers, stacked in depth. Why is that?

Estimating depth with stereo

- Stereo: shape from disparities between two views
- We'll need to consider:
- Info on camera pose ("calibration")
- Image point correspondences

Geometry for a simple stereo system

- Assume a simple setting:
- Two identical cameras
- parallel optical axes
- known camera parameters (i.e., calibrated cameras).

Geometry for a simple stereo system

- Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). We can triangulate via:

Similar triangles (p_{1}, P, p_{r}) and ($\mathrm{O}_{\mathrm{I}}, \mathrm{P}, \mathrm{O}_{\mathrm{r}}$):

$$
\frac{T+x_{l}-x_{r}}{Z-f}=\frac{T}{Z}
$$

$$
Z=f \frac{T}{x_{r}-x_{l}}
$$

Depth from disparity

image $I(x, y)$
Disparity map $D(x, y)$
image $I^{\prime}\left(x^{\prime}, y^{\prime}\right)$

$$
\left(x^{\prime}, y^{\prime}\right)=(x+D(x, y), y)
$$

General case, with calibrated cameras

- The two cameras need not have parallel optical axes.

Vs.

Stereo correspondence constraints

If we see a point in camera 1, are there any constraints on where we will find it on camera 2 ?

Epipolar constraint

Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view:

It must be on the line carved out by a plane connecting the world point and optical centers.

Why is this useful?

Epipolar constraint

This is useful because it reduces the correspondence problem to a 1D search along an epipolar line.

Epipolar geometry

- Epipolar plane: plane containing baseline and world point
- Epipole: point of intersection of baseline with the image plane
- Epipolar line: intersection of epipolar plane with the image plane
- Baseline: line joining the camera centers
- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines

Example

Example: parallel cameras

Where are the epipoles?

Example: converging cameras

- So far, we have the explanation in terms of geometry.
- Now, how to express the epipolar constraints algebraically?

Stereo geometry, with calibrated cameras

Main idea

Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to camera reference frame 2.
Rotation: 3×3 matrix R; translation: 3 vector T.

Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to camera reference frame 2.

$$
X_{c}^{\prime}=R X_{c}+T^{\prime}
$$

Slide credit: Kristen Grauman

From geometry to algebra

$\mathbf{X}=\mathbf{R} \mathbf{X}+\mathbf{T}$
$T \times \mathbf{X}^{\prime}=$
Normal to the plane

$$
=\mathbf{T} \times \mathbf{R} \mathbf{X}
$$

$\mathbf{X}^{\prime} \cdot\left(\mathbf{T} \times \mathbf{X}^{\prime}\right)=\mathbf{X}^{\prime} \cdot(\mathbf{T} \times \mathbf{R X})$
$=0$

From geometry to algebra

$$
=\mathbf{T} \times \mathbf{R X}
$$

Aside: cross product

$$
\begin{array}{ll}
\vec{a} \times \bar{b}=\bar{c} & \bar{a} \cdot \bar{c}=0 \\
& \bar{b} \cdot \bar{c}=0
\end{array}
$$

Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.

So here, c is perpendicular to both a and b, which means the dot product $=0$.

Matrix form of cross product

$$
\vec{a} \times \vec{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\vec{c} \quad \begin{aligned}
& \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

Can be expressed as a matrix multiplication.

$$
\left[a_{x}\right]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \quad \vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
$$

Essential matrix

$$
\begin{aligned}
& \mathbf{X}^{\prime} \cdot(\mathbf{T} \times \mathbf{R X})=0 \\
& \mathbf{X}^{\prime} \cdot\left(\mathbf{T}_{x} \mathbf{R X}\right)=0
\end{aligned}
$$

Let $\quad \mathbf{E}=\mathbf{T}_{x} \mathbf{R}$

$$
\mathbf{X}^{\prime T} \mathbf{E X}=0
$$

E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.
If we observe a point in one image, its position in the other image is constrained to lie on line defined by above.

