6.869: Advances in Computer Vision

Antonio Torralba \& William T. Freeman

Lecture 15

Edges and segmentation

From Pixels to Perception:
Mid-level operations of Segmentation and Grouping

back

Figure / Ground

Finding groups of pixels that go together (parts, objects, textures, holes)

Predicted scene categories forest - broadleaf (0.498), swimming hole (0.402), bayou (0.062)

Predicted scene categories ${ }^{\text {: }}$ forest - broadleaf (0.979)

Figure / Ground

A "simple" segmentation problem

It can get a lot harder

Brady, M. J., \& Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Segmentation is a global process

What are the occluded numbers?

Segmentation is a global process

What are the occluded numbers?
Occlusion is an important cue in grouping.
... but not too global

Groupings by Invisible Completions

Emergence

http://en.wikipedia.org/wiki/Gestalt psychology

Perceptual organization

"...the processes by which the bits and pieces of visual information that are available in the retinal image are structured into the larger units of perceived objects and their interrelations"

Stephen E. Palmer, Vision Science, 1999

Gestalt principles

There are hundreds of different grouping laws

Parallelism

Symmetry

Continuity

Closure

Familiar configuration
I. Edges

Finding edges: Computing derivatives

Canny edge detector

```
edge(image,'canny')
```


1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression
4. Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them

1: Filter Image with derivatives of Gaussian 2D edge detection filters

Gaussian
$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$

$$
\begin{aligned}
& h_{x}(x, y)=\frac{\partial h(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& h_{y}(x, y)=\frac{\partial h(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

derivative of Gaussian (x)

$$
\frac{\partial}{\partial x} h_{\sigma}(u, v)
$$

Gaussian filters

$$
\sigma=1 \text { pixel }
$$

$\sigma=5$ pixels

$\sigma=10$ pixels
$\sigma=30$ pixels

Convolution with self is another Gaussian

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

- Convolving two times with Gaussian kernel of width $\sigma=$ convolving once with kernel of width $\sigma \sqrt{2}$

1: Filter Image with derivatives of Gaussian 2D edge detection filters

1 pixel

3 pixels
7 pixels
Smoothing filters with different scales

The Sobel Operator: A common approximation of derivative of gaussian

- Common approximation of derivative of Gaussian

$\frac{1}{8}$| -1 | 0 | 1 |
| :--- | :--- | :--- |
| -2 | 0 | 2 |
| -1 | 0 | 1 |
| s_{x} | | |

$\frac{1}{8}$| 1 | 2 | 1 | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | |
| -1 | -2 | -1 | |
| s_{y} | | | |

- The standard defn. of the Sobel operator omits the $1 / 8$ term
- doesn't make a difference for edge detection
- the $1 / 8$ term is needed to get the right gradient value

Canny edge detector

edge(image,'canny')

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them

2: Gradient: Find edge strength (magnitude) and direction (angle) of gradient

$$
\begin{aligned}
& h_{x}(x, y)=\frac{\partial h(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& h_{y}(x, y)=\frac{\partial h(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Magnitude: $h_{x}(x, y)^{2}+h_{y}(x, y)^{2}$ Edge strength
Angle: $\quad \arctan \left(\frac{h_{y}(x, y)}{h_{x}(x, y)}\right)$
Edge normal

Image Gradient: gradient points in the direction of most rapid increase in intensity

$$
\nabla f=\left[\frac{\partial f}{\partial x}, 0\right]
$$

$$
\nabla f=\left[0, \frac{\partial f}{\partial y}\right]
$$

Can think of it as the slope of a 3D surface Gradient at a single point (x, y) is a vector:

- Direction is the direction of maximum slope:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- Length is the magnitude (steepness) of the slope

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Original image

3D plot of luminance

Gradient

Gradient magnitudes at scale 1
Issues:

1) The gradient magnitude at different scales is different; which should we choose?
2) The gradient magnitude is large along thick trails; how do we identify the significant points?
3) How do we link the relevant points up into curves?
4) Noise.

The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.

Canny edge detector

edge(image,'canny')

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them

Gradient magnitude is large
> an appropriate cutting direction the peak in that direction

Goal: mark points along the curve where the magnitude is biggest. How? looking for a maximum along a slice normal to the curve (non-maximum suppression). These points should form a curve. There are then two algorithmic issues:
-at which point is the maximum
-where is the next one?

