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Scale and Rotation Invariant Detection: Recap 
• Given: two images of the same scene with a large scale 

difference and/or rotation between them 
• Goal: find the same interest points independently in each image 
• Solution: search for maxima of suitable functions in scale and in 

space (over the image).  
» finding a characteristic scale



Scale Invariant Detectors

• Harris-Laplacian1  
Find local maximum of: 
– Harris corner detector in space 

(image coordinates) 
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001 
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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• SIFT (Lowe)2  
Find local maximum (minimum) of: 

– Difference of Gaussians in space and 
scale

scale

x

y

← DoG →

←
 D

oG
 →

http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt


Each octave is 
doubling of scale – 
Halve image 
dimensions

Within octave 
several scales –  
Same dimension for 
all images

DOG Scale Space (Lowe 2004)



Repeatability vs number of scales sampled per octave

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of 
Computer Vision, 60, 2 (2004), pp. 91-110



Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

• Experimental evaluation of detectors  
w.r.t. scale change

Repeatability rate:

# correspondences 
# possible correspondences
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http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt


SIFT— Orientation Assignment 

 

• Use the scale of the key point to grab 
smoothed image L 

• Compute gradient magnitude and 
orientation: 

http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf


SIFT — Vector Formation

• Computed on rotated and scaled version of window according to 
computed orientation & scale 

– resample the window 
• Based on gradients weighted by a Gaussian of variance half the 

window (for smooth falloff)



SIFT — Vector Formation
• 4x4 array of gradient orientation histograms 

– not really histogram, weighted by magnitude 
• 8 orientations x 4x4 array = 128 dimensions 
• Motivation:  some sensitivity to spatial layout, but not too 

much.

showing only 2x2 here but is 4x4



Reduce Effect of Illumination
• 128-dim vector normalized to 1  
• Threshold gradient magnitudes to avoid excessive influence of high 

gradients 
– after normalization, clamp gradients >0.2 
– renormalize

showing only 2x2 here but is 4x4
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Tuning and evaluating the SIFT 
descriptors

Database images were subjected to: 
rotation, scaling, affine stretch, brightness and contrast changes, 
and added noise.   
 
Feature point detectors and descriptors were compared before 
and after the distortions, and evaluated for: 

• Sensitivity to number of histogram orientations and subregions. 
• Stability to noise. 
• Stability to affine change. 
• Feature distinctiveness

25



Sensitivity to number of histogram 
orientations and subregions (n)

• Match features after random change in image scale & orientation, 
with differing levels of image noise 

• Find nearest neighbor in database of 30,000 features

Feature stability to noise

Feature stability to affine change

• Match features after random change in image scale & orientation, with 2% image 
noise, and affine distortion 

• Find nearest neighbor in database of 30,000 features

• Vary size of database of features, with 30 degree affine 
change, 2% image noise 

• Measure % correct for single nearest neighbor match

Distinctiveness of features



SIFT Impact

A good SIFT features tutorial: 
http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf 
By Estrada, Jepson, and Fleet. 

The original SIFT paper:  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Binary Descriptors

• Extremely efficient computation and comparison  
• Encode a patch as a binary string using only pairwise intensity 

comparisons 
- Sampling pattern around each key point 
- Sampling pairs  
- Descriptor is given by a binary string:

• Matching using Hamming distance:

BRIEF, BRISK, ORB, FREAK

A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition,



We have: 

• Well-localized features  

• Distinctive descriptor  

Now we need to: 

• Match pairs of feature points in different images 

• Robustly compute homographies  
(in the presence of errors/outliers) 

Stitching a pair of image



Building a Panorama 

A 3D interpretation:  
– Build a synthetically wide-angle camera 
– Reproject all images onto a common plane 
– The mosaic is formed on this plane 



Under what conditions can we know where to translate each 
point of image A to where it would appear in camera B (with 
calibrated cameras), knowing nothing about image depths?

Camera A Camera B



Depth-based ambiguity of position
Camera A Camera B

In general, matches are constrained to lie on the epipolar lines, but… that’s it?, 
there are no more constraints?
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(a) Pure camera rotation
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 and (b) imaging a planar surface



Two cameras with the same center of projection

camera A camera B

Can generate any synthetic camera view 
as long as it has the same center of projection!

common pinhole 
position of the cameras



camera A camera B

camera A center

camera B center

Two cameras with offset centers of projection



Recap
• When we only rotate the camera depth does not matter  
• It only performs a 2D warp  

– one-to-one mapping of the 2D plane 
– plus of course reveals stuff that was outside the field of view 

• Now we just need to figure out this mapping

A 
camera

B 
camera



Aligning images

– We have established that pairs of images from the same 
viewpoint can be aligned through a simple 2D spatial 
transformation (warp).  

– What kind of transformation?



Aligning images: translation?

