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From Pixels to Perception:
Mid-level operations of Segmentation and
Grouping
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Figure / Grouna

Finding groups of pixels that go together

Predicted scene categories*: Predicted scene categories*.
forest - broadleaf (0.498). swimming hole (0.402), bayou (0.062) forest - broadleaf (0.979)



Figure / Ground
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http://twistedsifter.com/2015/03/mind-bending-optical-illusion-paintings-by-rob-gonsalves/



A “simple” segmentation problem




It can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped Iearnig of novel objects. J Vis, 3(6), 413-422



Segmentation is a global process
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What are the occluded numbers?



Segmentation is a global process

What are the occluded numbers?

Occlusion is an important cue in grouping.



... but not too global
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Groupings by Invisible Completions




Emergence

http://en.wikipedia.org/wiki/Gestalt psychology




Perceptual organization

‘

..the processes by which the bits ?; =Y
and pieces of visual information g @g;g,}g;:g
that are available in the retinal Pa=aach
Image are structured into the ‘
larger units of perceived objects

and their interrelations”

Stephen E. Palmer, Vision
Science, 1999



Gestalt principles

There are hundreds of different grouping laws



Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region



Parallelism

Symmetry

Continuity

Closure

Familiar configuration



l. Edges




surface normal discontinuity

What is an edge?

<« s— depth discontinuity

surface color discontinuity

44—~ illumination discontinuity
S ;

o bl
Depth
discontinuity - |



Finding edges: Computing derivatives

image

intensity function
(along horizontal scanline)

first derivative

N

\ |

edges correspond to
extrema of derivative




Canny edge detector
*3" =)

1. Filter image with derivative of Gaussian

edge(image,’canny’)

2. Find magnitude and orientation of gradient
3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them




1: Filter Image with derivatives of Gaussian
2D edge detection filters

_ derivative of Gaussian (x)
Gaussian

ho(u,v) = 27mze‘%t2l£ %ha(u,fn)
dh(x,y)
hx (X,y) = Y =
0x
oh(x,y)
h,(x,y) = Y _

ox




Gaussian filters

O =1 pixel (O =5 pixels (O =10 pixels (J =30 pixels

Convolution with self is anothler Gaussian

Kk

— Convolving two times with Gaussian kernel of
width 0 = convolving once with kernel of width

oV/2




1: Filter Image with derivatives of Gaussian
2D edge detection filters

1 pixel 3 pixels / pixels

Smoothing filters with different scales



The Sobel Operator: A common
approximation of derivative of gaussian

* Common approximation of derivative of Gaussian
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e The standard defn. of the Sobel operator omits the 1/8 term

— doesn’t make a difference for edge detection
— the 1/8 term is needed to get the right gradient value

23



Canny edge detector

‘ edge(image,’canny’)

1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them



2: Gradient: Find edge strength (magnitude)
and direction (angle) of gradient

oh(x,y) -x
h(x,y)= =
(%.7) ox 2o’

oh(x, —X
By (x,y) = 20 _

ox 2o’

Magnitude: h (x,y)*+h, (x,y)* Edge strength

hy(x,y))
h (x,y)

Angle: arctan( Edge normal



Image Gradient: gradient points in the direction of most rapid

increase in intensity
v/ = [30] L V7 =15 %]

Can think of it as the slope of a 3D surface

Gradient at a single point (x,y) is a vector:
* Direction is the direction of maximum slope:

0 =tan~1 (3L/90)

* Length is the magnitude (steepness) of the slope

1Vl = /(GD* + (3




3D plot of luminance

Original image




Gradient magnitudes at scale 1 Gradient magnitudes at scale 2

Issues:

1) The gradient magnitude at different scales is different; which should
we choose?

2) The gradient magnitude is large along thick trails; how do we identify
the significant points?

3) How do we link the relevant points up into curves?

4) Noise.

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.



Canny edge detector

‘ edge(image,’canny’)
1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them



Gradient magnitude is
large

an appropriate
cutting direction
the peak in

that direction

IEiEisicsist=rel

e

Goal: mark points along the curve where the magnitude is biggest.
How? looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve.
There are then two algorithmic issues:

-at which point is the maximum

-where is the next one?

