

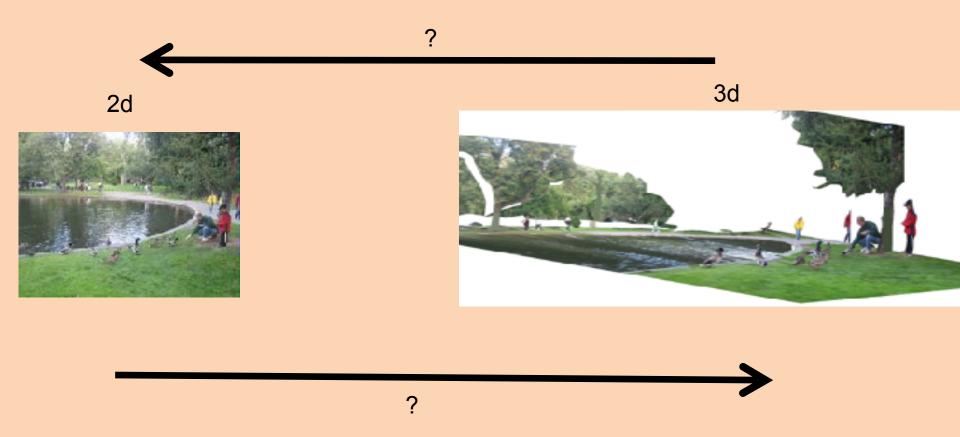
MIT CSAIL

6.819 / 6.869: Advances in Computer Vision Antonio Torralba and Bill Freeman

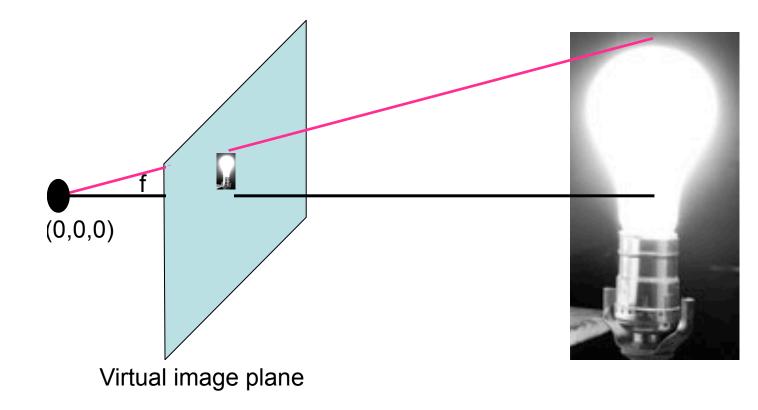
Lecture 11

Geometry, Camera Calibration, and Stereo.

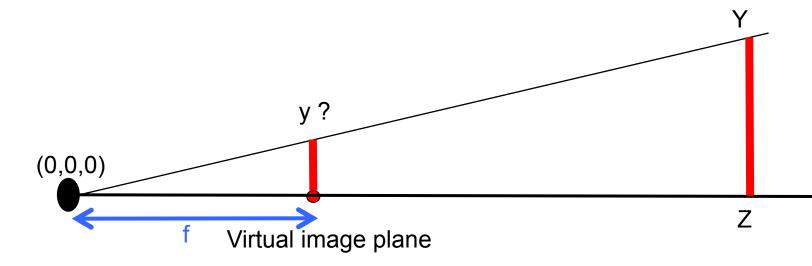
2d from 3d; 3d from multiple 2d measurements



Perspective projection



Perspective projection



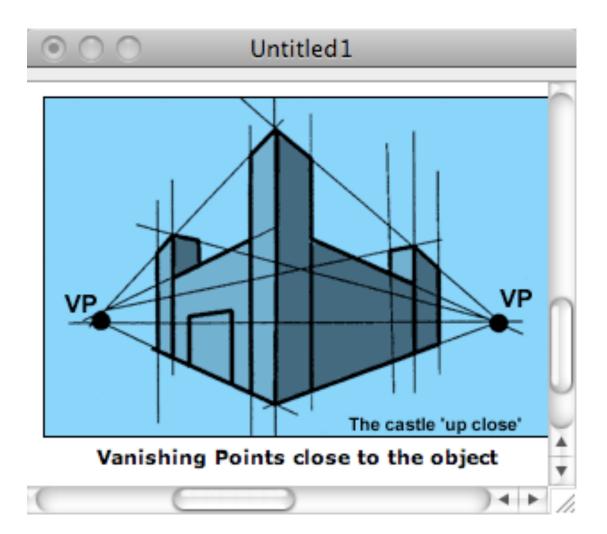
Similar triangles: y / f = Y / Z

y = f Y/Z

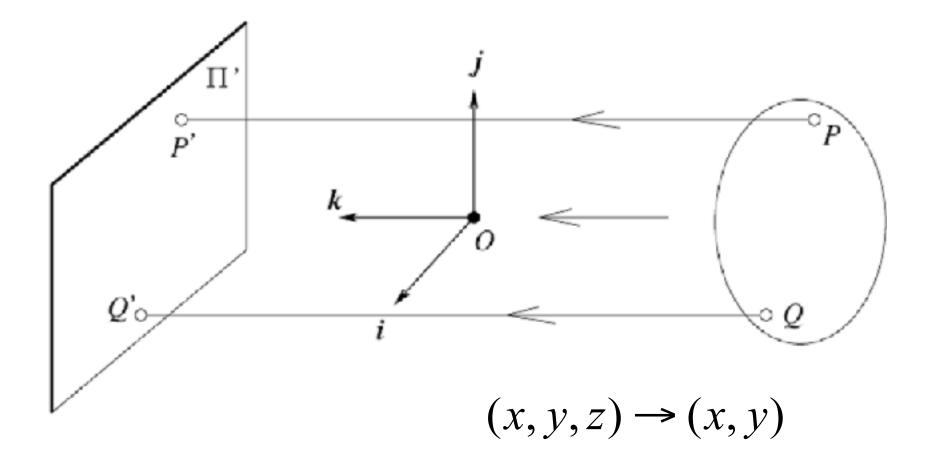
Perspective projection:

$$(X,Y,Z) \Rightarrow \left(f\frac{X}{Z},f\frac{Y}{Z}\right)$$

Vanishing points



http://www.ider.herts.ac.uk/school/courseware/ graphics/two_point_perspective.html Other projection models: Orthographic projection



Three camera projections

3-d point 2-d image position

(1) Perspective:

$$(x, y, z) \rightarrow \left(\frac{fx}{z}, \frac{fy}{z}\right)$$

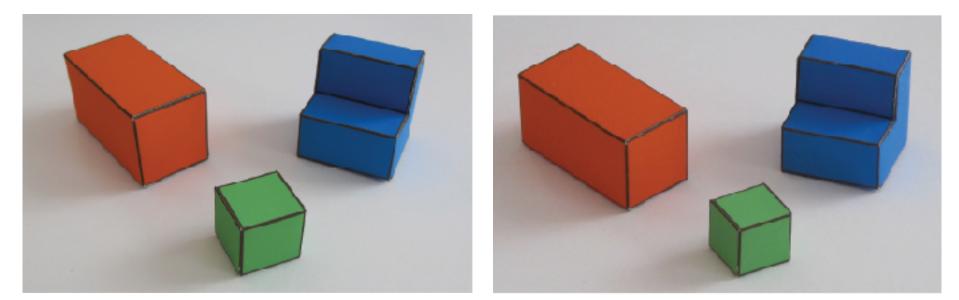
(2) Weak perspective:

$$(x, y, z) \rightarrow \left(\frac{fx}{z_0}, \frac{fy}{z_0}\right)$$

(3) Orthographic:

$$(x, y, z) \rightarrow (x, y)$$

Three camera projections



Perspective projection

Parallel (orthographic) projection

Weak perspective?

Homogeneous coordinates

Is the perspective projection a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

 $(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$ homogeneous image coordinates homogeneous world coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

• Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies \left(f \frac{x}{z}, f \frac{y}{z} \right)$$

This is known as perspective projection

• The matrix is the projection matrix

Perspective Projection

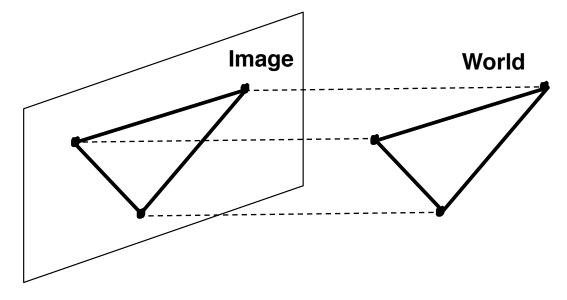
How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies \left(f \frac{x}{z}, f \frac{y}{z} \right)$$
$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} \implies \left(f \frac{x}{z}, f \frac{y}{z} \right)$$

Slide by Steve Seitz

Orthographic Projection

Special case of perspective projection



- Also called "parallel projection"
- What's the projection matrix?

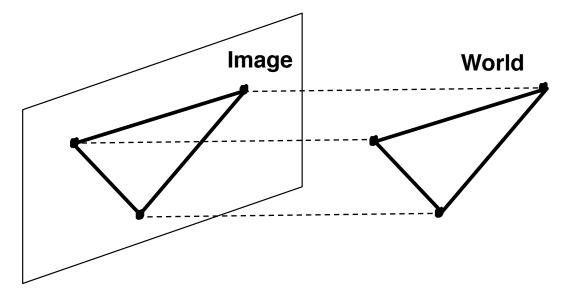
?
$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Slide by Steve Seitz

Orthographic Projection

Special case of perspective projection

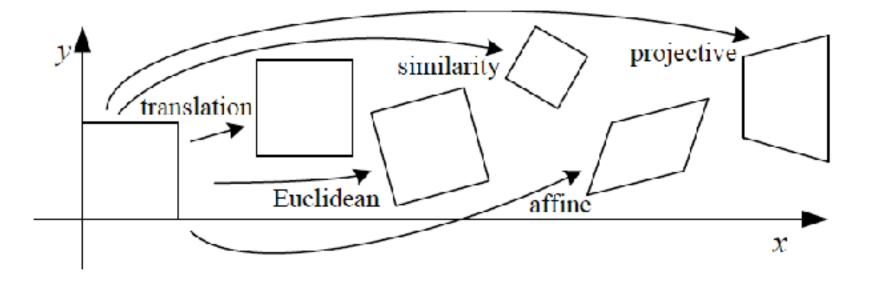
Distance from the COP to the PP is infinite