Translations are not enough to align the images

left on top right on top



Image Warping

Affine

6 unknowns (2x3)

Projective

8 unknowns (3x3)

Translation

2 unknowns

figure 2.4, Szeliski



Homography

• Perspective transform – mapping between any two projection 
planes with the same center of projection called Homography  

• Represented as 3x3 matrix in homogenous coordinates

PP2

PP1

H pp’  

To apply a homography H 
• Compute  wp’ = Hp   (regular matrix multiply) 
• Convert p’ from homogeneous to  image 

coordinates (divide by w)
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Homography

P

Camera 1  
parameters: A1 Camera 0  

parameters: A0

A0 = K[I|0] =

0

@
f
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0 0 0
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0 0
0 0 1 0

1

A



Two cameras with the same center of projection

A0 = K[I|0] =

0

@
f
x

0 0 0
0 f

y

0 0
0 0 1 0

1

A

• We seek for a mapping such that:

How many pairs of points does it take to specify M_10?



camera A
camera B

camera A center

camera B center

Planar objects

Planar World



Images of planar 
objects, taken by 
generically offset 
cameras,  are also 
related by a 
homography.
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CSE 576, Spring 2008 Projective Geometry 6

1 2 3 4

1

2

3

4

Measurements on planes

Approach:  unwarp then measure
How to unwarp?



CSE 576, Spring 2008 Projective Geometry 7

Image rectification

To unwarp (rectify) an image 
• solve for homography H given p and p’ 
• solve equations of the form:  wp’ = Hp 
– linear in unknowns 
– H is defined up to an arbitrary scale factor 
– how many points are necessary to solve for H?

p
p’



CSE 576, Spring 2008 Projective Geometry 8

Solving for homographies



CSE 576, Spring 2008 Projective Geometry 9

Solving for homographies

A h 0

Defines a least squares problem:
2n × 9 9 2n

• Since h is only defined up to scale, solve for unit vector ĥ 
• Solution: ĥ = eigenvector of ATA with smallest eigenvalue 
• Works with 4 or more points



Image warping with homographies

image plane below
black area 
where no pixel 
maps to

homography so 
that image is 
parallel to floor

homography so 
that image is 
parallel to right 
wall



Automatic image mosaicing
• Basic Procedure 

– Take a sequence of images from the same position. 
• Rotate the camera about its optical center (entrance pupil). 

– Robustly compute the homography transformation between 
second image and first. 

– Transform (warp) the second image to overlap with first. 
– Blend the two together to create a mosaic. 
– If there are more images, repeat.



Robust feature matching through 
RANSAC

15-463: Computational Photography 
Alexei Efros, CMU, Fall 2005with a lot of slides stolen from 

 Steve Seitz and Rick Szeliski

© Krister Parmstrand 
Nikon D70. Stitched Panorama. The sky has been retouched. No other image manipulation.



Feature matching

?

descriptors for left image feature points descriptors for right image feature points
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Strategies to match images robustly

(a) Working with individual features:  For each feature point, 
find most similar point in other image (SIFT distance) 
Reject ambiguous matches where there are too many similar points  
 

(b) Working with all the features:  Given some good feature 
matches, look for possible homographies relating the two 
images 
Reject homographies that don’t have many feature matches.

62



(a) Feature-space outlier rejection

• Let’s not match all features, but only these that have 
“similar enough” matches? 

• How can we do it?  
– dist(patch1,patch2) < threshold 
– How to set threshold? 

Not so easy.



Feature-space outlier rejection
• A better way [Lowe, 1999]: 

– 1-NN: SSD of the closest match 
– 2-NN: SSD of the second-closest match 
– Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN 
– That is, is our best match so much better than the rest?



Feature matching
• Exhaustive search 

– for each feature in one image, look at all the other 
features in the other image(s) 

– Usually not so bad 
• Hashing 

– compute a short descriptor from each feature 
vector, or hash longer descriptors (randomly) 

• Nearest neighbor techniques 
– k-trees and their variants (Best Bin First)



Feature-space outlier rejection

• Can we now compute H from the blue points? 
– No!  Still too many outliers…  
– What can we do?



(b) Matching many features — looking 
for a good homography

What do we do about the “bad” matches?

Note: at this point we don’t know which ones are good/bad

Simplified illustration with translation instead of homography



RAndom SAmple Consensus

Select one match, count inliers



RAndom SAmple Consensus

Select one match, count inliers

0 inliers



RAndom SAmple Consensus

Select one match, count inliers

4 inliers



RAndom SAmple Consensus

Select one match, count inliersSelect one match, count inliers 

Keep match with largest set of inliers



At the end: Least squares fit

Find “average” translation vector,  
but with only inliers
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Reference

• M. A. Fischler, R. C. Bolles. Random Sample 
Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated 
Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981. 