Forsyth, 2002



Non maximum suppression: check if pixel is local maximum
along gradient direction

o o ® o @ e ® e e
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Gradient ‘ Gradient
=U " : /“‘JA\\¥__“_F7 | =
® ® O o ® T e ® e 0
I
® ® ® ® ® ® ® o
At g, we have a maximum (1) if Predicting the next edge point: Assume the
the value is larger than those marked point is an edge point. Then we
at both p and at r. construct the tangent to the edge curve
Interpolate between p and rto (which is normal to the gradient at that
get these values. point) and use this to predict the next

points (here either ror ).



Examples:
Non-Maximum Suppression

Non-maxima

Original image Gradient magnitude Suppressed

(remaining pixels are the loca

Maximum
But some edges are broken )



Canny edge detector

‘ edge(image,’canny’)
1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them



Closing edge gaps

e Check that maximum value of gradient
value is sufficiently large
— drop-outs? use hysteresis

® use a high threshold to start edge curves and a
low threshold to continue them.
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Not an edge —— Labeled as edge — Pixel number in linked list

along gradient maxima



Example: Canny Edge Detection

gap is gone

Original | >trong +
S de connected
J weak edges
Strong Weak
edges edges

only

coesy of G. Loy
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Canny Edge Detect

Example




Examp\e Canny Edge Detection
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530 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL 26, NO.5, MAY 2004

Learning to Detect Natural Image Boundaries
Using Local Brightness, Color,
and Texture Cues

David R. Martin, Member, IEEE, Charless C. Fowlkes, and Jitendra Malik, Member, IEEE

Abstract—The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements.
We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In
order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground
truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present
precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are
1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is
required to detect boundaries in natural images.

https://lwww2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
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Slides credit: Jitendra Malik



Slides credit: Jitendra Malik



Slides credit: Jitendra Malik



Precision

Fig. 3. Two Decades of Boundary Detection. The performance of our
boundary detector compared to classical boundary detection methods
and to the human subjects’ performance. A precision-recall curve is
shown for each of five boundary detectors: 1) Gaussian derivative (GD),
2) Gaussian derivative with hysteresis thresholding (GD+H), the Canny
detector, 3) A detector based on the second moment matrix (2MM), 4) our
gray-scale detector that combines brightness and texture (BG+TG), and
5) our color detector that combines brightness, color, and texture
(BG+CG+TG). Each detector is represented by its precision-recall curve,
which measures the trade off between accuracy and noise as the
detector’s threshold varies. Shown in the caption is each curve’s
F-measure, valued from zero to one. The F-measure is a summary
statistic for a precision-recall curve. The points marked by a “+” on the plot
: : show the precision and recall of each ground truth human segmentation

: : *| when compared to the other humans. The median F-measure for the
F=0.58 @(0.67,0.51) GD + human subjects is 0.80. The solid curve shows the F=0.80 curve,
F=0.58 @(0.65,0.53) GD+H * representing the frontier of human performance for this task.

F=0.60 @(0.66,0.55) 2MM  |...............
F=0.65 @(0.70,0.60) BG+TG
F=0.67 @(0.71,0.64) BG+CG+TG
+ Humans

F=0.80 Median Human

0 0.25 0.5 075 1
Recall

0.75

0.5
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Fhttd
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Slides credit: Jitendra Malik



DeepEdge: A Multi-Scale Bifurcated Deep Network

for Top-Down Contour Detection
Submitted on 2 Dec 2014

Gedas Bertasius Jianbo Shi Lorenzo Torresani
University of Pennsylvania University of Pennsylvania Dartmouth College
gbertal@seas.upenn.edu jshi@seas.upenn.edu lt@dartmouth.edu
Sample patches on B ] s e e B _
27x27x256 13x13x384 13x13x384 6x6x256 B
Canny edges 55x55x96 . g
L o 1X%6X3. |:| O Classification Branch
o 1
227%227x3 - D] \
x3x384 x% X3\ ‘ | s12
B 1024
3x3x384 X;(E X
_ [=]
. ~|o
OB ax1x256e3 |:| O Regression Branch
\m] 1
G_I i E 512
Fixed Weights Learned Weights

https://arxiv.org/abs/1412.1123



DeepEdge: A Multi-Scale Bifurcated Deep Network

for Top-Down Contour Detection
Submitted on 2 Dec 2014

Gedas Bertasius Jianbo Shi Lorenzo Torresani
University of Pennsylvania University of Pennsylvania Dartmouth College
gbertal@seas.upenn.edu Jjshil@seas.upenn.edu lt@dartmouth.edu