Non maximum suppression: check if pixel is local maximum

 along gradient direction

At q, we have a maximum (1) if the value is larger than those at both p and at r.
Interpolate between p and r to get these values.

Examples:
 Non-Maximum Suppression

Original image

Gradient magnitude

Non-maxima
Suppressed
(remaining pixels are the loca
Maximum)

Canny edge detector

edge(image,'canny')

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them

Closing edge gaps

- Check that maximum value of gradient value is sufficiently large
- drop-outs? use hysteresis
- use a high threshold to start edge curves and a low threshold to continue them.
Gradient magnitude

Example: Canny Edge Detection

Example: Canny Edge Detection

Example: Canny Edge Detection

Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues

David R. Martin, Member, IEEE, Charless C. Fowlkes, and Jitendra Malik, Member, IEEE
Abstract-The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images.

Slides credit: Jitendra Malik

Slides credit: Jitendra Malik

Slides credit: Jitendra Malik

Fig. 3. Two Decades of Boundary Detection. The performance of our boundary detector compared to classical boundary detection methods and to the human subjects' performance. A precision-recall curve is shown for each of five boundary detectors: 1) Gaussian derivative (GD), 2) Gaussian derivative with hysteresis thresholding (GD+H), the Canny detector, 3) A detector based on the second moment matrix (2MM), 4) our gray-scale detector that combines brightness and texture (BG+TG), and 5) our color detector that combines brightness, color, and texture (BG+CG+TG). Each detector is represented by its precision-recall curve, which measures the trade off between accuracy and noise as the detector's threshold varies. Shown in the caption is each curve's F-measure, valued from zero to one. The F-measure is a summary statistic for a precision-recall curve. The points marked by a " + " on the plot show the precision and recall of each ground truth human segmentation when compared to the other humans. The median F-measure for the human subjects is 0.80 . The solid curve shows the $\mathrm{F}=0.80$ curve, representing the frontier of human performance for this task.

Color

Slides credit: Jitendra Malik

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection

Submitted on 2 Dec 2014

Gedas Bertasius	Jianbo Shi	Lorenzo Torresani
University of Pennsylvania	University of Pennsylvania	Dartmouth College
gberta@seas.upenn.edu	jshi@seas.upenn.edu	lt@dartmouth.edu

Sample patches on canny edges

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection

Submitted on 2 Dec 2014

Gedas Bertasius
University of Pennsylvania
gberta@seas.upenn.edu

Lorenzo Torresani
Dartmouth College
lt@dartmouth.edu

Holistically-Nested Edge Detection

Saining Xie
Dept. of CSE and Dept. of CogSci University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
s9xie@eng.ucsd.edu

(a) original image

(d) HED: side output 2

(g) Canny: $\sigma=2$

Zhuowen Tu
Dept. of CogSci and Dept. of CSE
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093
ztu@ucsd.edu

(b) ground truth

(e) HED: side output 3
(f) HED: side output 4

(h) Canny: $\sigma=4$

(c) HED: output

(i) Canny: $\sigma=8$

Holistically-Nested Edge Detection

Saining Xie
Dept. of CSE and Dept. of CogSci
University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
s9xie@eng.ucsd.edu

Zhuowen Tu
Dept. of CogSci and Dept. of CSE
University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
ztu@ucsd.edu

CASENet: Deep Category-Aware Semantic Edge Detection

Zhiding Yu*
Carnegie Mellon University
yzhiding@andrew.cmu.edu

Chen Feng* Ming-Yu Liu ${ }^{\dagger}$ Srikumar Ramalingam ${ }^{\dagger}$ Mitsubishi Electric Research Laboratories (MERL)
cfeng@merl.com, mingyul@nvidia.com, srikumar@cs.utah.edu

(c) CASENet output
https://arxiv.org/pdf/1705.09759.pdf

II. 1 Bottom-up segmentation

- Group together similar-looking pixels - "Bottom-up" process
- Unsupervised
- Bottom-up segmentation
- Clustering
- Mean shift
- Graph-based

"superpixels"

Issues

- How do we decide that two pixels are likely to belong to the same region?

- How many regions are there?