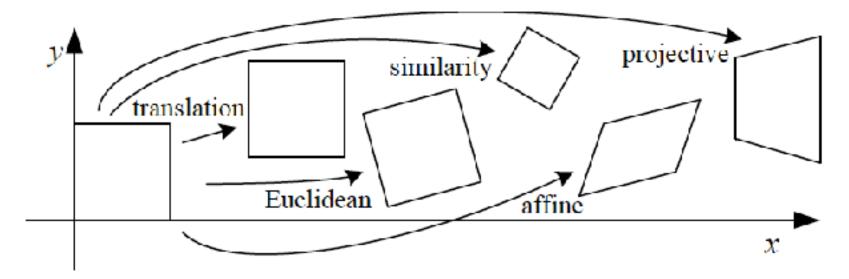


- Also called "parallel projection"
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

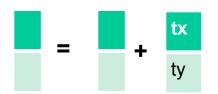
Slide by Steve Seitz

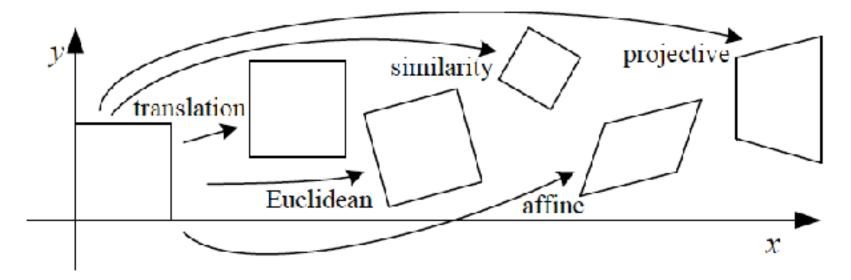




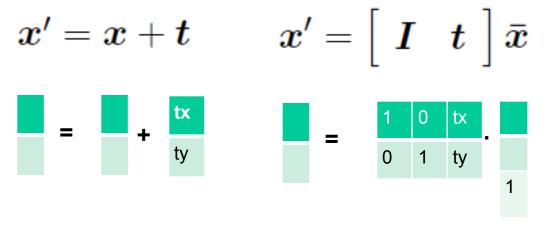
Example: translation

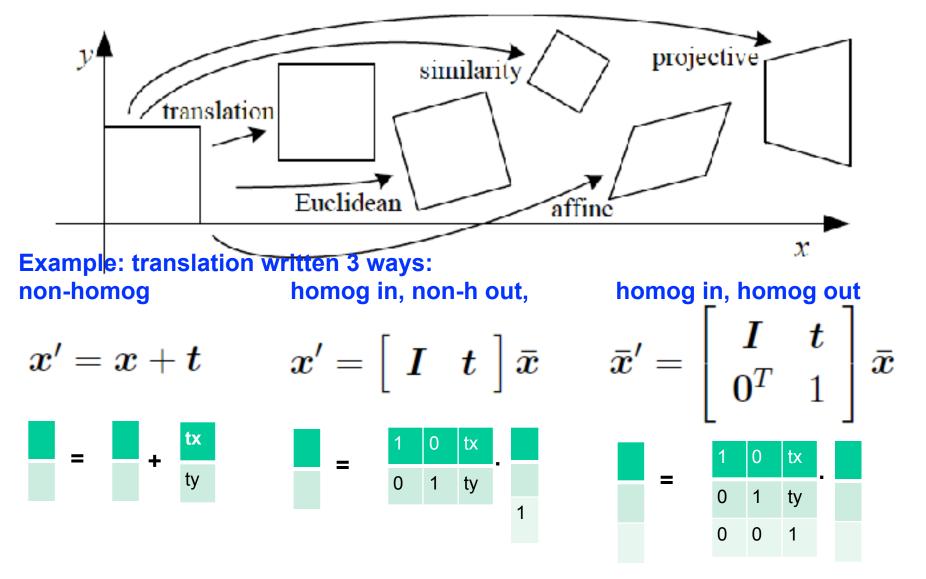
$$x' = x + t$$





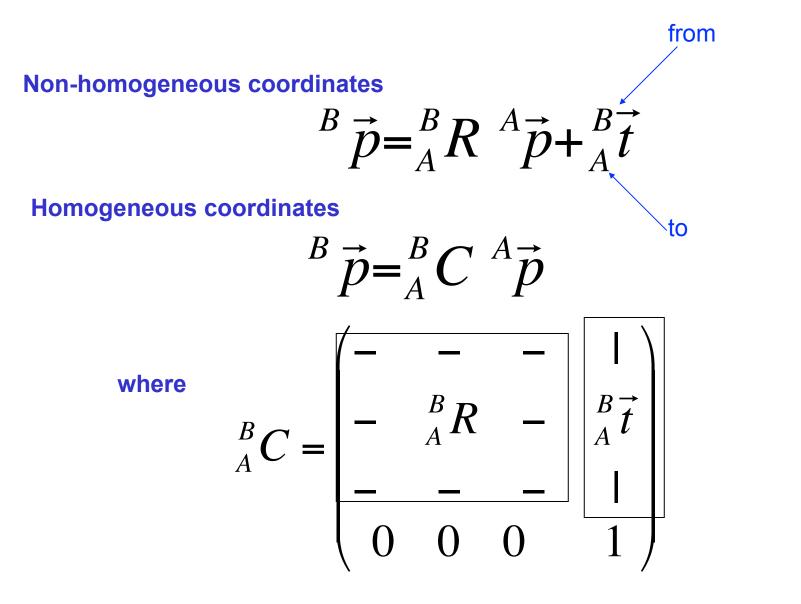
Example: translation





Now we can chain transformations

Translation and rotation, written in each set of coordinates



Use the camera to tell you things about the world:

- Relationship between coordinates in the world and coordinates in the image: *geometric camera calibration, see* Szeliski, section 5.2, 5.3 for references
- (Relationship between intensities in the world and intensities in the image: *photometric image formation*, see Szeliski, sect. 2.2.)

• Intrinsic parameters

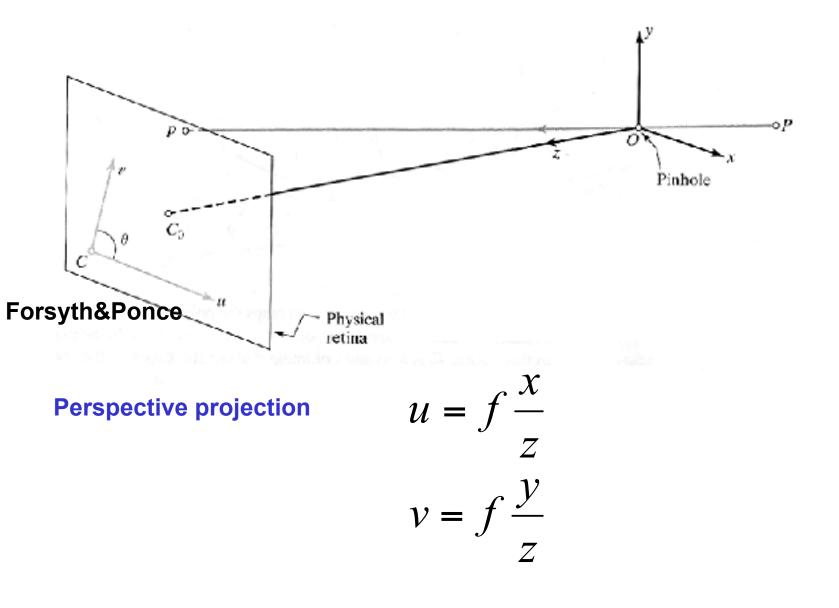
Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