• http://portal.acm.org/
citation.cfm?id=358692 

http://portal.acm.org/citation.cfm?id=358692
http://portal.acm.org/citation.cfm?id=358692


RANSAC for Homography
Repeat N times: 

• Select a random set of feature matches (4 pairs) 

• Fit an homography  

• Compute inliers: apply the transformation to all the features 
and compute the error (distance between matching points 
after the transformation),  ||pi’, H pi|| < ε  
Count number of inliers  

Select homography with largest number of inliers,  
Re-compute least-squares H estimate using all of the inliers 
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Simple example: fit a line

• Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs

75
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

76

3 inlier
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

77

4 inlier
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

78

9 inlier
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

79

8 inlier
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Simple example: fit a line

• Use biggest set of inliers 
• Do least-square fit



RANSAC for Homography



RANSAC for Homography



RANSAC for Homography



RANSAC

Red: Rejected by 2nd nearest 
neighbor criterion 
Blue: RANSAC outliers 
Yellow: RANSAC inliers



Robustness
• Proportion of inliers in our pairs is G (for “good”) 
• Our model needs P pairs  
   P=4 for homography 
• Probability that we pick P inliers? 
       GP 

• Probability that after N RANSAC iterations we have not 
picked a set of inliers? 

    (1-GP)N
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Robustness: example
• Proportion of inliers G=0.5  
• Probability that we pick P=4 inliers? 

– 0.54=0.0625 (6% chance) 
• Probability that we have not picked a set of inliers? 

– N=100 iterations:  
(1-0.54)100=0.00157 (1 chance in 600) 

– N=1000 iterations: 
1 chance in 1e28

83
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Robustness: example
• Proportion of inliers G=0.3  
• Probability that we pick P=4 inliers? 

– 0.34=0.0081 (0.8% chance) 
• Probability that we have not picked a set of inliers? 

– N=100 iterations:  
(1-0.34)100=0.44 (1 chance in 2) 

– N=1000 iterations: 
1 chance in 3400

84
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Robustness: example
• Proportion of inliers G=0.1  
• Probability that we pick P=4 inliers? 

– 0.14=0.0001 (0.01% chances, 1 in 10,000) 
• Probability that we have not picked a set of inliers? 

– N=100 iterations:  (1-0.14)100=0.99 
– N=1000 iterations: 90% 
– N=10,000: 36% 
– N=100,000: 1 in 22,000

85
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Robustness: conclusions

• Effect of number of parameters of model/number of 
necessary pairs 
– Bad exponential 

• Effect of percentage of inliers 
– Base of the exponential 

• Effect of number of iterations 
– Good exponential

86

(1-GP)N



Example: Recognising 
Panoramas

M. Brown and D. Lowe,  
University of British Columbia

    * M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features. 
International Journal of Computer Vision, 74(1), pages 59-73, 2007 (pdf 3.5Mb | bib)    * M. 
Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International 
Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice, France, 2003 (pdf 820kb 
| ppt | bib) 



Recognising Panoramas
Input: unordered set of images

Output: panoramic image(s)
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O(nlog(n)

Image (Geometric) 
Matching 

Feature Matching

Finding Panoramas

Global Optimization



Finding the panoramas



Finding the panoramas



Finding the panoramas



Finding the panoramas



Results
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Benefits of Laplacian image compositing

M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features. 
International Journal of Computer Vision, 74(1), pages 59-73, 2007



© 2006 Noah Snavely

Photo Tourism:  
Exploring Photo Collections in 3D

Noah Snavely      
Steven M. Seitz  
    University of Washington  

Richard Szeliski  
    Microsoft Research   

© 2006 Noah Snavely



© 2006 Noah Snavely

15,464 

76,389 

37,383 



© 2006 Noah Snavely

Movie



© 2006 Noah Snavely

Rendering



© 2006 Noah Snavely

Photo Tourism overview

Scene 
reconstruction

Photo 
ExplorerInput photographs Relative camera positions 

and orientations 

Point cloud 

Sparse correspondence



© 2006 Noah Snavely

Photo Tourism overview

Scene 
reconstruction

Photo 
Explorer

Input photographs



© 2006 Noah Snavely

Scene reconstruction
• Automatically estimate  

– position, orientation, and focal length of cameras 
– 3D positions of feature points

Feature detection

Pairwise 
feature matching

Incremental 
structure 

from motion

Correspondence 
estimation



© 2006 Noah Snavely

Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



© 2006 Noah Snavely

Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



© 2006 Noah Snavely

Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



© 2006 Noah Snavely

Feature matching
Match features between each pair of images



© 2006 Noah Snavely

Feature matching
Refine matching using RANSAC [Fischler & Bolles 1987] 
to estimate fundamental matrices between pairs 

(See 6.801/6.866 for fundamental matrix, or Hartley and Zisserman, Multi-View Geometry.   

See also the fundamental matrix song:  http://danielwedge.com/fmatrix/ )

http://danielwedge.com/fmatrix/


© 2006 Noah Snavely

Structure from motion

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2

R3,t3

p1

p4

p3

p2

p5

p6

p7

minimize
f (R, T, P)



© 2006 Noah Snavely

Links 

• Code available: http://phototour.cs.washington.edu/bundler/ 
• http://phototour.cs.washington.edu/ 
• http://livelabs.com/photosynth/ 
• http://www.cs.cornell.edu/~snavely/

http://phototour.cs.washington.edu/bundler/
http://phototour.cs.washington.edu
http://livelabs.com/photosynth/
http://www.cs.cornell.edu/~snavely/