Method 1: Clustering

- Cluster similar pixels (features) together

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together...
- Agglomerative clustering
- attach closest to cluster it is closest to
- repeat
- Divisive clustering
- split cluster along best boundary
- repeat
- Dendrograms
- yield a picture of output as clustering process continues

A simple segmentation algorithm

- Each pixel is described by a vector

$$
z=[r, g, b] \text { or }[Y u v], \ldots
$$

- Run a clustering algorithm (e.g. k-means) using some distance between pixels:

$$
D\left(\text { pixel }{ }_{i}, \text { pixel }_{j}\right)=\left\|z_{i}-z_{j}\right\|^{2}
$$

Dendogram

Dendrogram obtained by

Data set agglomerative clustering

A Dendrogram Shows How the Clusters are Merged Hierarchically

Decompose data objects into several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level. Then each connected component forms a cluster.

K-Means Clustering

- Given k, the k-means algorithm consists of four steps:
- Select initial centroids at random.
- Assign each object to the cluster with the nearest centroid.
- Compute each centroid as the mean of the objects assigned to it.
- Repeat previous 2 steps until no change.

- K-means ($k=5$) clustering based on intensity (middle) or color (right) is essentially vector quantization of the image attributes
- Clusters don't have to be spatially coherent

Intensity-based clusters

Color-based clusters

K-means using color alone ($k=11$ clusters) Showing 4 of the segments, (not necessarily connected) Some are good, some meaningless

Including spatial relationships

Augment data to be clustered with spatial coordinates.

- Cluster similar pixels (features) together

- Clustering based on (r, g, b, x, y) values enforces more spatial coherence

K-means using colour and position, 20 segments

Still misses goal of perceptually pleasing or useful segmentation No measure of texture

Hard to pick K...

K-Means for segmentation

- Pros
- Very simple method
- Converges to a local minimum of the error function
- Cons
- Memory-intensive

- Need to pick K
- Sensitive to initialization
- Sensitive to outliers
(A): Undesirable clusters

outlier

Method 2: Mean shift clustering

- An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift algorithm

The mean shift algorithm seeks modes or local maxima of density in the feature space
image
Feature space
$\left(L^{*} u^{*} v^{*}\right.$ color values)

Mean Shift Algorithm

Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the "mode" or point of highest density of a data distribution:

Two issues:
(1) Kernel to interpolate density based on sample positions.
(2) Gradient ascent to mode.

Slide by Y. Ukrainitz \& B. Sarel

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean Shift Segmentation

1. Convert the image into tokens (via color, gradients, texture measures etc).
2. Choose initial search window locations uniformly in the data.
3. Compute the mean shift window location for each initial position.
4. Merge windows that end up on the same "peak" or mode.
5. The data these merged windows traversed are clustered together.

Center of mass of pixels within both image and range domain windows

indows

Apply mean shift jointly in the image (left col.) and range (right col.) domains

Mean Shift color \& spatial Segmentation Results:

Mean shift pros and cons

- Pros
- Clusters are places where data points tend to be close together
- Just a single parameter (window size)
- Finds variable number of modes
- Robust to outliers
- Cons
- Output depends on window size
- Computationally expensive
- Does not scale well with dimension of feature space

Method 3: Graph-Theoretic Image Segmentation

Build a weighted graph $G=(V, E)$ from image

A different way of thinking about segmentation...

V : image pixels
E: connections
between pairs of nearby pixels
$W_{i j}$: probability that i $\& \mathrm{j}$ belong to the same region

Segmentation $=$ graph partition

Segmentation by graph cut

- Fully connected graph (node for every pixel i, j)
- Edge/link between every pair of pixels: p,q
- Each edge is weighted by the affinity or similarity of the two nodes:
- cost $c_{p q}$ for each link: $c_{p q}$ measures similarity (or affinity)
- similarity is inversely proportional to difference in color and position

Segmentation by graph cut

- Break Graph into Segments
- Delete links that cross between segments
- Easiest to break links that have low cost (similarity or affinity)
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

Graph-based Image Segmentation

Goal: Given data points $\mathrm{X} 1, \ldots, \mathrm{Xn}$ and similarities $w(\mathrm{Xi}, \mathrm{Xj})$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

2a- Build a similarity graph

 2b- Build a similarity/affinity matrix3- Calculate eigenvectors

88

4- Cut the graph: apply threshold to eigenvectors

1- Vectors of data

We represent each pixel by a feature vector \mathbf{x}, and define a distance function appropriate for this feature representation (e.g. euclidean distance).
Features can be brightness value, color- RGB, L*u*v; texton histogram, etcand calculate distances between vectors (e.g. Euclidean distance)