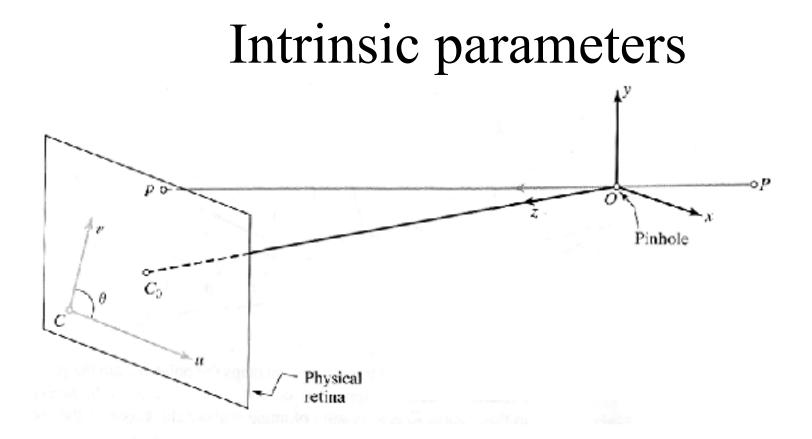
• Extrinsic parameters

Camera frame 1 \leftarrow \rightarrow Camera frame 2

- Intrinsic parameters
- Extrinsic parameters

Intrinsic parameters: from idealized world coordinates to pixel values

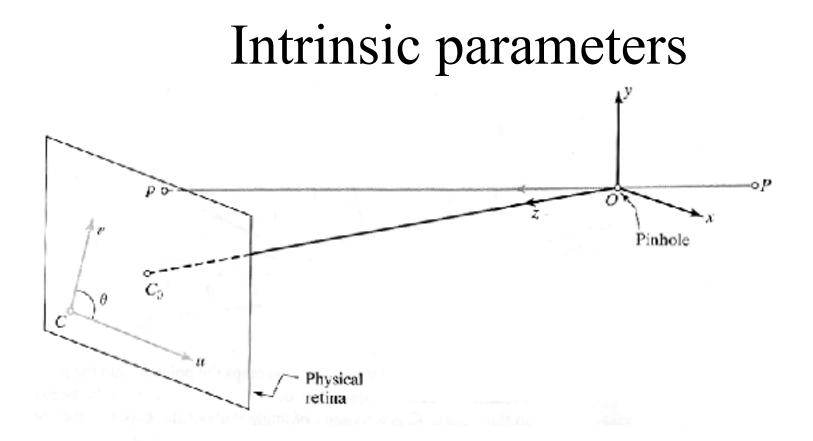




But "pixels" are in some arbitrary spatial units

$$u = \alpha \frac{x}{z}$$
$$v = \alpha \frac{y}{z}$$

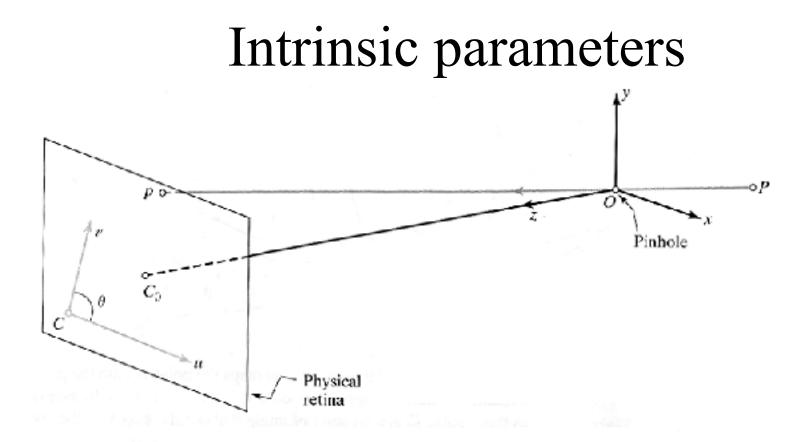
r



Maybe pixels are not square

$$u = \alpha - \frac{x}{z}$$
$$v = \beta - \frac{y}{z}$$

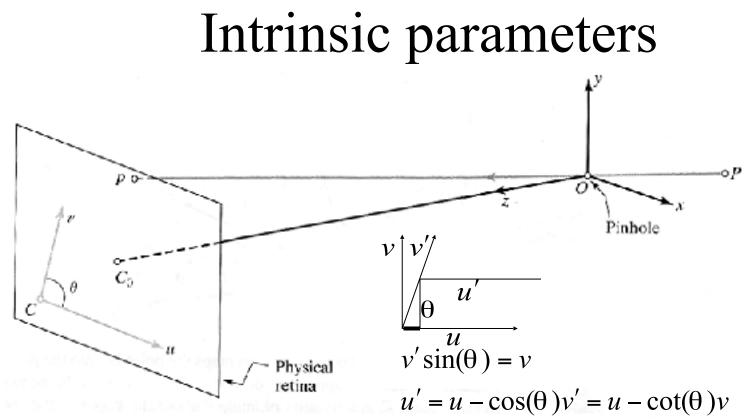
Y



The origin of our camera pixel coordinates may be somewhere other than under the camera optical axis.

$$u = \alpha \frac{x}{z} + u_0$$
$$v = \beta \frac{y}{z} + v_0$$

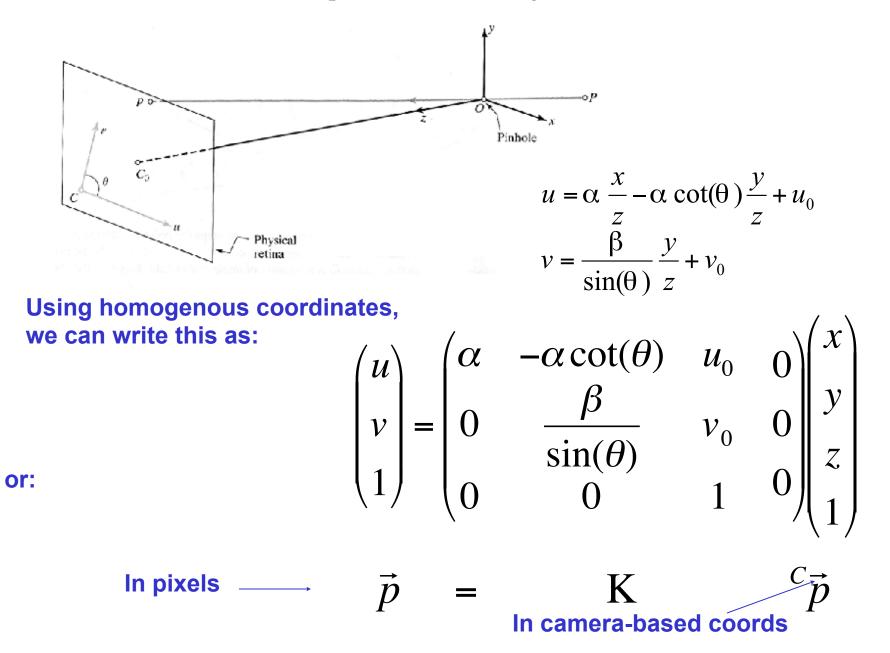
Y



May be skew between camera pixel axes (but usually this angle is 90 deg).

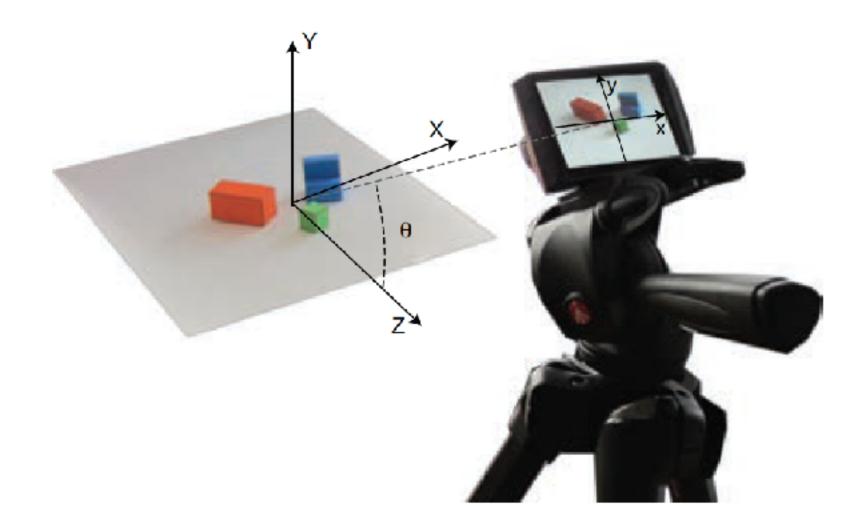
$$u = \alpha \frac{x}{z} - \alpha \cot(\theta) \frac{y}{z} + u_0$$
$$v = \frac{\beta}{\sin(\theta)} \frac{y}{z} + v_0$$

Intrinsic parameters, homogeneous coordinates



- Intrinsic parameters
- Extrinsic parameters

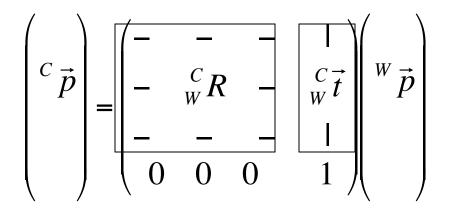
World and camera coordinate systems



In the first lecture, we placed the world coordinates in the center of the scene.

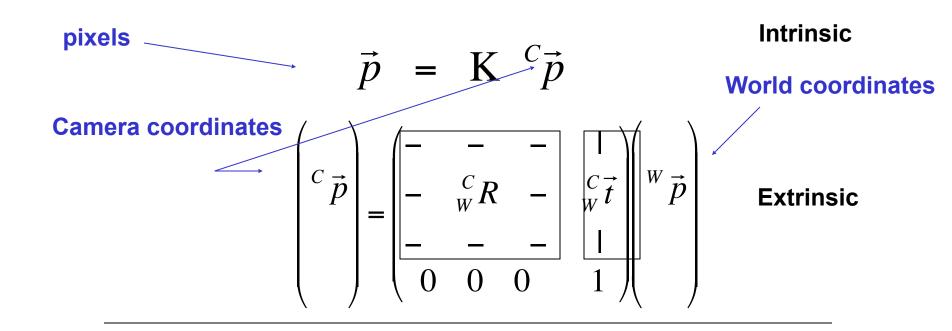
Extrinsic parameters: translation and rotation of camera frame

$${}^{C}\vec{p} = {}^{C}_{W}R {}^{W}\vec{p} + {}^{C}_{W}\vec{t}$$



Non-homogeneous coordinates

Homogeneous coordinates



Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

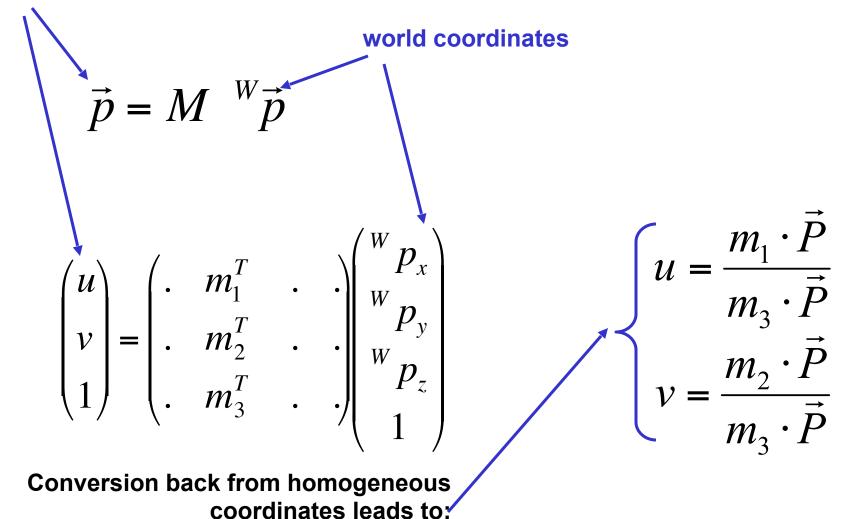
$$\vec{p} = K \begin{pmatrix} C R & C \vec{t} \\ W & W & W \end{pmatrix} \overset{W}{p}$$

$$\vec{p} = M \overset{W}{p}$$

Forsyth&Ponce

Other ways to write the same equation

pixel coordinates

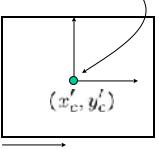


Summary camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation



- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

jidentity matrix

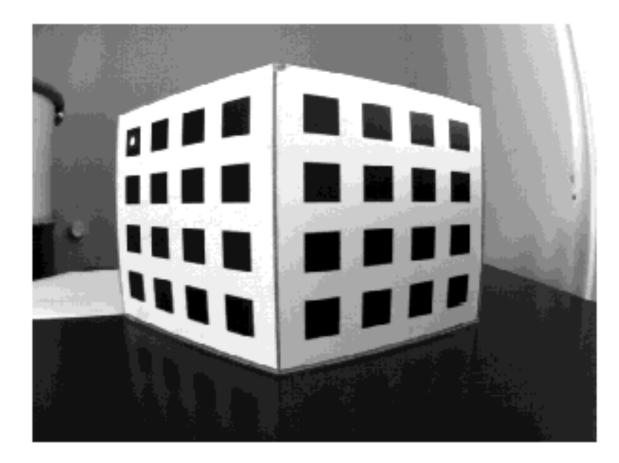
$$\Pi = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

intrinsics projection rotation translation

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another

do we calculate the camera's calibration matrix, or measure?

