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Scale and Rotation Invariant Detection: Recap

« Given: two images of the same scene with a large scale
difference and/or rotation between them

« Goal: find the same interest points independently in each image

 Solution: search for maxima of suitable functions in scale and in
space (over the image).

finding a characteristic scale




Scale Invariant Detectors

scale

* Harris-Laplacian’

Find local maximum of:
— Harris corner detector in space

(image coordinates) y

.

— Laplacian in scale

< Harris —

nup ./ Www.wisdom.wcC1Zzmann.ac.11/~acnisSS/Vvision Springu4/1iies/invariantr caturcs.ppt

. SIFT (Lowe)? scale

Find local maximum (minimum) of:

Difference of Gaussians in space and
scale

.

~— DoG —

In detatled experimental comparnisons, Mikolajezyk (2002) found that the maxima
and 1minima of 0 ?V2G produce the most stable image features compared W a range of other
possible image tunctions, such as the gradient, Hessian, or Harris corner functien.

Darya Frolova, Denis Simakov The Weizmann Institute of Science
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I K. Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004


http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

DOG Scale Space (Lowe 2004)
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.



Repeatability vs number of scales sampled per octave
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David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110



Scale Invariant D

« Experimental evaluation of detectors
w.r.t. scale change
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http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

SIFT— Orientation Assignment
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« Use the scale of the key point to grab
smoothed image L

« Compute gradient magnitude and
orientation:

m(x,y) = (L(x +1,y) — L(x — 1, ) + (L(x, y + 1) — L(x, y — 1))?
O(x,y) = tan"'((L(x,y + 1) — L(x,y — 1))/(L(x + 1, y) = L(x — 1, )))


http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf

SIFT — Vector Formation

« Computed on rotated and scaled version of window according to
computed orientation & scale

— resample the window

» Based on gradients weighted by a Gaussian of variance half the
window (for smooth falloff)

<

Ak

Image gradients



SIFT — Vector Formation

« 4x4 array of gradient orientation histograms
— not really histogram, weighted by magnitude

« 8 orientations x 4x4 array = 128 dimensions

 Motivation: some sensitivity to spatial layout, but not too
much.

4
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v A 4

Image gradients Keypoint descriptor
showing only 2x2 here but 1s 4x4




Reduce Effect of lllumination

e« 128-dim vector normalized to 1

 Threshold gradient magnitudes to avoid excessive influence of high
gradients

— after normalization, clamp gradients >0.2
— renormalize
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Image gradients Keypoint descriptor
showing only 2x2 here but 1s 4x4




Tuning and evaluating the SIFT
descriptors

Database images were subjected to:

rotation, scaling, affine stretch, brightness and contrast changes,
and added noise.

Feature point detectors and descriptors were compared before
and after the distortions, and evaluated for:

« Sensitivity to number of histogram orientations and subregions.
« Stability to noise.

» Stability to affine change.

« Feature distinctiveness

2%



Sensitivity to number of histogram
orientations and subregions (n)
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Figure 8: This graph shows the percent of keypoints giving the correct match 10 a database of 40 000
keypounts as a funchion of width of the i X n Xeypoint cescnptor and the number of orientations 1n
each histngram. The graph is computed for images with affine viewpoint change of 50 degrees and
addition of 4% noisc.

Feature stability to affine change
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* Match features after random change in image scale & orientation, with 2% image
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SIFT Impact

Distinctive image features from scale-invariant keypoints

Authors
Publication date
Journal

Volume

Issue

Pages
Publisher

Description

Tota! citations

David G Lowe

2004/1111

International joumal of computer vision
60

2

91-110

Springar Netherliands

This pacer presents a methoc for exiracting distinclive invariant features from images that
can be used to parform rellable matching between different views of an object or scene. The
fcaturcs arc invariant to mage sca ¢ and rotation, and are shown to provice robust matching
across a subsiantial range of affine distortian, change in 3D viewpoint, addition of noise, anc
change in illumination. The features are highly distinctive. in the sense that a single feature
can be correctly matched with high probabllity against 3 larce database of features from ...

Cited by 43944

2004 2005 20C6 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

A good SIFT features tutorial:
http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf

By Estrada, Jepson, and Fleet.