Precision

03T @ [F=.80] Human

https://arxiv.org/abs/1412.1123

0.2}

0.1H

0
0

e [F . 753] DeepEdge T

s [F=.753] Nd—fields [10]
s [F=.747] MCG [2]
e [F=.746) SE [8]

e [F=.739] SCG [27]
s [F=.737] PMI [14]

s [F=.727] Sketch Tokens [19] |

[F=.726] gPb-owt-ucm [1]
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0.5 0.6
Recall
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Holistically-Nested Edge Detection

Zhuowen Tu
Dept. of CogSci and Dept. of CSE
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

Saining Xie
Dept. of CSE and Dept. of CogSci
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

s9xie@eng.ucsd.edu

ztulucsd.edu

(f) HED: side output 4
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(i) Canny: 0 =8
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https://arxiv.org/pdf/1504.06375.pdf (g) Canny: 0 = 2 (h) Canny: o = 4




Saining Xie
Dept. of CSE and Dept. of CogSci
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

s9xie@eng.ucsd.edu

https://arxiv.org/pdf/1504.06375.pdf

Precision
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Holistically-Nested Edge Detection

Zhuowen Tu

Dept. of CogSci and Dept. of CSE
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

ztulucsd.edu

® [F=.800] Human

e [F=.782] HED (ours)

= [F=.756] DeepContour
[F=.756] CSCNN
[F=.753] DeepEdge

m—— [F=.749] OEF

e [F=,747] SE+multi-ucm

[F=.746] SE

[F=.739] SCG

= [F=.727] Sketch Tokens |-

[F=.726] gPb-owt-ucm
= [F=.723] ISCRA
[F=.694] Gb
=== [F=.640] Mean Shift
[F=.640] Normalized Cuts
s [F=.610] Felz—Hutt
[F=.600] Canny

0

0.1 0.2 0.3



CASENet: Deep Category-Aware Semantic Edge Detection

Zhiding Yu* Chen Feng* Ming-Yu Liu" Srikumar Ramalingam’
Carnegie Mellon University Mitsubishi Electric Research Laboratories (MERL)
yzhiding@andrew.cmu.edu cfeng@merl.com, mingyul@nvidia.com, srikumar@cs.utah.edu
sidewalksbuilding | buldingsrafficsign _ buildingscar
building building+vegetation  road+pole building+sky pole+car building+person  pole+vegetation

(c) CASENet output

https://arxiv.org/pdf/1705.09759.pdf



Input Image Canny Edges Raw DeepEdges Thresholded DeepEdges ~ Ground Truth Edges







1.1 Bottom-up segmentation

* Group together similar-looking pixels
— "Bottom-up” process
— Unsupervised

* Bottom-up segmentation

o~ '
g ""‘" A

— Clustering
— Mean shift
— Graph-based

"superpixels”



Issues

 How do we decide that two pixels are
likely to belong to the same region?

 How many regions are there?



Method 1: Clustering

» Cluster similar pixels (features) together

R=255
R= G=200
G= ; B=250
B=20 ' s (R=245J

=220

Source: K. Grauman



Segmentation as clustering

o Cluster together (pixels, tokens, etc.) that belong
together...

e Agglomerative clustering
— attach closest to cluster it is closest to
— repeat
e Divisive clustering
— split cluster along best boundary
— repeat
e Dendrograms
— yield a picture of output as clustering process continues

Chapter - Forsyth & Ponce



A simple segmentation algorithm

e Each pixel is described by a vector
z=1[r,g,blor[Yuyv], ...