Calibration target



The Opti-CAL Calibration Target Image Find the position, u_i and v_i , in pixels, of each calibration object feature point.

From before, we had these equations relating image positions, u,v, to points at 3-d positions P (in homogeneous coordinates):

$$u = \frac{\vec{m}_1 \cdot \vec{P}}{\vec{m}_3 \cdot \vec{P}}$$
$$v = \frac{\vec{m}_2 \cdot \vec{P}}{\vec{m}_3 \cdot \vec{P}}$$

So for each feature point, i, we have:

$$(\vec{m}_1 - u_i \vec{m}_3) \cdot \vec{P}_i = 0$$

 $(\vec{m}_2 - v_i \vec{m}_3) \cdot \vec{P}_i = 0$

Camera calibration

Stack all these measurements of i=1...n points

$$(\vec{m}_1 - u_i \vec{m}_3) \cdot P_i = 0$$

 $(\vec{m}_2 - v_i \vec{m}_3) \cdot \vec{P}_i = 0$

into a big matrix (cluttering vector arrows omitted from P and m):

$$\begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \dots & \dots & \dots \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

In vector form:
$$\begin{pmatrix} P_{1}^{T} & 0^{T} & -u_{1}P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1}P_{1}^{T} \\ \dots & \dots & \dots \\ P_{n}^{T} & 0^{T} & -u_{n}P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n}P_{n}^{T} \end{pmatrix} \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$
Camera calibration
Showing all the elements:
$$\begin{pmatrix} P_{1x} & P_{1y} & P_{1z} & 1 & 0 & 0 & 0 & 0 & -u_{1}P_{1x} & -u_{1}P_{1y} & -u_{1}P_{1z} & -u_{1} \\ 0 & 0 & 0 & 0 & P_{1x} & P_{1y} & P_{1z} & 1 & -v_{1}P_{1x} & -v_{1}P_{1y} & -v_{1}P_{1z} & -v_{1} \\ \dots & \dots & \dots & \dots \\ P_{nx} & P_{ny} & P_{nz} & 1 & 0 & 0 & 0 & 0 & -u_{n}P_{nx} & -u_{n}P_{ny} & -u_{n}P_{nz} & -u_{n} \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_{n}P_{nx} & -v_{n}P_{ny} & -u_{n}P_{nz} & -v_{n} \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_{n}P_{nx} & -v_{n}P_{ny} & -v_{n}P_{nz} & -v_{n} \\ \end{pmatrix} \begin{pmatrix} m_{11} \\ m_{12} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \\ \end{pmatrix}$$

We want to solve for the unit vector m (the stacked one) that minimizes $|Qm|^2$

The minimum eigenvector of the matrix $Q^{T}Q$ gives us that (see Forsyth&Ponce, 3.1), because it is the unit vector x that minimizes $x^{T} Q^{T}Q x$.

Camera calibration

Once you have the M matrix, can recover the intrinsic and extrinsic parameters.

$$\mathcal{M} = \begin{pmatrix} \alpha \mathbf{r}_1^T - \alpha \cot \theta \mathbf{r}_2^T + u_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T - v_0 \mathbf{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \mathbf{r}_3^T & t_z \end{pmatrix}$$

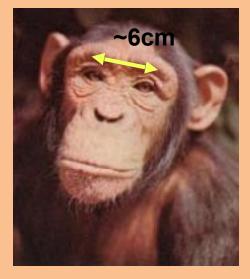
Vision systems

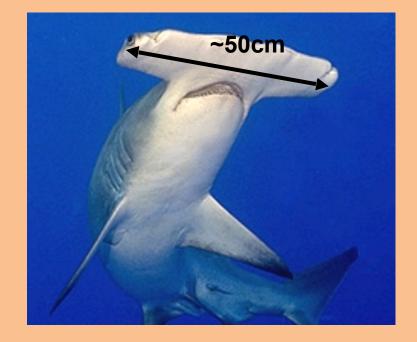
Two cameras



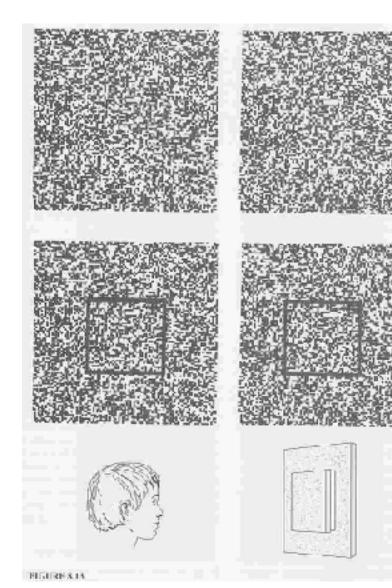
N cameras

Stereo vision





Depth without objects Random dot stereograms (Bela Julesz)



						_	_		_
1	E	· ·	5	1	0	э.	1	е	1
·	Ú	9		0	1	₽	1	\$	5
Э	¢	÷	1	6	1	1	Ô	1	0
ï	1	û	Y	در	2	4	¢	>	' ۱
1	1	1	x	ē	4	\$	÷_	э	1
0	G	•	×		Ŀ.	••	1	1	D
۱ī	٦	1	۲	٥	0		- *	G	1
1	G.	3	1	1	e_	1	1	O.	1
ı	1	5	Ċ	[1	5	э	1	·	1
ů,	1	ъ	1 C	>	:	1	<u> </u>	1	a

	_								
<u>ן</u> יי	0	1	G	1	Ĝ	û	1	0	1
Γī Ι	u	ê	1	0	יו	5	1	â	0
9	9	٦	1	0	1	1	Û	٦	5
0	ï	G	۶	٨	•	۲	×	a	<u>'</u>
٦	1	1	÷	<	4	2	۲	0	;
6	Ŷ	۱	2	7	л	2	۲	1	ø
1	1		0	e	Α.	-	×	0	1
1 0		c	Ŀ	:	Û	1	1	ç	ı
ī	1	э	ú	1	ŀ	Ų	1	[·_	1
0	1	2	n	a	1	1	1	;	u.

Julesz, 1971

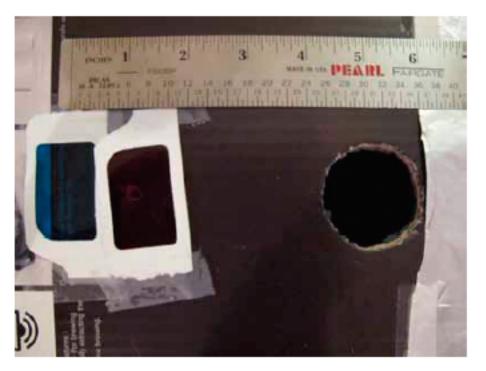
Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Image courtesy of fisher-price.com

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Anaglyph pinhole camera



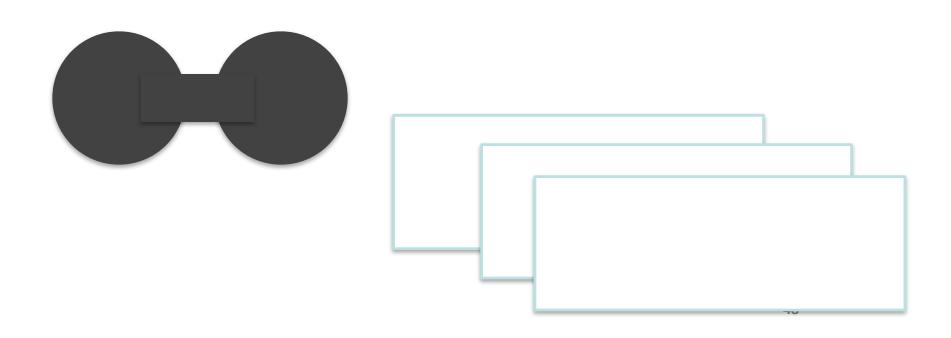
Autostereograms

Exploit disparity as depth cue using single image.

(Single image random dot stereogram, Single image stereogram)

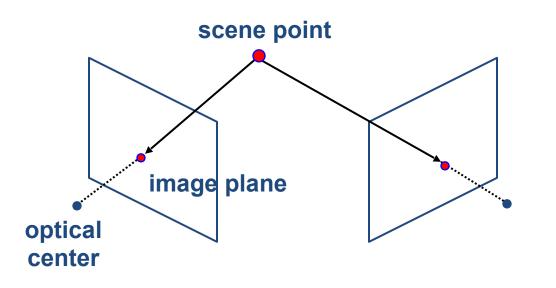
My conundrum regarding stereo displays

Real 3d scenes often look to me like thin, flat layers, stacked in depth. Why is that?



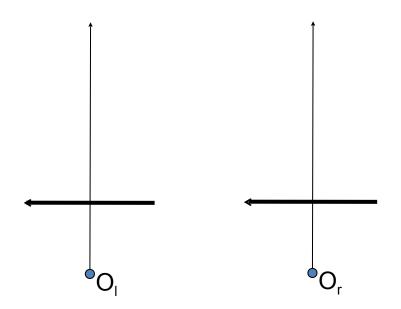
Estimating depth with stereo

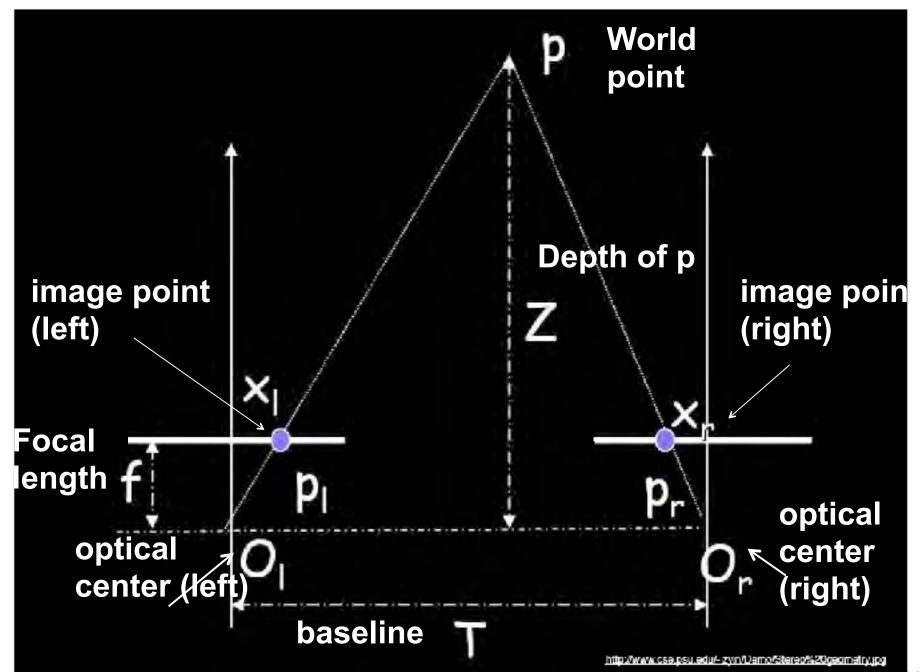
- Stereo: shape from disparities between two views
- We'll need to consider:
 - Info on camera pose ("calibration")
 - Image point correspondences



Geometry for a simple stereo system

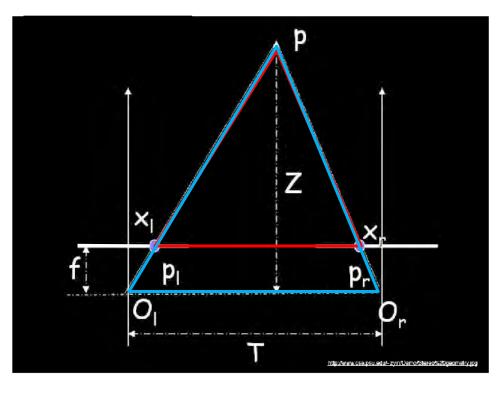
- Assume a simple setting:
 - Two identical cameras
 - parallel optical axes
 - known camera parameters (i.e., calibrated cameras).