The original SIFT paper:

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Binary Descriptors
BRIEF, BRISK, ORB, FREAK

* Extremely efficient computation and comparison

« Encode a patch as a binary string using only pairwise intensity

comparisons
- Sampling pattern around each key point
- Sampling pairs
- Descriptor is given by a binary string:

F=> 2T(P)
DeasN
1 if I(P")> I(P?
repy< {1 1B > 1ET)

{O otherwise

- Matching using Hamming distance: L= ) XOR(F,

0<a<N

Time per keypoint SIFT | SURF | BRISK | FREAK
Description in [ms] 2.5 1.4 0.031 0.018
Maiching time in [ns] 1014 566 36 25

Table 1: Computation time on 800x600 images where approximately 1500
keypoints are detected per image. The computation times correspond to the
descrption and matching of all kevpoints.

A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition,
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Stitching a pair of image
We have:
e Well-localized features
e Distinctive descriptor
Now we need to:
e Match pairs of feature points in different images

e Robustly compute homographies
(in the presence of errors/outliers)




Building a Panorama

A 3D interpretation:
- Build a synthetically wide-angle camera
— Reproject all images onto a common plan: ,:_

— The mosaic Is formed on this plane

R AN mosaic PP



Under what conditions can we know where to translate each
point of image A to where it would appear in camera B (with
calibrated cameras), knowing nothing about image depths?

Camera A Camera B



Depth-based ambiguity of position

Camera A Camera B

In general, matches are constrained to lie on the epipolar lines, but... that's it?,
there are no more constraints?



(a) Pure camera rotation




and (b) imaging a planar surface




Two cameras with the same center of projection

camera A camera B

B 4
common plnhole \ ‘
position of the cameras\ =5

Can generate any synthetic camera view
as long as it has the same center of projection!




Two cameras with offset centers of projection

camera A camera B

camera A center

camera B center




Recap 2H208

« When we only rotate the camera depth does not matter
« It only performs a 2D warp
— one-to-one mapping of the 2D plane
— plus of course reveals stuff that was outside the field of view

B
camera

« Now we just need to figure out this mapping



Aligning images =2

— We have established that pairs of images from the same
viewpoint can be aligned through a simple 2D spatial
transformation (warp).

— What kind of transformation?
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ﬁgure 2.4, Szeliski

Translation Affine Projective

2 unknowns 6 unknowns (2x3) 8 unknowns (3x3)



Homography

* Perspective transform — mapping between any two projection
planes with the same center of projection called Homography

* Represented as 3x3 matrix in homogenous coordinates

wx'| [ o* *)[x PP2
wy'| = |* * F||y
" -1: sk *- ]
p H p
PP1
To apply a homography H

« Compute wp' =Hp (regular matrix multiply)

« Convert p’' from homogeneous to image
coordinates (divide by w)

See Szeliski Sect 2.1.5, Mapping from one camera to another.



Homography

Camera 1
parameters: A,

Camera 0
parameters: A,

X\

G0 = AgP = A ;

5= A P L)
£.0 0 0
Ag=K[Io]=| 0 f, 0 0
0 0 1 0



Two cameras with the same center of projection

~ ;‘f\ f.0 0 0
fo=AP =40 | Ag=K[Ilo]=| 0 f, 0 0
Y 0 0 1 0

We seek for a mapping such that: To = MioZ1
to=KR 'K '
Lo — ) L1

How many pairs of points does it take to specify M_107?



Planar objects Al

camera A

camera B

camera A center

camera B center

PP3

Planar World

14 [ ]

A HFH] PP2
L
1




Planar objects

From Szeliski book

1

b1

Compater Vision: Algorithms and Applicarions (Sepiember 3, 2010 draft)
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Mapping from one camera to another

What happens when we take two mmages of a 3D scene from different camera positions or
orientatinns (Figire 2.17a)7 Using the full rank £ x 4 camer matrix P = K F from (2.64),
wer can wrike the projection fronn workd 1o sereen coocdinakes as

&y - KyEp — Byp. (2.6¥)
Assuming that we know the z-buffer or disparity value dg for 2 pixel in one imaga, we can
compule the 3D point location p using
p~ 'Ry # 0.5
and then project 1t mio another image yeldmg
7y~ K-Fip= K \F\F5 'K, '#y = Py P, #¢ = My .70