® Run a clustering algorithm (e.g. k-means)
using some distance between pixels:

D(pixel ;, pixel ) =1l z; - z; |2



Dendogram

Dendrogram obtained by
Data set agglomerative clustering

A

|

distance

i

123456




A Dendrogram Shows How the
Clusters are M?rged Hierarchically

Decompose data objects into several levels of nested partitioning (tree of
clusters), called a dendrogram.

A clustering of the data objects is obtained py cutting the dendrogram at
the desgired level. Then each connected component forms a cluster.




K-Means Clustering

* Given k, the k-means algorithm consists of four steps:

— Select initial
faer?;ffs ot K-means clustering example
— Assign each . ' a3
object to the ° .. ° .;."‘
cluster with the B s s |
nearest centroid. ¢ |
— Compute each o X ”
centroid as the . |
mean of the & &
objects assigned o ®
to Jit. J el o s o
— Repeat previous 2 . -
steps until no
change.




e K-means (k=5) clustering based on intensity
(middle) or color (right) is essentially vector
quantization of the image attributes

— Clusters don’t have to be spatially coherent

Image Intensity-based clusters ~ Color-based clusters

See pdf chapter 14 each pixel is replaced with the mean value of its cluster



K-means using

color alone

(k=11 clusters)
Showing 4 of the
segments, (not
necessarily connected)
Some are good, some
meaningless




Including spatial relationships

Augment data to be clustered with spatial

coordinates.
/Y\ )  Cluster similar pixels (features) together
1 | ~color coordinates Fgm .
B= g L
or r,g,b ) g
Z = Y _ ( g ) i((= G |
x A Ri1 5 ) ’
-spatial coordinates S
V). v { }
B=2
X=100
Y=200



e Clustering based on (r,g,b,x,y) values
enforces more spatial coherence

K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing or useful segmentation
No measure of texture

Hard to pick K...



K-Means for segmentation

® Pros
— Very simple method
— Converges to a local minimum of the error

function outlier
e Cons
— Memory-intensive YA Unieshable dim
— Need to pick K g s tler
- Sensitive to initialization |, ¢ | " e
— Sensitive to outliers °

(B): Ideal clusters

Slide credit: S. Lazebnik



Method 2: Mean shift ¢

e An advanced and versatile tec

ustering

nnique for

clustering-based segmentation

j Segmented "landscape 1" Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.




Mean shift algorithm

The mean shift algorithm seeks modes or local
maxima of density in the feature space

Feature space
(L*u*v* color values)

50

-50
100~

80

100




Mean Shi

Mean Shift Algorithm

1. Choose a search window size.

t Algorithm

2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

Two issues:

(1) Kernel to interpolate
density based on sample
positions.

(2) Gradient ascent to mode.



Search
window

Center of
mass

| Mean Shift
® ) vector

Slide by Y. Ukrainitz & B. Sarel



Search
® 5 window
4 )
Center of
® mass
\_
® 9
PY [
Py ®
[
[
[
[
Mean Shift
@ vector

Slide by Y. Ukrainitz & B. Sarel



® Search
® 5 window
4 )
Center of
® mass
1\
® 9
[
PY [
Py ®
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[
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® Mean Shift
@ vector

Slide by Y. Ukrainitz & B. Sarel



® Search
® 5 window
4 )
Center of
® mass
1\
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® Mean Shift
@ vector

Slide by Y. Ukrainitz & B. Sarel



® Search
® ® '
® @ 5 window

o
o
o
N
J

Center of
mass

® ® ® Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel



® Search
® ® '
® @ 5 window

o
o
o
N
J

Center of
mass

® ® ® Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel



Slide by Y. Ukrainitz & B. Sarel

Search
window

J L

N\

Center of
mass




Mean shitt clustering

o Cluster: all data points in the attraction
basin of a mode

e Attraction basin: the region for which all
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel



Mean Shift Segmentation

Convert the image into tokens (via color, gradients, texture measures etc).
Choose initial search window locations uniformly in the data.

Compute the mean shift window location for each initial position.

Merge windows that end up on the same “peak” or mode.