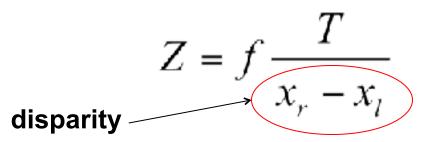
Geometry for a simple stereo system

 Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). We can triangulate via:



Similar triangles (p_l , P, p_r) and (O_l , P, O_r):

$$\frac{T+x_l-x_r}{Z-f} = \frac{T}{Z}$$

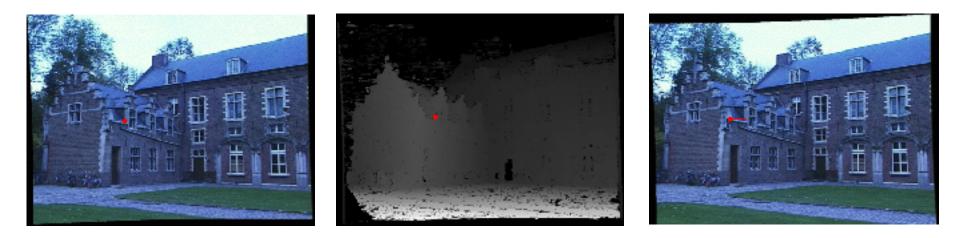


Depth from disparity

image I(x,y)

Disparity map D(x,y)

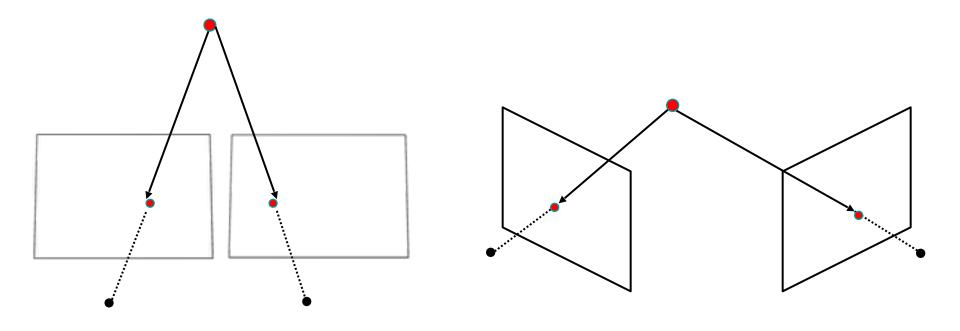
image l´(x´,y´)



(x´,y`)=(x+D(x,y), y)

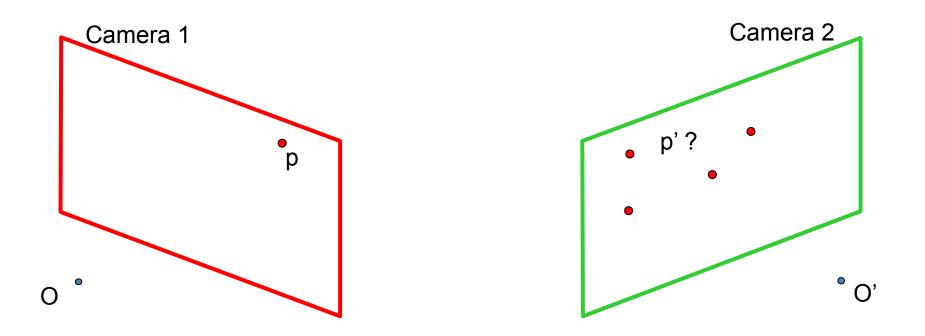
General case, with calibrated cameras

• The two cameras need not have parallel optical axes.



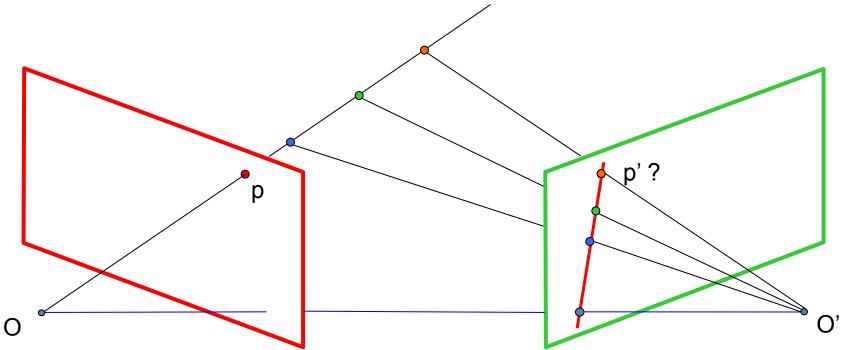
Vs.

Stereo correspondence constraints



If we see a point in camera 1, are there any constraints on where we will find it on camera 2?

Epipolar constraint



Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view:

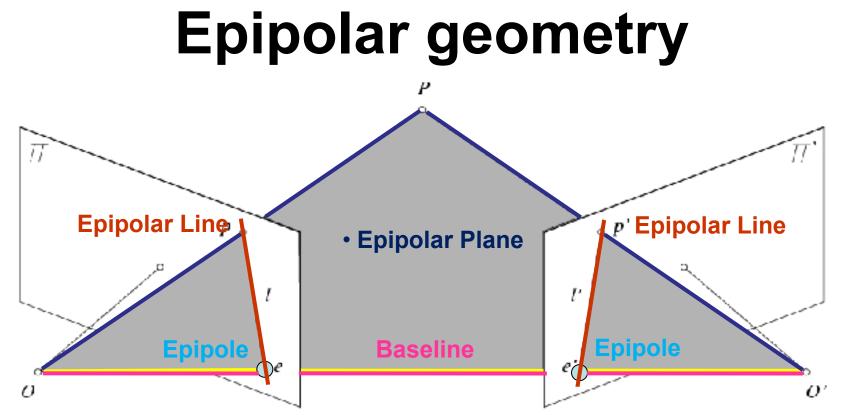
It must be on the line carved out by a plane connecting the world point and optical centers.

Why is this useful?

Epipolar constraint

This is useful because it reduces the correspondence problem to a 1D search along an epipolar line.

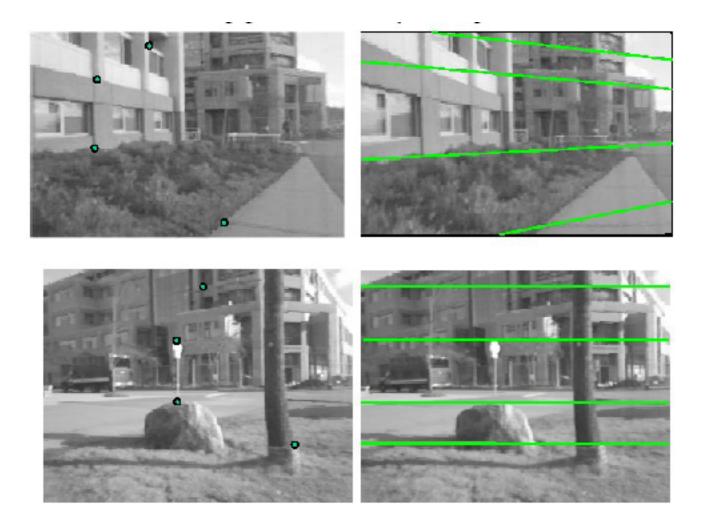
Image from Andrew Zisserman



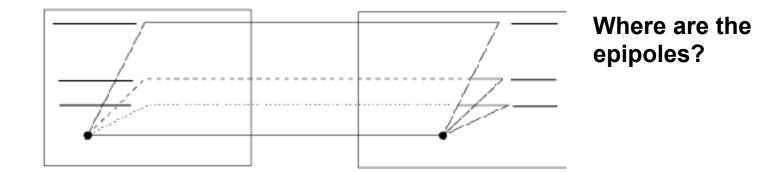
- Epipolar plane: plane containing baseline and world point
- **Epipole**: point of intersection of baseline with the image plane
- Epipolar line: intersection of epipolar plane with the image plane
- **Baseline**: line joining the camera centers
- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines

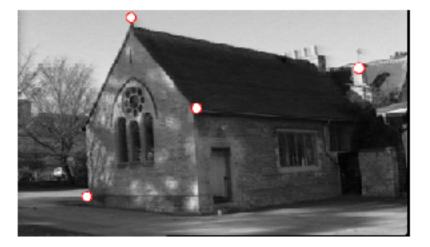
http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Example