Unfortunately. we do not usually have access to the depth coordinates of poels in aregular
photogaphic wage. However, o a planar scere, as discussedd alove 10 (2.66), we can
replace the last row of Py in (2.64) with a general plane equation, ng - p + cp that maps
pomts on the plane to dy — U values (Figure 2.12b). Thus, if we sot dy — U, we can ignom
the last column of My, in (2.70) and also its last row. since we do not care ebout the firel
z-buffer depth. The mapping equation (2.7C) thus reduces to

z, - H pq, 270

whiens Fypis 4 gemeral 3 x 3 lonography vestiy ad 2 and 3 ae ow 27 lonogeneons
coordinzes (ie., 3-veciors) (Szeliski 1996). This justifies the us2 of the 3-parameter homog-
raphy &s a peneral alipnment model for mosaics of planar scenes (Mann and Picard 1991
Szeliski 1996).

Images of planar
objects, taken by
generically offset
cameras, are also
related by a
homography.

camera A




Measurements on planes
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Approach: unwarp then measure

How to unwarp?
CSE 576, Spring 2008 Projective Geometry 6



Image rectification
———— —

To unwarp (rectify) an image

« solve for homography H given p and p’
* solve equations of the form: wp’ = Hp
— linear in unknowns

— His defined up to an arbitrary scale factor
— how many points are necessary to solve for H?

CSE 576, Spring 2008 Projective Geometry




Solving for homographies
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Solving for homographies

oo
_ | for o
1 y1 1 0 0 O —zfay —:t:'lyl —:1;'1 h.go 0
0 0 0 =1 y1 1 —wyyw1 —yiy1 —vp | | P10 0
: hi11 | = | :
xn yn 1 0 0 O —.'7:;_,-1:.” —m;.,,y-,l —"7’;-;, hqo O
! O O O zn yn 1 _?/-;;.ifn —".l/;r_ Un —'.U;-;, | huop ! 0 ]
ho1
| hioo
A h 0
2n x 9 9 2n

Defines a least squares problem: minimize ||Ah — 0]

» Since h is only defined up to scale, solve for unit vector h
» Solution: h = eigenvector of ATA with smallest eigenvalue
* Works with 4 or more points

CSE 576, Spring 2008 Projective Geometry



homography so \
that image 1s
parallel to floor

>

homo graphk

that image 1s
parallel to right
wall

black area
where no pixel
maps to




Automatic image mosaicing S

* Basic Procedure
— Take a sequence of images from the same position.
* Rotate the camera about its optical center (entrance pupil).

— Robustly compute the homography transformation between
second image and first.

— Transform (warp) the second image to overlap with first.
— Blend the two together to create a mosaic.
— If there are more images, repeat.




Robust feature matching through
RANSAC

© Krister Parmstrand

Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation.

with a lot of slides stolen from 15-463: ComPUtational PhOtOgraphy
Steve Seitz and Rick Szeliski Alexei Efros, CMU, Fall 2005



Feature matchm




Strategies to match images robustly

(a) Working with individual features: For each feature point,
find most similar point in other image (SIFT distance)

Reject ambiguous matches where there are too many similar points

(b) Working with all the features: Given some good feature

matches, look for possible homographies relating the two
Images

Reject homographies that don’t have many feature matches.

40



(a) Feature-space outlier rejection

« Let's not match all features, but only these that have
“similar enough” matches?

« How can we do it?

— dist(patch1,patch2) < threshold

— How to set threshold?
Not so easy.

correct matches | !
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Feature-space outlier rejection

* A better way [Lowe, 1999]:
— 1-NN: SSD of the closest match
— 2-NN: SSD of the second-closest match

— Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
— That s, Is our best match so much better than the rest?

é — comect matches :
. | = = =Incorrect matches | ;

ity

prokakility cens
D
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o1 0.z 03 c4 0.5 06 0.7 0.8 09 1
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Feature matching

« Exhaustive search

— for each feature in one image, look at all the other
features in the other image(s)

— Usually not so bad
* Hashing

— compute a short descriptor from each feature
vector, or hash longer descriptors (randomly)

« Nearest neighbor techniques
— k-trees and their variants (Best Bin First)



Feature-space outlier rejection

'5«-’&*‘-;‘-"

 Can we now compute H from the blue points?
— No! Still too many outliers...
— What can we do?