The data these merged windows traversed are clustered together.

abkw -

100 T T T 100

80

60

S5 40

20

oy g

" i ey B W a i f Y — i ot ol ey e t) L 1
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
L L

Pixels in L*u* space Clustering results after
~160 mean shift procedures

NORMALIZED DENSITY

®

o i

Corresponding trajectories with peaks marked as red dots
Szeliski — Chapter 5 — Segmentation, 5.3 Mean shift



Window in image domain
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Center of mass of pixels within
both image and range domain
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Apply mean shift jointly in the image (left col.)
and range (right col.) domains

Intensities of pixels within
1maﬁe domz(lgrn |w|3I1:dow @

Window in
range domain

Center of mass of pixels within
both image and range domain
windows

—

L 1 &




Mean Shift color & spatial Segmentation
Results:




Mean shift pros and cons

e Pros

— Clusters are places where data points tend to be
close together

— Just a single parameter (window size)
— Finds variable number of modes
— Robust to outliers

* Cons
— Output depends on window size
— Computationally expensive
— Does not scale well with dimension of feature space

Slide credit: S. Lazebnik



Method 3: Graph-Theoretic Image
Segmentation

Build a weighted graph G=(V,E) from image
V: image pixels

E: connections
between pairs of
nearby pixels

W, . probability that 1 &

belong to the same

A different way of thinking about segmentation... .
region

Segmentation = graph partition



Segmentation by graph cut

' 3

e Fully connected graph (node for every pixel i,j)
e Edge/link between every pair of pixels: p,q
e Fach edge is weighted by the affinity or similarity of the two nodes:

— cost ¢, for each link: ¢, measures similarity (or affinity)

Pq
— similarity is inversely proportional to difference in color and position



Segmentation by graph cut

e Break Graph into Segments

— Delete links that cross between segments
— Easiest to break links that have low cost (similarity or
affinity)
* similar pixels should be in the same segments
e dissimilar pixels should be in different segments

Source: S. Seitz



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data * &

2a- Build a similarity graph
2b- Build a similarity/affinity matrix

v oA

Similarities

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors




1- Vectors of data

We represent each pixel by a feature vector x, and define a distance function
appropriate for this feature representation (e.g. euclidean distance).

Features can be brightness value, color—- RGB, L*u*v; texton histogram, etc-
and calculate distances between vectors (e.g. Euclidean distance)

E

186
181
178
194
201
188
172
157
163

187 179 176 176
180 169 165 165
177 171 172 172
178 178 184 188
193 191 195 200
201 199 201 205
186 183 185 191
171 172 174 175
158 163 164 162
163 165 165 163

Textons



Computing distance

* We represent each pixel by a feature
vector X, and define a distance function
appropriate for this feature representation

* Then we can convert the distance
between two feature vectors into an
attinity/similarity measure with the help of
a generalized Gaussian kernel:

1
. 2
exp| — dist(x, X
( 20~ o

Slide credit: S. Lazebnik



Affinity between pixels

Similarities among pixel descriptors

W;; = exp(-|| z - z ||/ 0?)

N o = Scale factor...
it will hunt us later




Affinity between pixels

Similarities among pixel descriptors

— 2 2
Wi =exp(-ll z -z [|*/ o2)
_ N o = Scale factor...
Interleaving edges it will hunt us later

W; =1 -max Pb

Line between i and j

With Pb = probability of boundary




Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,Xj), partition the data into

groups so that points in a group are similar and points in different groups are dissimilar.

o
1- Get vectors of data o0

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors



2a- What is a graph?

d i _
Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



2a- What is a graph?

Q
@
o
o o

(@)
(@)

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



2a- What is a graph?

a b ¢ d e
a‘\b 201
1 0
O

0 el - - - -0
d l i

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



2a- What is a graph?

d i _
Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



2a- What is a graph?

a b ¢ d e
] al0 1 0 0 1]
b b11 0 0 0 0
. C
-0 00 0 0 1
o d10 0 0 0 1
@
] el 0 1 1 0]

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



2a- What is a weighted graph?