Example: parallel cameras





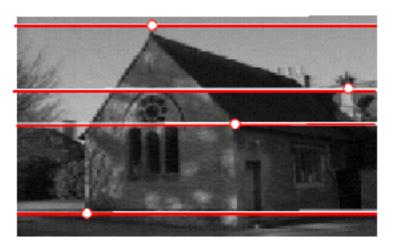


Figure from Hartley & Zisserman

Example: converging cameras

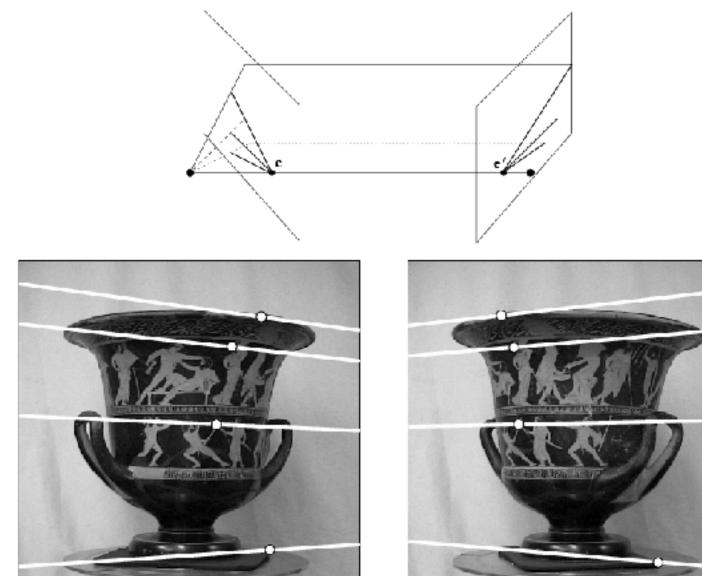
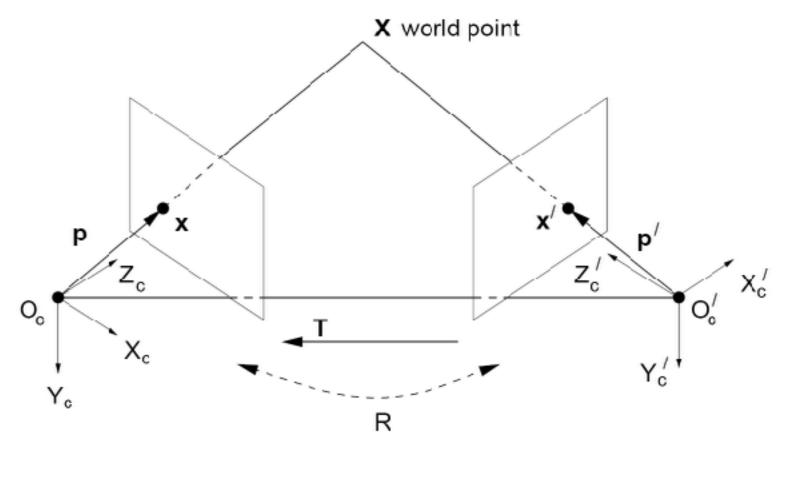


Figure from Hartley & Zisserman

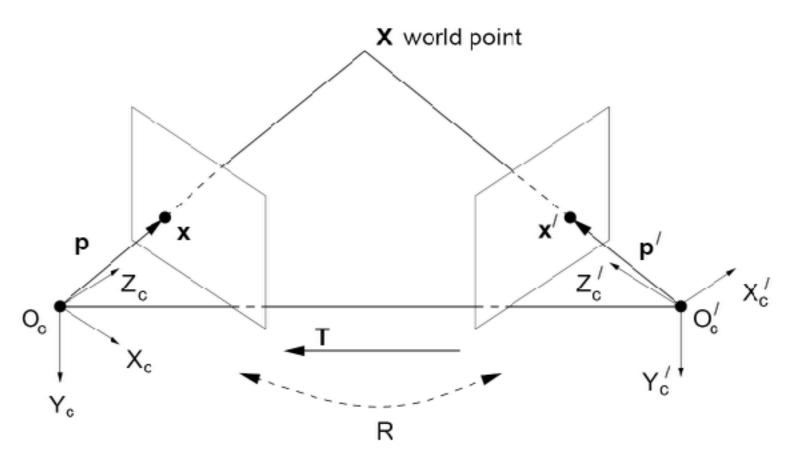
- So far, we have the explanation in terms of geometry.
- Now, how to express the epipolar constraints algebraically?

Stereo geometry, with calibrated cameras



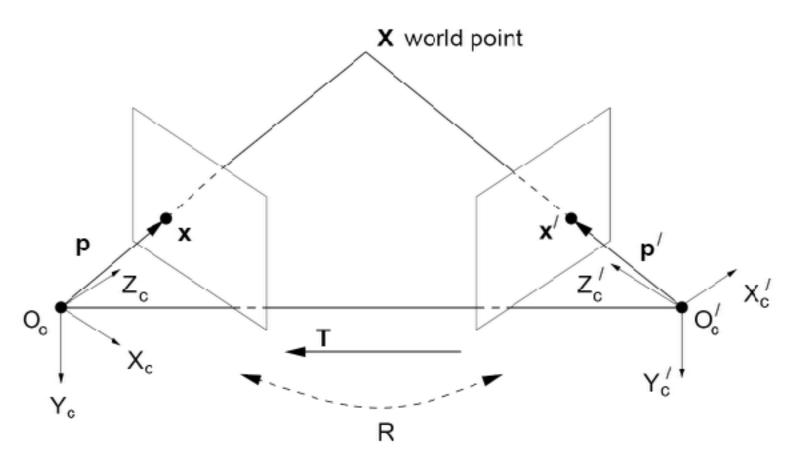
Main idea

Stereo geometry, with calibrated cameras

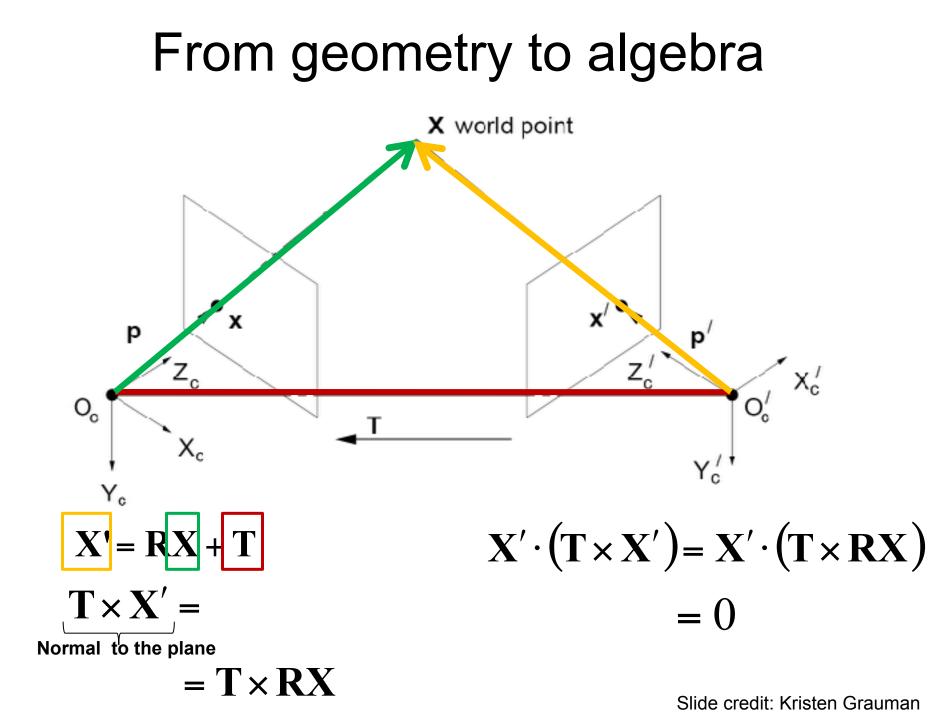


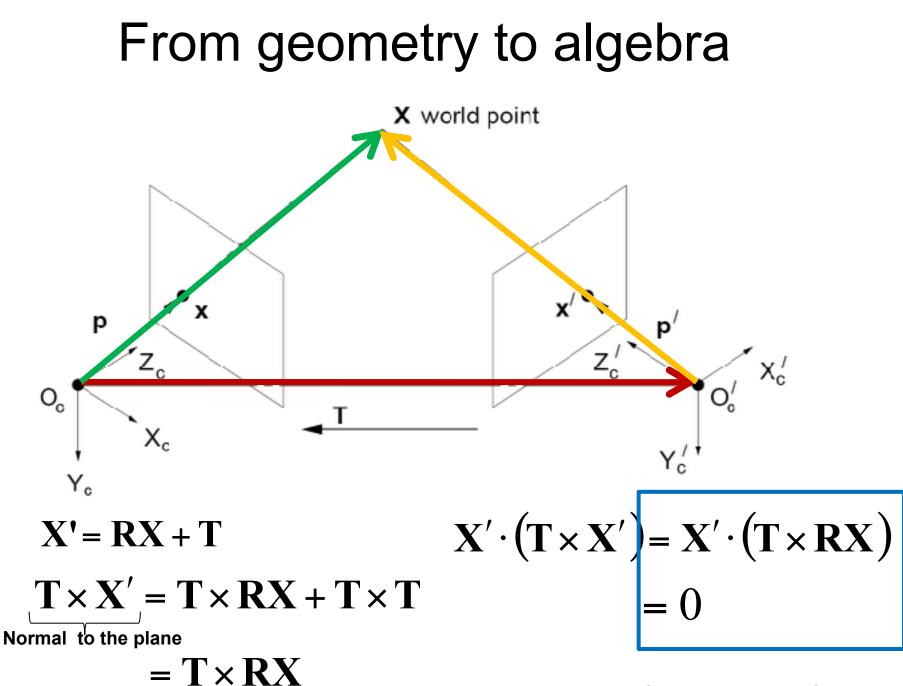
If the stereo rig is calibrated, we know : how to rotate and translate camera reference frame 1 to get to camera reference frame 2. Rotation: 3 x 3 matrix R; translation: 3 vector T.

Stereo geometry, with calibrated cameras



If the stereo rig is calibrated, we know : how to rotate and translate camera reference frame 1 to get to camera reference frame 2. $X'_{c} = RX_{c} + T'$





Aside: cross product

$$\vec{a} \times \vec{b} = \vec{c} \qquad \qquad \vec{a} \cdot \vec{c} = 0 \\ \vec{b} \cdot \vec{c} = 0$$

Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.

So here, c is perpendicular to both a and b, which means the dot product = 0.