(b) Matching many features — looking
for a good homography

Simplified illustration with translation instead of homography

What do we do about the “bad” matches?

Note: at this point we don’'t know which ones are good/bad




RAndom SAmple Consensus

Select one match, count inliers




RAndom SAmple Consensus

Select one match, count inliers

0 inliers




RAndom SAmple Consensus

Select one match, count inliers

4 1nliers




RAndom SAmple Consensus

Select one match, count inliers

Keep match with largest set of inliers



At the end: Least squares fit

Find “average” translation vector,
but with only inliers



Reference

M. A. Fischler, R. C. Bolles. Random Sample
Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated
Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.

http://portal.acm.org/
citation.cfm?1d=358692

Graphics and 1. D. Faley
Image Processing Elivor

Random Sample
Consensus: A
Paradigm for Model
Fitting with
Applications to Image
Analysis and
Automated
Cartography

Martin A. Fischler and Robent C. Bolles
SR1 Internationil
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derived on the mininum number of hadmarks secded
to obain a sobstion, and algorithms sre presented for
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system that can sobve the LDP wader difficsdt viewing
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http://portal.acm.org/citation.cfm?id=358692
http://portal.acm.org/citation.cfm?id=358692

RANSAC for Homography

Repeat N times:
e Select a random set of feature matches (4 pairs)
e Fit an homography

e Compute inliers: apply the transformation to all the features
and compute the error (distance between matching points
after the transformation), ||p,, Hp,|| <e

Count number of inliers

Select homography with largest number of inliers,
Re-compute least-squares H estimate using all of the inliers




Simple example: fit a line

» Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs

O

33



Simple example: fit a line

* Pick 2 points
e Fit line
e Count inliers
3 inlier o O
O O
~O O
O

38



Simple example: fit a line

* Pick 2 points
 Fit line
e Count inliers
4 inlier o O
—_— - 0————

@ © O
O

33



Simple example: fit a line

* Pick 2 points
e Fit line
e Count inliers

O 1inlier

38



Simple example: fit a line

* Pick 2 points
e Fit line
e Count inliers

8 inlier
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Simple example: fit a line

* Use biggest set of inliers

* Do least-square fit
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RANSAC for Homography
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RANSAC for Homography




Red: Rejected by 2nd nearest
neighbor criterion

Blue: RANSAC outliers
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Robusthess

Proportion of inliers in our pairs is G (for “good”)
Our model needs P pairs
P=4 for homography
Probability that we pick P inliers?
GP
Probability that after N RANSAC iterations we have not
picked a set of inliers?

(1-GP)N



Robustness: example

* Proportion of inliers G=0.5
* Probability that we pick P=4 inliers?
— 0.54=0.0625 (6% chance)

* Probability that we have not picked a set of inliers?

— N=100 Iterations:
(1-0.54)100=0.00157 (1 chance in 600)

— N=1000 Iterations:
1 chance in 1e28
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Robustness: example

* Proportion of inliers G=0.3 00 :
. Probability that we pick P=4 inliers? [l i i bk

— 0.34=0.0081 (0.8% chance)
* Probability that we have not picked a set of inliers?

— N=100 iterations:
(1-0.34)100=0.44 (1 chance in 2)

— N=1000 iterations:
1 chance in 3400
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Robustness: example

P ———
- == S

* Proportion of inliers G=0.1
« Probability that we pick P=4 inliers? .
— 0.14=0.0001 (0.01% chances, 11n 10,000)

* Probability that we have not picked a set of inliers?
— N=100 iterations: (1-0.14)100=0.99

— N=1000 iterations: 90%
— N=10,000: 36%
— N=100,000:11n 22,000
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Robustnhess: conclusions
(1-GP)N