Affinity Matrix represents the weighted links

a b c d e
1.1 300 |2
01 4 0.2 |b
w=| 34 1.6.7 |c¢
00 611 |d
0.2 7 11 |le
Diagonal: each point with itself is 1 VV;J- DI‘Obablhty that1 &J

Strong links/edges
Weak links/edges belong to the same
No links/edges connected i
region
i,j are the pixels in the image

See Forsyth-Ponce chapter
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Connectivity

Similarity Graphs: Model local neighborhood relations between data points
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E.g. Gaussian kernel similarity function

2
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WZ] —e] 22 3 Controls size of neighborhood

See Forsyth-Ponce chapter



2b- Building Aftinity Matrix

A weighted graph Weight matrix associated with the graph
0.1 : (larger values are lighter)
2 3 2
2 4
> /
1
2 0.1
1
2 3 2 A cut of the graph: two tightly linked
2 4 components. This cut decomposes
S 7 the graph’s matrix into two main
1 blocks on the diagonal

We can do segmentation by finding the minimum cut in a graph.



Graph terminology

Weight matrix associated with the graph
(larger values are lighter)

Slides from Jianbo Shi



Scale affects aftinity

W, = exp(-|| z - z |2/ 52)
* Small o: group only nearby points
* Large o: group far-away points 10 poits ravns

from a normal
distribution with four

R different means
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See Forsyth-Ponce chapter



Aftinity matrix of a natural image

N pixels

Similarity of image pixels to selected pixel
Brighter means more similar

M pixels

N

] N*M pixels

N*M pixels -



Graph terminology

e Degree of node:

d; = sz‘,j
j

++

L
=)
ol
-
o
3

30

Slides from Jianbo Shi



e \Volume of set:

vol(A)=) d,AcV

Graph terminology
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+
+
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Slides from Jianbo Shi



Cuts in a graph:

20

10

Graph terminology
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Slides from Jianbo Shi



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,Xj), partition the data into

groups so that points in a group are similar and points in different groups are dissimilar.

o
1- Get vectors of data o0

2a- Build a similarity graph

2b- Build a similarity matrix Similarities

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors



Data

VoA
? / cluster

Similarities Affinity Matrix

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University



Spectral clustering: Using
Eigenvalues of the matrix

e spectral clustering uses the eigenvalues of the similarity/affinity
matrix of the data to perform dimensionality reduction before
clustering in fewer dimensions

Affinity matrix

Reorganized Affinity matrix

. Compute
eigenvectors

w(i,j)=> distance node i to node j



An ideal case

11 1 1 0 0
11 1 1 0 0
11 1 1 0 0
W=[1 1 1 1 0 O
O 00 0 1 1
0000 1 1]
Affinity Matrix

What are the eigenvectors of this matrix?

On Spectral Clustering: Analysis and an algorithm. Andrew Y. Ng, Michael
I. Jordan, Yair Weiss, NIPS 2001



An ideal case

Eigenvectors:

111 1 00 1 0
111 1 00 1 0
111 1 00 1 0
W=[1 11100 1 o0
O 0 00 1 1 0 1
0000 1 1] 0 1
Affinity Matrix AN=4 A=2

On Spectral Clustering: Analysis and an algorithm. Andrew Y. Ng, Michael
I. Jordan, Yair Weiss, NIPS 2001



An ideal case

But we do not know the ordering, so W with have some random permutation:
® o
@ O
o @

On Spectral Clustering: Analysis and an algorithm. Andrew Y. Ng, Michael
I. Jordan, Yair Weiss, NIPS 2001



An ideal case

But we do not know the ordering, so W with have some random permutation:
Eigenvectors:

® o i .
® o 1 01 0 1 1 1 0
o © 010100 0 1
1 01 0 1 1 1 0
—
W=l0 1 0 1 0 O 0 1
1 01 0 1 1 1 0
101 0 1 1] 10
Afﬁnlty Matrix A=4 \=2

On Spectral Clustering: Analysis and an algorithm. Andrew Y. Ng, Michael
I. Jordan, Yair Weiss, NIPS 2001



What are eigenvectors?