Matrix form of cross product

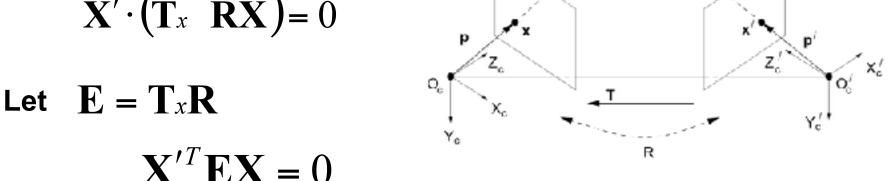
$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \vec{c} \qquad \vec{a} \cdot \vec{c} = \mathbf{0}$$

Can be expressed as a matrix multiplication.

$$\begin{bmatrix} a_x \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \qquad \vec{a} \times \vec{b} = \begin{bmatrix} a_x \end{bmatrix} \vec{b}$$

Essential matrix

$$\mathbf{X}' \cdot (\mathbf{T} \times \mathbf{R} \mathbf{X}) = 0$$
$$\mathbf{X}' \cdot (\mathbf{T}_x \ \mathbf{R} \mathbf{X}) = 0$$



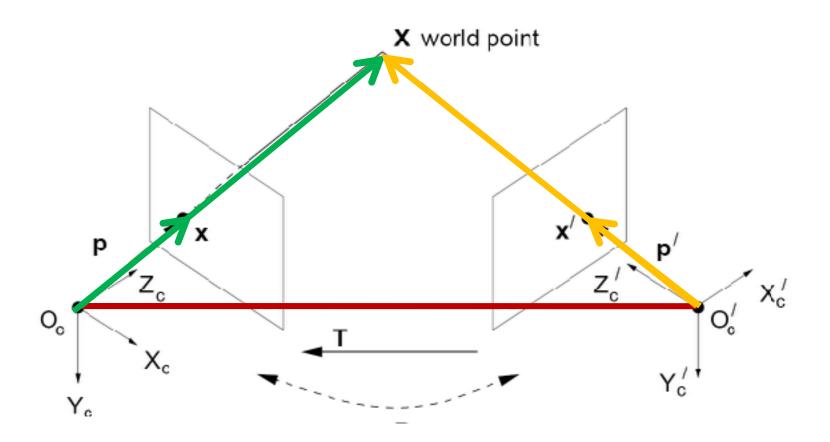
X world point

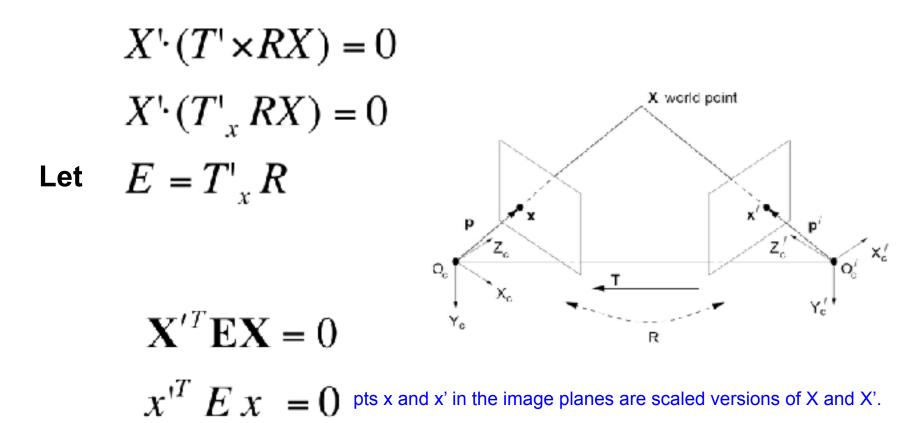
E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.

x and x' are scaled versions of X and X'



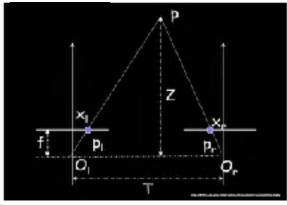


E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.

Essential matrix example: parallel cameras



 $\mathbf{R} = \mathbf{p} = [x, y, f]$ $\mathbf{T} = \mathbf{p'} = [x', y', f]$ $\mathbf{E} = [\mathbf{T}_x]\mathbf{R} =$

 $\mathbf{p}'^{\mathrm{T}}\mathbf{E}\mathbf{p} = 0$

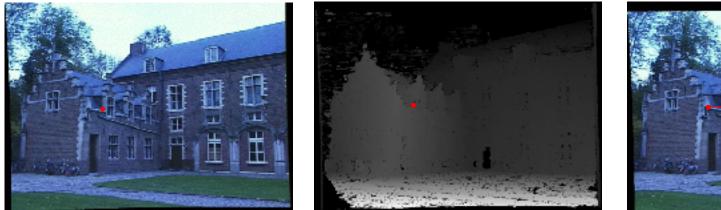
For the parallel cameras, image of any point must lic on same horizontal line in each image plane.

Slide credit: Kristen Grauman

image I(x,y)

Disparity map D(x,y)

image l´(x´,y´)

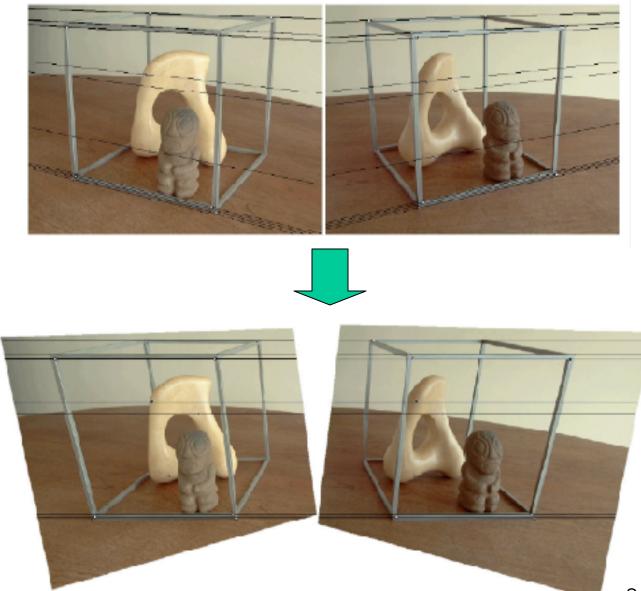


(x',y') = (x+D(x,y),y)

What about when cameras' optical axes are not parallel?

Slide credit: Kristen Grauman

Stereo image rectification: example



Source: Alyosha Efros

Stereo image rectification

In practice, it is convenient if image scanlines (rows) are the epipolar lines.

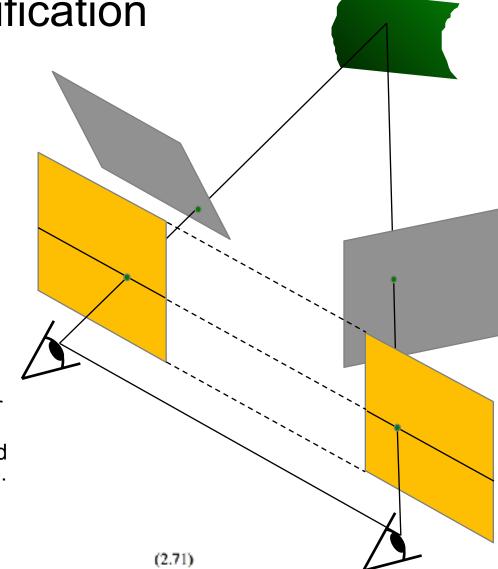
- Reproject image planes onto a common plane parallel to the line between optical centers
- Pixel motion is horizontal after this transformation
- Two homographies (3x3 transforms), one for each input image reprojection
- See Szeliski book, Sect. 2.1.5, Fig. 2.12, and "Mapping from one camera to another" p. 56:

The mapping equation (2.70) thus reduces to

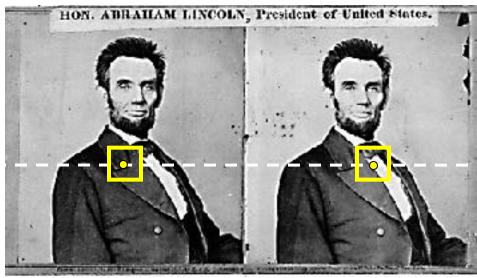
$$ilde{m{x}}_1 \sim m{ar{H}}_{10} ilde{m{x}}_0,$$

where \hat{H}_{10} is a general 3 × 3 homography matrix and \tilde{x}_1 and \tilde{x}_0 are now 2D homogeneous coordinates (i.e., 3-vectors) (Szeliski 1996)

Adapted from Li Zhang



Your basic stereo algorithm



For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Slide credit: Rick Szeliski

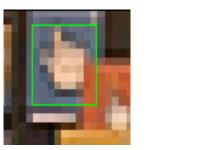
Image block matching

How do we determine correspondences?

• *block matching* or SSD (sum squared differences)

$$E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x'+d, y') - I_R(x', y')]^2$$

d is the disparity (horizontal motion)

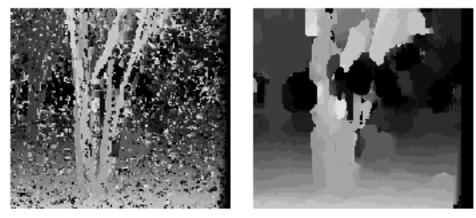


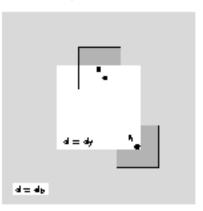
How bia should the neiahborhood be?

Slide credit: Rick Szeliski

Neighborhood size

Smaller neighborhood: more details Larger neighborhood: fewer isolated mistakes





w = 3

Matching criteria

- Raw pixel values (correlation)
- Band-pass filtered images [Jones & Malik 92]
- "Corner" like features [Zhang, ...]
- Edges [many people...]
- Gradients [Seitz 89; Scharstein 94]
- Rank statistics [Zabih & Woodfill 94]

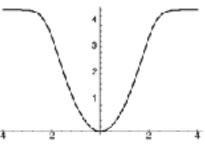
Local evidence framework

For every disparity, compute raw matching costs

$$E_0(x, y; d) = \rho(I_L(x' + d, y') - I_R(x', y'))$$

Why use a robust function?

• occlusions, other outliers



Can also use alternative match criteria

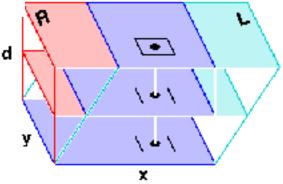
Local evidence framework

Aggregate costs spatially

$$E(x, y; d) = \sum_{(x', y') \in N(x, y)} E_0(x', y', d)$$

Here, we are using a *box filter* (efficient moving average implementation)

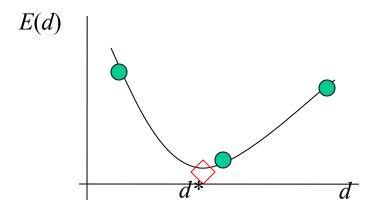
Can also use weighted average, [non-linear] diffusion...