Computing distance

- We represent each pixel by a feature vector \mathbf{x}, and define a distance function appropriate for this feature representation
- Then we can convert the distance between two feature vectors into an affinity/similarity measure with the help of a generalized Gaussian kernel:

$$
\exp \left(-\frac{1}{2 \sigma^{2}} \operatorname{dist}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)^{2}\right)
$$

Affinity between pixels

Similarities among pixel descriptors

$$
W_{i j}=\exp \left(-\left\|z_{i}-z_{j}\right\|^{2} / \sigma^{2}\right)
$$

$\Sigma \sigma=$ Scale factor... it will hunt us later

Affinity between pixels

Similarities among pixel descriptors

$$
\mathrm{W}_{\mathrm{ij}}=\exp \left(-\left\|\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{j}}\right\|^{2} / \sigma^{2}\right)
$$

§ $\sigma=$ Scale factor...
Interleaving edges it will hunt us later

$$
\mathrm{W}_{\mathrm{ij}}=1-\max _{\text {Line beween indij }} \mathrm{Pb}
$$

With $\mathrm{Pb}=$ probability of boundary

Graph-based Image Segmentation

Goal: Given data points $\mathrm{X} 1, \ldots, \mathrm{Xn}$ and similarities $w(\mathrm{Xi}, \mathrm{Xj})$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data

2a- Build a similarity graph

2b- Build a similarity/affinity matrix

Similarities

3- Calculate eigenvectors

88
4- Cut the graph: apply threshold to eigenvectors

2a- What is a graph?

Adjacency Matrix

2a- What is a graph?

$\left.\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array} \quad \begin{array}{lllll}\mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} \\ \mathrm{e} & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0\end{array}\right]$

Adjacency Matrix

2a- What is a weighted graph?

Affinity Matrix represents the weighted links

Diagonal: each point with itself is 1 Strong links/edges
Weak links/edges
No links/edges connected
$W_{i j}$: probability that $\mathrm{i} \& \mathrm{j}$ belong to the same region
i,j are the pixels in the image

* Similarity graph construction

Compactness

Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

$$
W_{i j}=e^{\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma^{2}}}
$$

\longrightarrow Controls size of neighborhood

2b- Building Affinity Matrix

A weighted graph

Weight matrix associated with the graph (larger values are lighter)

A cut of the graph: two tightly linked components. This cut decomposes the graph's matrix into two main blocks on the diagonal

We can do segmentation by finding the minimum cut in a graph.

Graph terminology

- Similarity matrix: $W=\left\lfloor w_{i, j}\right\rfloor$

Scale affects affinity

$$
\mathrm{W}_{\mathrm{ij}}=\exp \left(-\left\|\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{j}}\right\|^{2} / \sigma^{2}\right)
$$

- Small o: group only nearby points
- Large o: group far-away points

Dataset of 4 groups of 10 points drawn from a normal distribution with four different means

Affinity matrix of a natural image

N pixels

Graph terminology

- Degree of node:

$$
d_{i}=\sum_{j} w_{i, j}
$$

Graph terminology

- Volume of set:

$$
\operatorname{vol}(A)=\sum_{i \in A} d_{i}, A \subseteq V
$$

Graph terminology

Cuts in a graph:

$$
\operatorname{cut}(A, \bar{A})=\sum_{i \in A, j \in \bar{A}} w_{i, j}
$$

Graph-based Image Segmentation

Goal: Given data points $\mathrm{X} 1, \ldots, \mathrm{Xn}$ and similarities $w(\mathrm{Xi}, \mathrm{Xj})$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data

2a- Build a similarity graph

$2 b$ - Build a similarity matrix

Similarities

3- Calculate eigenvectors

4- Cut the graph: apply threshold to eigenvectors

Spectral Clustering

Spectral clustering: Using Eigenvalues of the matrix

- spectral clustering uses the eigenvalues of the similarity/affinity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions

An ideal case

What are the eigenvectors of this matrix?

An ideal case

Eigenvectors:

$$
\begin{aligned}
& W=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \longrightarrow \begin{array}{l}
1 \\
0 \\
1
\end{array} \\
& \text { Affinity Matrix } \quad \lambda=4 \quad \lambda=2
\end{aligned}
$$

An ideal case

But we do not know the ordering, so W with have some random permutation:

An ideal case

But we do not know the ordering, so W with have some random permutation:
Eigenvectors:

What are eigenvectors?