Eigenvectors represent the dimensions of data
Eigenvalues are the length of eigenvectors

In a case of two variables,
Eigenvectors are the two lines
drawn in the scatterplot

largest eigenvalue

smallest eigenvalue

47 largest eigenvalue
7777 - p—
/ smallest eigenvalue

A linear relationship between variables

=1

oo



Eigenvectors example

Histogram of the sample

E
6.
4}
2.
I I .
% 2 4 & 8 10
Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4
_0.0707 0.05} 005} | [ oosh
~0.0707 o ) e A A R A
-0.05} N - | -005
00707} \ % N/ )
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

1st Eigenvector is the all ones vector 1 (if graph is connected)
e2nd Eigenvector thresholded at O separates first two clusters from last two
e k-means clustering of the 4 eigenvectors identifies all 4 clusters



Spectral Clustering pipeline

2
7 X(i)_X(j)H2

o} Matrix V after
Spectral Clustering

— - Affinity matrix M

Data are projected into a lower-dimensional space (spectral/eigenvector domain)
where they are easily separable

Given number k of clusters, compute the first k i Vv v
eigenvectors, V1, ..., Vk of the affinity matrix M Zi |vii vi2 w13
Build the matrix V with the eigenvectors as columns @ | : :
Interpret the rows of V as new data points Zi Z: |y W s

Cluster the points Zi with the k-means algorithms

Dimensionality reduction
nxn=>nxk



Block weight matrices have block eigenvectors:

Eigenvectors and blocks

O | =]

— O | O

O |1 | = | =

e el BN M a)

eigensolver

}\«1= 2 }\,2= 2
1 0
1

0 1
0 1

Near-block matrices have near-block eigenvectors:

1|1 ].2
1|1 |0]-2
2 1 |1
0 1-21111

eigensolver

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

h=2.02 A= 2.02
71 0
.69 -.14
14 .69
0 71
el e2

;\,3= O
;\,4= O

7\,3= '002
7\,4= '002



Spectral Space

Can put items into blocks by eigenvectors:

1|1 ].2
1 -2
2 1 |1
2101 11

1
69
14

€4

-.1
.69
1

€

=

Clusters clear regardless of row ordering:

211
2 1
1 ]-2
1 -2 1

71
14
.69

€4

.69
_14
71

€)

=

5

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University



Example eigenvector
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Affinity matrix

See Forsyth Ponce, Chapter 14 given

1.“I‘. P Y

Eigenvector (larggst)

10

15

The eigenvector corresponding to the largest eigenvalue
of the affinity matrix. Most values are small, but some,
corresponding to the elements of the main cluster, are large

0.05
0.05 045
0 0475
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* =
s n

S %10t 15720, 25 30" 354

The 3 next eigenvectors corresponding to the next 3 largest eigenvalues
of the affinity matrix. Most values are small but for (disjoint) sets of elements
the values are large. This follows from the block structure of the affinity matrix



Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,Xj), partition the data into

groups so that points in a group are similar and points in different groups are dissimilar.

o
1- Get vectors of data o0

2a- Build a similarity graph

2b- Build a similarity matrix Similarities

3- Calculate eigenvectors

4- Cut the graph:
apply threshold to eigenvectors




Clustering — How many groups are
there?
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Out of the various possible partitions, which is the correct one?



Clustering — 5 groups

Optimal?
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Clustering — 5 groups

Looks optimal
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What does the Affinity Matrix Look Like?
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The Eigenvectors and the Clusters-

Step-Function like
behavior preferred! 2nd Eigenvector

Makes Clustering
Easier.

1st Eigenvector

05
. y ] o . oo 200 30 0 100 200 300
05 . 4nd Eigenvector &nd Eigenvector
1 . .
0 00 200 300

0 100 200 00 0 100 200 300



The Eigenvectors and the Clusters-

2nd Eigenvector 3nd Eigenvector

1st Eigenvector
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The Eigenvectors and
the Clusters

Eigenvector #8

#1

#2

#3

#4

#5



Clustering — Example 2

Dense
Square
Cluster

Sparse

\I Square

- Cluster

Sparse
Circle
Cluster




The Aftfinity Matrix
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The eigenvectors correspond the 2"? smallest to the 9t smallest eigenvalues