Note: these noints are in camera coordinate svstems
x and x^{\prime} are scaled versions of X and X^{\prime}

$$
\begin{aligned}
& X^{\prime} \cdot\left(T^{\prime} \times R X\right)=0 \\
& X^{\prime} \cdot\left(T_{x}^{\prime} R X\right)=0
\end{aligned}
$$

Let $E=T_{x}^{1} R$

$$
\mathbf{X}^{\prime T} \mathbf{E X}=0
$$

$\boldsymbol{X}^{\prime T} E \boldsymbol{X}=0$ pts x and x^{\prime} in the image planes are scaled versions of X and X^{\prime}.
E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.

Essential matrix example: parallel cameras

$$
\mathbf{p}^{\prime T} \mathbf{E} \mathbf{p}=0
$$

$\mathbf{R}=$
T=
$\mathbf{E}=\left[\mathbf{T}_{\mathrm{x}}\right] \mathbf{R}=$

$$
\begin{aligned}
& \mathbf{p}=[x, y, f] \\
& \mathbf{p}^{\prime}=\left[x^{\prime}, y^{\prime}, f\right]
\end{aligned}
$$

For the parallel cameras, image of any point must lis on same horizontal line in each image plane.
image I(x,y)
Disparity map $D(x, y)$
image $l^{\prime}\left(x^{\prime}, y^{\prime}\right)$

$$
\left(x^{\prime}, y^{\prime}\right)=(x+D(x, y), y)
$$

What about when cameras' optical axes are not parallel?

Stereo image rectification: example

\square

Stereo image rectification

In practice, it is convenient if image scanlines (rows) are the epipolar lines.

Reproject image planes onto a common plane parallel to the line between optical centers
Pixel motion is horizontal after this transformation
Two homographies (3×3 transforms), one for each input image reprojection
See Szeliski book, Sect. 2.1.5, Fig. 2.12, and "Mapping from one camera to another" p. 56:
[he mapping equation (2.70) thus reduces to

$$
\begin{equation*}
\tilde{\mathbf{x}}_{1} \sim \overline{\boldsymbol{H}}_{10} \tilde{\mathbf{x}}_{0}, \tag{2.71}
\end{equation*}
$$

where $\tilde{\boldsymbol{H}}_{10}$ is a general 3×3 homography matrix and $\overline{\boldsymbol{x}}_{1}$ and $\tilde{\boldsymbol{x}}_{0}$ are now 2 D homogeneous coordinates (i.e., 3-vectors) (Szeliski 1996)

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Image block matching

How do we determine correspondences?

- block matching or SSD (sum squared differences)

$$
E(x, y ; d)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in N(x, y)}\left[I_{L}\left(x^{\prime}+d, y^{\prime}\right)-I_{R 2}\left(x^{\prime}, y^{\prime}\right)\right]^{2}
$$

d is the disparity (horizontal motion)

How bia should the neiahborhood be?

Neighborhood size

Smaller neighborhood: more details
Larger neighborhood: fewer isolated mistakes

$w=3$
$w=20$

Matching criteria

Raw pixel values (correlation)
Band-pass filtered images [Jones \& Malik 92]
"Corner" like features [Zhang, ...]
Edges [many people...]
Gradients [Seitz 89; Scharstein 94]
Rank statistics [Zabih \& Woodfill 94]

Local evidence framework

For every disparity, compute raw matching costs

$$
E_{0}(x, y ; d)=p\left(I_{L}\left(x^{\prime}+d, y^{\prime}\right)-I_{R}\left(x^{\prime}, y^{\prime}\right)\right)
$$

Why use a robust function?

- occlusions, other outliers

Can also use alternative match criteria

Local evidence framework

Aggregate costs spatially

$$
E(x, y ; d)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in N(x, y)} E_{0}\left(x^{\prime}, y^{\prime}, d\right)
$$

Here, we are using a box filter (efficient moving average implementation)

Can also use weighted average,
[non-linear] diffusion...