Eigenvectors represent the dimensions of data Eigenvalues are the length of eigenvectors

In a case of two variables, Eigenvectors are the two lines drawn in the scatterplot

No relationship between variables

$\frac{\text { largest eigenvalue }}{\text { smallest eigenvalue }}=\infty$

A linear relationship between variables

Eigenvectors example

Histogram of the sample

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4

$1^{\text {st }}$ Eigenvector is the all ones vector 1 (if graph is connected)
$\bullet 2^{\text {nd }}$ Eigenvector thresholded at 0 separates first two clusters from last two

- k-means clustering of the 4 eigenvectors identifies all 4 clusters

Spectral Clustering pipeline

$$
w_{i, j}=e^{\frac{-\left|x_{(i)}-X_{(j)}\right|_{2}^{2}}{\sigma_{X}^{2}}}
$$

Matrix V after
Spectral Clustering

Data are projected into a lower-dimensional space (spectral/eigenvector domain) where they are easily separable

Given number k of clusters, compute the first k eigenvectors, $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ of the affinity matrix M Build the matrix V with the eigenvectors as columns Interpret the rows of V as new data points Zi Cluster the points Zi with the k -means algorithms

	v_{1}	v_{2}	v_{3}
Z_{1}	v_{11}	v_{12}	v_{13}
\vdots	\vdots	\vdots	\vdots
Z_{n}	$v_{n 1}$	$v_{n 2}$	$v_{n 3}$

Dimensionality reduction $\mathrm{n} \times \mathrm{n} \rightarrow \mathrm{n} \times \mathrm{k}$

Eigenvectors and blocks

- Block weight matrices have block eigenvectors:

$$
\lambda_{1}=2
$$

$$
\lambda_{2}=2 \quad \lambda_{3}=0
$$

1	1	0	0
1	1	0	0
0	0	1	1
0	0	1	1

0
0
.71
.71

$$
\lambda_{4}=0
$$

- Near-block matrices have near-block eigenvectors:

1	1	.2	0
1	1	0	-.2
.2	0	1	1
0	-.2	1	1

$\lambda_{2}=2.02$

0
-.14
.69
.71
$e 2$

$$
\lambda_{4}=-0.02
$$

$$
\lambda_{3}=-0.02
$$

Spectral Space

Can put items into blocks by eigenvectors:

1	1	.2	0
1	1	0	-.2
.2	0	1	1
0	-.2	1	1

Clusters clear regardless of row ordering:

1	.2	1	0
.2	1	0	1
1	0	1	-.2
0	1	-.2	1

Example eigenvector

Affinity matrix

The eigenvector corresponding to the largest eigenvalue of the affinity matrix. Most values are small, but some, corresponding to the elements of the main cluster, are large

The 3 next eigenvectors corresponding to the next 3 largest eigenvalues of the affinity matrix. Most values are small but for (disjoint) sets of elements the values are large. This follows from the block structure of the affinity matrix

Graph-based Image Segmentation

Goal: Given data points $\mathrm{X} 1, \ldots, \mathrm{Xn}$ and similarities $w(\mathrm{Xi}, \mathrm{Xj})$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data

2a- Build a similarity graph

$2 b-$ Build a similarity matrix

Similarities

3- Calculate eigenvectors

$$
\begin{gathered}
8 \\
88
\end{gathered}
$$ 8

4- Cut the graph: apply threshold to eigenvectors

Clustering - How many groups are there?

Out of the various possible partitions, which is the correct one?

Clustering - 5 groups

Clustering - 5 groups

Looks optimal

What does the Affinity Matrix Look Like?

The Eigenvectors and the Clusters

Step-Function like behavior preferred!

The Eigenvectors and the Clusters

2nd Eigenvector

3nd Eigenvector

5nd Eigenvector

The Eigenvectors and the Clusters

Clustering - Example 2

The Affinity Matrix

$2^{\text {nd }}$ Eigenvector

3rd Eigenvector

(1)

(4)

(7)

(2)

(5)

(8)

(3)

(6)

(9)

The eigenvectors correspond the $2^{\text {nd }}$ smallest to the $9^{\text {th }}$ smallest eigenvalues

Issue: Number of Clusters?

$$
k=3
$$

$$
k=4
$$

$$
k=6
$$

Issue: choice of kernel, for Gaussian kernels, choice of $\boldsymbol{\sigma}$

Graph-based Image Segmentation

Goal: Given data points $\mathrm{X} 1, \ldots, \mathrm{Xn}$ and similarities $w(\mathrm{Xi}, \mathrm{Xj})$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