-




Issue: Number of Clusters ?
k=3 k=4 k=6

LT ] :'h': Latp
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Graph-based Image Segmentation

Goal: Given data points X1, ..., Xn and similarities w(Xi,Xj), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

o
1- Get vectors of data o0

2a- Build a similarity graph

2b- Build a similarity matrix Similarities

3- Calculate eigenvectors

4- Cut the graph:

apply threshold to eigenvectors



Graph cut

Cuts in a graph:
cut(A,4) = EW’«/

. . )
ieq, jeA
20 <
L
g s + *
* . + + .
- »
4 e > "o L S s
* ' “ “ ’
e * -
‘. e 6
-
s % N * .
e v ot . 8
‘ -
o - -
' o + ’0 ¢ &
1 n *
Yy ‘0‘ .
+
. A
-
A
10 10 0 0

*Set of edges whose removal makes a graph disconnected
eCost of a cut: sum of weights of cut edges
*A graph cut gives us a segmentation



Partition a graph with minimum cut

cut(A, B) = Z w(u, v)
ueA,veB
e Cut: sum of the weight of the cut edges:

 Minimum cut is the cut of minimum weight



Drawbacks of Minimum Cut

* Weight of cut is directly proportional to the
number of edges in the cut.

ooo |0 o .

Cuts with
®e ® O ® lesser weight
000 than the

e e
Ideal Cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

1deal cut




Normalized Cut is a better measure ..

e \We normalize by the total volume of connections
cut(A,B)  cut(A,B)
assoc(A,V)  assoc(B,V)

Ncut(A, B) =

cut(A,B) . cut(A,B)

Ncut(A,B) =
assoc(A,V) assoc(B,V)

where assoc(A, V) = ), ca ey w(u, t)



Normalized Cut As Generalized
Eigenvalue problem

Neu(A By _WAB) | cu(AB) D, =YW,
" assoc(AV)  assoc(B,V) J
10" (D=W)+x) (1=0'(D-W)(1-¥) D D)
) k1 DI (I-k'DL 7Y DG,i)

after simplification, Shi and Malik derive
T
D-Ww .
Newt(A, By= 2 a W withy € {L-b}.y" DI =0.
y Dy
W = affinity matrix

For detailed derivation: http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf




Normalized cuts

Minimize: o o
y' (D-W)) &
Ncut(A,B)= , withy. E{l -b},y"' D1 =0.
Dy
max (y ( W)y) subject to (y Dy = 1

* Instead, solve the generalized eigenvalue problem
(D-W)y=ADy

« They show that the 2" smallest eigenvector solution y is a good
real-valued approx to the original normalized cuts problem. Then
you look for a quantization threshold that maximizes the criterion --
- i.e all components of y above that threshold go to one, all below
go to -b

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Many different methods...

Goal: Given data points X1, ..., Xn and similarities w(Xi,X]), partition the data into
groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data 1- Get vectors of data
2- Build a similarity graph 2- Build normalized cost matrix
3- Calculate eigenvectors 3- Get eigenvectors with

smallest eigenvalues

4- Apply threshold to largest

sigenvectors 4- Apply threshold

Shi & Malik

.. etc



Global optimization

* In this formulation, the segmentation
becomes a global process.

» Decisions about what is a boundary are
not local (as in Canny edge detector)



Graph-based Image Segmentation

Eigenvector » Discretization/Th
X(W) resholding

Intensity Affinity matrix
Color (W)

Edges ‘
Texture
1 1 (D-W)X =ADX
NCW(A,B):cut(A,B)[VOZ(A)+VOZ(B)] X0 1 if ied
l)=
§ 0 if igA

Slide from Timothee Cour






The Eigenvectors
Eigenvector #



Normalized cut

— Ly Eigenvector #1 Eigenvector #2 Eigenvector #3

| 1
P . . .

Eigenvector #4 Eigenvector #5 Eigenvector #6 Eigenvector #




Normalized cut




Normalized cut










Fully Convolutional Networks for Semantic Segmentation

Jonathan Long”* Evan Shelhamer® Trevor Darrell
UC Berkeley

forward /inference

backward/learning

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.