Local evidence framework

Choose winning disparity at each pixel

$$
d(x, y)=\arg \min _{d} E(x, y ; d)
$$

Interpolate to sub-pixel accuracy

Active stereo with structured light

Li Zhang's one-shot stereo

Project "structured" light patterns onto the object

- simplifies the correspondence problem

Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. In Proceedings of the 1st International
Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), Padova, Italy, June 19-21, 2002, pp. 24-36.

(a)

(b)
a)

(c)

(d)

Figure 2. Summary of the one-shot method. (a) In optical triangulaton, an illumination pattern is projected onto an object and the eflected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and mage. If the image planes are rectified as shown, the displacement is purely horizontal (one-dimensional). (b) An example of ne projected stripe pattern and (c) an image captured by the camera. (d) The grid used tor mult-nypothesis code matching. The orizontal axis ropresents the projocted color transition sequence and the vertical axis represents the delected edge sequence, oth taken for one projector and rectified camera scanline pair. A match represents a path from left to right in the grid. Each ertex (j, i) has a score, measuring the consistency of the correspondence between e_{i}, the color gradient vectors shown by the ertical axis, and q_{j}, the color transition voctors shown below the horizontal axis. The score for the ontire match is the summation it scores along its path. We use dynamic progiamming to tind the optimal path. In the illustration, the camera edge in bold Italcs :orresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

Li Zhang, Brian Curless, and Steven M. Seitz

Bibliography

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense twoframe stereo correspondence algorithms. International Journal of Computer Vision, 47(1):7-42, May 2002.
R. Szeliski. Stereo algorithms and representations for image-based rendering. In British Machine Vision Conference (BMVC'99), volume 2, pages 314-328, Nottingham, England, September 1999.
G. M. Nielson, Scattered Data Modeling, IEEE Computer Graphics and Applications, 13(1), January 1993, pp. 60-70.
S. B. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multiview stereo. In CVPR'2001, vol. I, pages 103-110, December 2001.
Y. Boykov, O. Veksler, and Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, Unpublished manuscript, 2000.
A.F. Bobick and S.S. Intille. Large occlusion stereo. International Journal of Computer Vision, 33(3), September 1999. pp. 181-200
D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998

Bibliography

Volume Intersection

- Martin \& Aggarwal, "Volumetric description of objects from multiple views", Trans. Pattern Analysis and Machine Intelligence, 5(2), 1991, pp. 150-158.
- Szeliski, "Rapid Octree Construction from Image Sequences", Computer Vision, Graphics, and Image Processing: Image Understanding, 58(1), 1993, pp. 23-32.

Voxel Coloring and Space Carving

- Seitz \& Dyer, "Photorealistic Scene Reconstruction by Voxel Coloring", Proc. Computer Vision and Pattern Recognition (CVPR), 1997, pp. 1067-1073.
- Seitz \& Kutulakos, "Plenoptic Image Editing", Proc. Int. Conf. on Computer Vision (ICCV), 1998, pp. 17-24.
- Kutulakos \& Seitz, "A Theory of Shape by Space Carving", Proc. ICCV, 1998, pp. 307-314.

Bibliography

Related References

- Bolles, Baker, and Marimont, "Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion", International Journal of Computer Vision, vol 1, no 1, 1987, pp. 7-55.
- Faugeras \& Keriven, "Variational principles, surface evolution, PDE's, level set methods and the stereo problem", IEEE Trans. on Image Processing, 7(3), 1998, pp. 336-344.
- Szeliski \& Golland, "Stereo Matching with Transparency and Matting", Proc. Int. Conf. on Computer Vision (ICCV), 1998, 517-524.
- Roy \& Cox, "A Maximum-Flow Formulation of the N-camera Stereo Correspondence Problem", Proc. ICCV, 1998, pp. 492-499.
- Fua \& Leclerc, "Object-centered surface reconstruction: Combining multi-image stereo and shading", International Journal of Computer Vision, 16, 1995, pp. 35-56.
- Narayanan, Rander, \& Kanade, "Constructing Virtual Worlds Using Dense Stereo", Proc. ICCV, 1998, pp. 3-10.