1- Get vectors of data

2a- Build a similarity graph

 2 b - Build a similarity matrixSimilarities

3- Calculate eigenvectors

4- Cut the graph: apply threshold to eigenvectors

Graph cut

Cuts in a graph:

$$
\operatorname{cut}(A, \bar{A})=\sum_{i \in A, j \in A} w_{i, j}
$$

- Set of edges whose removal makes a graph disconnected - Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation

Partition a graph with minimum cut

$$
\operatorname{cut}(A, B)=\sum_{u \in A, v \in B} w(u, v)
$$

- Cut: sum of the weight of the cut edges:
- Minimum cut is the cut of minimum weight

Drawbacks of Minimum Cut

- Weight of cut is directly proportional to the number of edges in the cut.

Normalized Cut is a better measure ..

- We normalize by the total volume of connections

$$
\begin{gathered}
N \operatorname{cut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, V)} \\
\operatorname{Ncut}(\mathrm{A}, \mathrm{~B})=\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{A}, \mathrm{~V})}+\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(B, \mathrm{~V})}
\end{gathered}
$$

where $\operatorname{assoc}(A, V)=\sum_{u \in A, t \in V} w(u, t)$

Normalized Cut As Generalized Eigenvalue problem

$$
\begin{aligned}
\operatorname{Ncut}(\mathrm{A}, \mathrm{~B}) & =\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{A}, \mathrm{~V})}+\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{B}, \mathrm{~V})} \quad D_{i i}=\sum_{j} W_{i j} \\
& =\frac{(1+x)^{T}(D-W)(1+x)}{k 1^{T} D 1}+\frac{(1-x)^{T}(D-W)(1-x)}{(1-k) 1^{T} D 1} ; k=\frac{\sum_{x_{i}>0} D(i, i)}{\sum_{i} D(i, i)} \\
& =\ldots
\end{aligned}
$$

after simplification, Shi and Malik derive
$\operatorname{Ncut}(A, B)=\frac{y^{T}(D-W) y}{y^{T} D y}$, with $y_{i} \in\{1,-b\}, y^{T} D 1=0$.
$W=$ affinity matrix
For detailed derivation: http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Normalized cuts

$$
\begin{aligned}
& \text { Minimize: } \\
& \quad \operatorname{Ncut}(A, B)=\frac{y^{T}(D-W) y}{y^{T} D y}, \text { with } y_{i} \in\{1,-b\}, y^{T} D 1=0 . \\
& \quad \max _{y}\left(y^{T}(D-W) y\right) \text { subject to }\left(y^{T} D y=1\right)
\end{aligned}
$$

- Instead, solve the generalized eigenvalue problem

$$
(D-W) y=\lambda D y
$$

- They show that the $2^{\text {nd }}$ smallest eigenvector solution y is a good real-valued approx to the original normalized cuts problem. Then you look for a quantization threshold that maximizes the criterion --- i.e all components of y above that threshold go to one, all below go to -b

Many different methods...

 Goal: Given data points $\mathrm{X} 1, \ldots, \mathrm{Xn}$ and similarities $\mathrm{w}\left(\mathrm{Xi}_{\mathrm{i}}, \mathrm{Xj}\right)$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.1- Get vectors of data
2- Build a similarity graph
3- Calculate eigenvectors
4- Apply threshold to largest eigenvectors

1- Get vectors of data
2- Build normalized cost matrix
3- Get eigenvectors with smallest eigenvalues

4- Apply threshold

Global optimization

- In this formulation, the segmentation becomes a global process.
- Decisions about what is a boundary are not local (as in Canny edge detector)

Graph-based Image Segmentation

Eigenvector X(W)

2 2

Discretization/Th resholding

$$
(D-W) X=\lambda D X
$$

$$
X_{A}(i)= \begin{cases}1 & \text { if } \quad i \in A \\ 0 & \text { if } i \notin A\end{cases}
$$

The Eigenvectors

Eigenvector \#\#

Normalized cut

Eigenvector \#1

Eigenvector \# 5

Eigenvector \#2

Eigenvector 欮

Eigenvector \#3

Eigenvector $\#$

Normalized cut

Normalized cut

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long*

Evan Shelhamer*
UC Berkeley

Trevor Darrell

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