« Effect of number of parameters of model/number of
necessary pairs

— Bad exponential
« Effect of percentage of inliers
— Base of the exponential

« Effect of number of iterations
— Good exponential

86



Example: Recognising
Panoramas

M. Brown and D. Lowe,
University of British Columbia

* M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features.
International Journal of Computer Vision, 74(1), pages 59-73, 2007 (pdf 3.5Mb | bib) * M.
Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International
Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice, France, 2003 (pdf 820kb

| ppt | bib)



Recognising Panoramas

ered set of images

B’

Output: panorami“image(s)



Feature Matching

Image (Geometric)
Matching

Finding Panoramas

Global Optimization

Algorithm: Panoramic Recognition

Input: n unordered images

I. Extract SIFT features from all n images

II. Find k ncarcst-ncighbours for cach feature using a k-d
free

ITI. For each image:
(1) Select m. candidate matching images (with the
maximum number of featurc matches to this im-

age)

(i1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(i11) Verify image matches using probabilistic model

I'V. Find connected components of image matches

V. For each connected component:
(1) Perform bundle adjustment to solve for the rota-

tion 8, &, 65 and focal length f of all cameras
(i) Render panorama using multi-band blending

Output: Panoramic image(s)

O(nlog(n)
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Finding the panoramas

(1) Select m candidate matching images (with the
maximum number of feature matches to this im-
age)

(1) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(i1) Verify image matches using probabilistic model




the panoramas

Finding




Finding the panoramas




Finding the panoramas




Results




AUT OSTIETCH

AutoStitch | Gallery | Download (Windows demo) | Buy Autopano | Licensing | Press | FAQ | Publications

AutoStitch :: a new dimension in automatic image stitching

AutoStitch autostitch | Panoramas

’ -
. Pano#2 =0
i Oct 4, 7012 13:3TPRF &

T3
SR

s

—
_ Pano #5 «g
% 1 Thu Oct 4, 2012 0340 B

Serratus

P ThieORtd 201

Welcome to AutoStitch. If you have an iPhone, please check out
our new iPhone version of AutoStitch below! If you're looking for
the Windows demo version, you can download it using the link
above, or read on to find out more about AutoStitch. Thanks for
visiting!



Benefits of Laplacian image compositing
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(a) Linear blending (b) Multi-band blending

Figure 7. Comparison of linear and multi-band blending. The image on the right was blended using multi-band blending

using > bands and o = 5 pixels. The image on the left was linearly blended. In this case matches on the moving
person have caused small misregistrations between the images. which cause blurring in the linearly blended result, but

the multi-band blended 1mage 1s clear.

M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features. 77
International Journal of Computer Vision, 74(1), pages 59-73, 2007



Photo Tourism:
Exploring Photo Collections in 3D

Noah Snavely
Steven M. Seitz

University of Washington

Richard Szeliski

Microsoft Research

© 2006 Noah Snavely
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Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006




Rendering

© 2006 Noah Snavely



Photo Tourism overview

Scene

reconstruction

Explorer

Input photographs

Relative camera positions
and orientations

Point cloud

| Sparse correspondence

© 2006 Noah Snavely



Photo Tourism overview

Scene
reconstruction

0000000000000000



Scene reconstruction

* Automatically estimate
— position, orientation, and focal length of cameras

— 3D positions of feature points

Feature detection
— Incremental
Pairwise
. structure
feature matching .
from motion

Correspondence
estimation

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

© 2006 Noah Snavely



Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

© 2006 Noah Snavely



Feature matching

Match features between each pair of images

© 2006 Noah Snavely



Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987]
to estimate fundamental matrices between pairs

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry.

See also the fundamental matrix song: http://danielwedge.com/fmatrix/ )

© 2006 Noah Snavely


http://danielwedge.com/fmatrix/

Structure from motion

@P3 minimize

f(R,T,P)

Camera 1

Ryt \

Camera 2

Ry, 1,

© 2006 Noah Snavely



Links

* Code avallable: http://phototour.cs.washington.edu/bundler/

* http://phototour.cs.washington.edu/

* http://livelabs.com/photosynth/

* http://www.cs.cornell.edu/~snavely/

0000000000000000


http://phototour.cs.washington.edu/bundler/
http://phototour.cs.washington.edu
http://livelabs.com/photosynth/
http://www.cs.cornell.edu/~snavely/