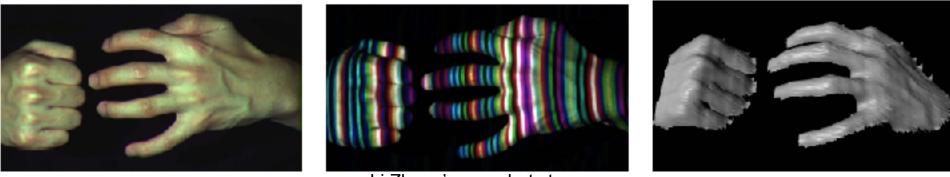
Local evidence framework

Choose winning disparity at each pixel $d(x, y) = \arg\min_{d} E(x, y; d)$

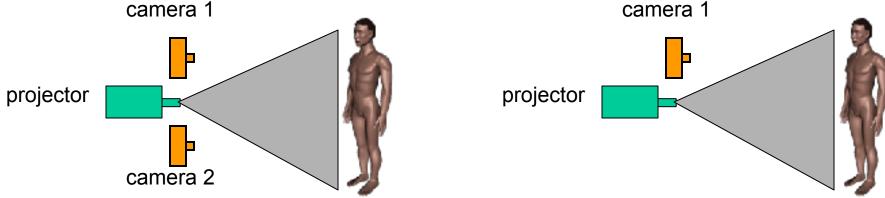
Interpolate to sub-pixel accuracy



Active stereo with structured light



Li Zhang's one-shot stereo



Project "structured" light patterns onto the object

simplifies the correspondence problem

Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. In Proceedings of the 1st International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), Padova, Italy, June 19-21, 2002, pp. 24-36.

Slide credit. Rick Szeliski

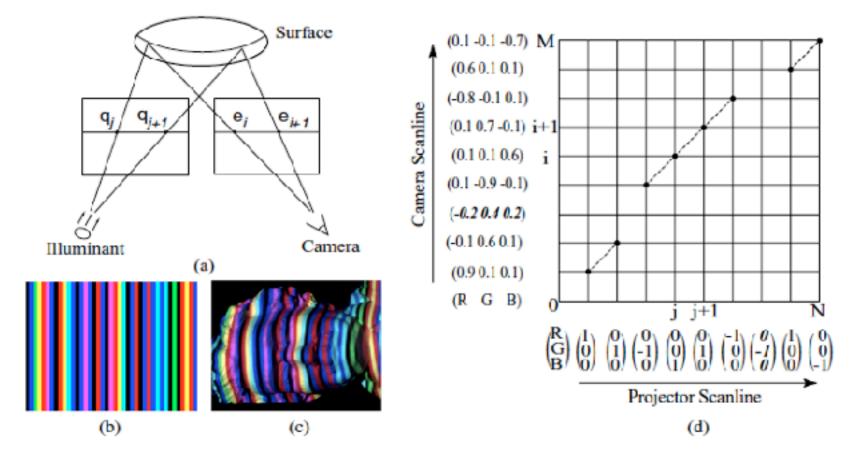
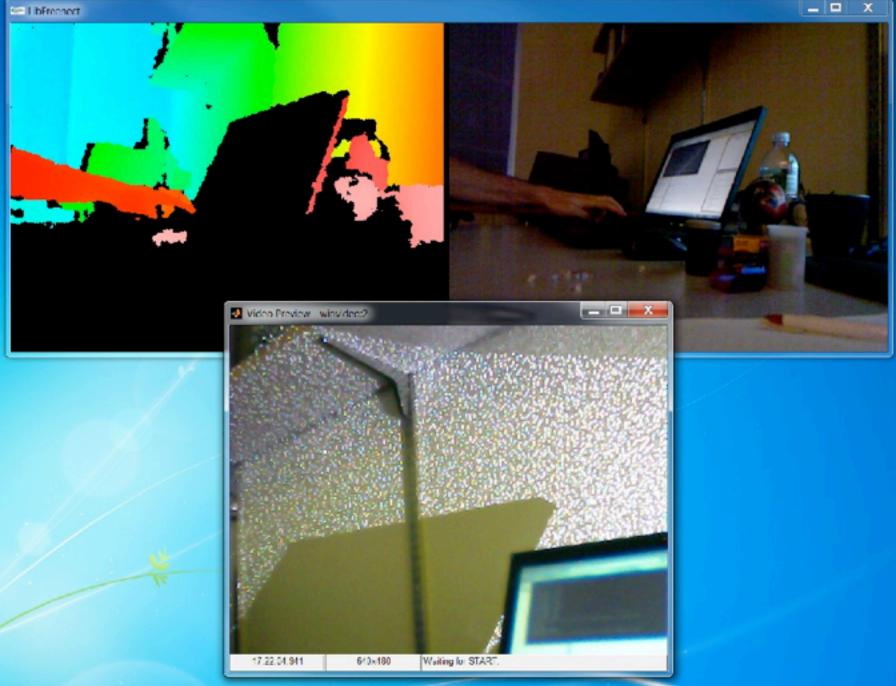
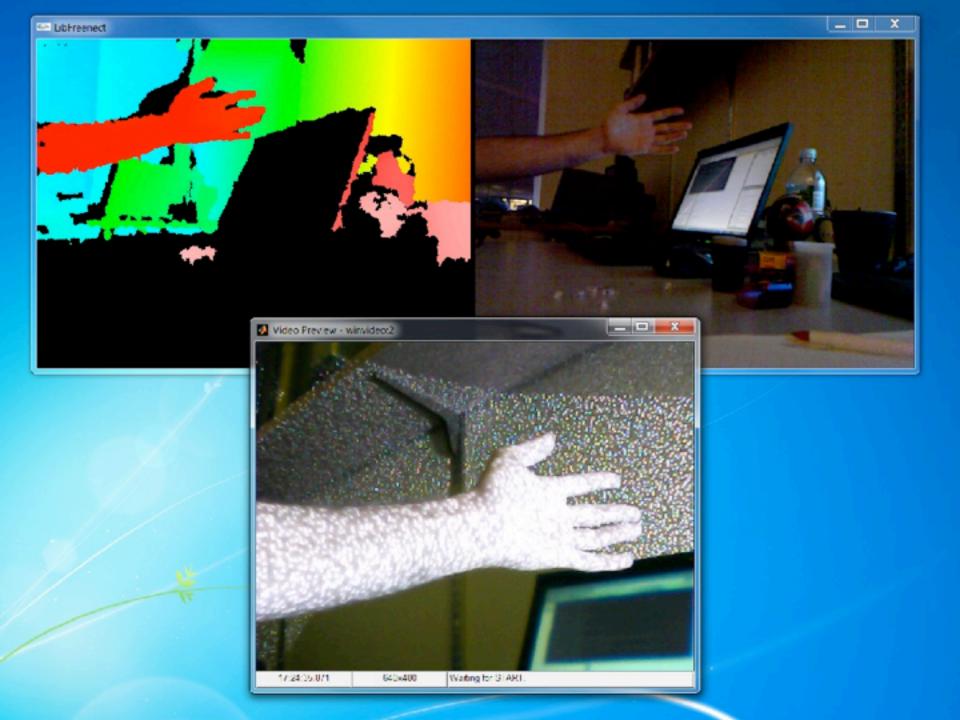


Figure 2. Summary of the one-shot method. (a) In optical triangulation, an illumination pattern is projected onto an object and the effected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and mage. If the image planes are rectified as shown, the displacement is purely horizontal (one-dimensional). (b) An example of he projected stripe pattern and (c) an image captured by the camera. (d) The grid used for multi-hypothesis code matching. The norizontal axis represents the projected color transition sequence and the vertical axis represents the detected edge sequence, both taken for one projector and rectified camera scanline pair. A match represents a path from left to right in the grid. Each vertex (j, i) has a score, measuring the consistency of the correspondence between e_i , the color gradient vectors shown by the vertical axis, and q_j , the color transition vectors shown below the horizontal axis. The score for the entire match is the summation of scores along its path. We use dynamic programming to find the optimal path. In the Illustration, the camera edge in bold italics corresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

Li Zhang, Brian Curless, and Steven M. Seitz





Bibliography

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense twoframe stereo correspondence algorithms. International Journal of Computer Vision, 47(1):7-42, May 2002.

R. Szeliski. Stereo algorithms and representations for image-based rendering. In British Machine Vision Conference (BMVC'99), volume 2, pages 314-328, Nottingham, England, September 1999.

G. M. Nielson, Scattered Data Modeling, IEEE Computer Graphics and Applications, 13(1), January 1993, pp. 60-70.

S. B. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multiview stereo. In CVPR'2001, vol. I, pages 103-110, December 2001.

Y. Boykov, O. Veksler, and Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, Unpublished manuscript, 2000.

A.F. Bobick and S.S. Intille. Large occlusion stereo. International Journal of Computer Vision, 33(3), September 1999. pp. 181-200

D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998

Slide credit: Rick Szeliski

Bibliography

Volume Intersection

- Martin & Aggarwal, "Volumetric description of objects from multiple views", Trans. Pattern Analysis and Machine Intelligence, 5(2), 1991, pp. 150-158.
- Szeliski, "Rapid Octree Construction from Image Sequences", Computer Vision, Graphics, and Image Processing: Image Understanding, 58(1), 1993, pp. 23-32.

Voxel Coloring and Space Carving

- Seitz & Dyer, "Photorealistic Scene Reconstruction by Voxel Coloring", Proc. Computer Vision and Pattern Recognition (CVPR), 1997, pp. 1067-1073.
- Seitz & Kutulakos, "Plenoptic Image Editing", Proc. Int. Conf. on Computer Vision (ICCV), 1998, pp. 17-24.
- Kutulakos & Seitz, "A Theory of Shape by Space Carving", Proc. ICCV, 1998, pp. 307-314.

Bibliography

Related References

- Bolles, Baker, and Marimont, "Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion", International Journal of Computer Vision, vol 1, no 1, 1987, pp. 7-55.
- Faugeras & Keriven, "Variational principles, surface evolution, PDE's, level set methods and the stereo problem", IEEE Trans. on Image Processing, 7(3), 1998, pp. 336-344.
- Szeliski & Golland, "Stereo Matching with Transparency and Matting", Proc. Int. Conf. on Computer Vision (ICCV), 1998, 517-524.
- Roy & Cox, "A Maximum-Flow Formulation of the N-camera Stereo Correspondence Problem", Proc. ICCV, 1998, pp. 492-499.
- Fua & Leclerc, "Object-centered surface reconstruction: Combining multi-image stereo and shading", International Journal of Computer Vision, 16, 1995, pp. 35-56.
- Narayanan, Rander, & Kanade, "Constructing Virtual Worlds Using Dense Stereo", Proc. ICCV, 1998, pp. 3-10.