MIT CSAIL

6.869: Advances in Computer Vision

Lecture 16
Textures

What is a texture?

About $45,000,000$ results (0.31 seconds)
dvanced search

 whetentrrectum

 3 6inhmimmate 0 himarmantiond
 norismotmethent 4.
 58 mentintithertit

 yyataricianalayas 84*

 JAMA ANA KムMM Maraged

Which textures are we going to talk about in this lecture?

Stationary
Stochastic

When are two textures similar?

All these images are different instances of the same texture We can differentiate between them, but they seem generated by the same process

Texture Analysis

> input image

True (infinite) texture generated image
Compare textures and decide if they're made of the same "stuff".

Texture Synthesis

Given a finite sample of some texture, the goal is to synthesize other samples from that same texture

- The sample needs to be "large enough"

Let's get a feeling of the mechanisms for
texture perception

What is special about texture perception?

- Pre-attentive texture discrimination
- Perception of sets and summary statistics
- Crowding

REVIEW ARTICLES

Textons, the elements of texture perception, and their interactions

Bela Julesz

Bell Laboratories, Murray Hill, New Jersey 07974, USA

Research with texture pairs having identical second-order statistics has revealed that the pre-attentive texture discrimination system cannot globally process third-and higher-order statistics, and that discrimination is the result of a few local conspicuous features, called textons. It seems that only the first-order statistics of these textons have perceptual significance, and the relative phase between textons cannot be perceived without detailed scrutiny by focal attention.

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Pre-attentive texture discrimination

This texture pair is pre-attentively indistinguishable. Why?

PERSPECTIVE

The uncrowded window of object recognition

Denis G Pelli \& Katharine A Tillman

Crowding

Pelli, D. G., Cavanagh, P., Desimone, R., Tjan, B., \& Treisman, A. (2007). Crowding: Including illusory conjunctions, surround suppression, and attention. Journal of Vision, 7(2):i, 1, http://journalofvision.org/7/2/i/

A summary-statistic representation in peripheral vision explains visual crowding

Benjamin Balas ${ }^{1}$, Lisa Nakano ${ }^{2}$ and Ruth Rosenholtz 3

Journal of Vision November 19, 2009 vol. 9 no. 12

Research Article

SEEING SETS:
 Representation by Statistical Properties

Dan Ariely
Massachusetts Institute of Technology

Representation of sets

Set

Is this element a member of the set?

Ebbinghaus illusion

The central circle is judged relative to the set properties of the circles surrounding it

Representation

What a model should account for:

1. Biological plausibility: The stages of the model should be motivated by, and be consistent with, known physiological mechanisms of early vision.
2. Generality: The model should be general enough that it can be tested on any arbitrary gray-scale image.
3. Quantitative match with psychophysical data: The model should make a quantitative prediction about the salience of the boundary between any two textured regions. Rank ordering of the discriminability of different texture pairs should agree with that measured psychophysically.

Julesz－Textons

$$
\begin{aligned}
& \text { ட「 ᄀ」ட「 」ト T 」 」ト } \\
& \text { 「フ」レ「フト }-\rightarrow \vdash \vdash T \\
& \text { ட「 ᄀ」ட「トト T ナトT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ட「 ᄀ 」 ட「 」 T ｣ 」 トト } \\
& \text { 「ᄀ」レ「フトT 」 トト T } \\
& \llcorner\ulcorner\neg 」\llcorner 「 \perp \vdash \dashv \perp \perp \vdash \\
& \text { 」 ᄀ 「 ட 」 ᄀ 」 † ト } \perp \perp \text { 「 }
\end{aligned}
$$

Julesz - Textons

Textons: fundamental texture elements.

Textons might be represented by features such as terminators, corners, and intersections within the patterns...

Nature, Vol. 333. No. 6171. pp. 363-364, 26 May 1988

Early vision and texture perception

James R. Bergen* \& Edward H. Adelson**

* SRI David Sarnoff Research Center, Princeton,

New Jersey 08540, USA
** Media Lab and Department of Brain and Cognitive Science,

Observation: the Xs look smaller than the Ls.
"We note here that simpler, lower-level mechanisms tuned for size may be sufficient to explain this discrimination."

Ls 25\% larger
contrast adjusted to keep mean constant

Ls 25\% shorter

$$
\begin{aligned}
& r v>r \vee>r \leqslant v>\leqslant \sim \leqslant r \\
& \hat{\wedge} \vee\rangle+++x \times+x \sim 19 \\
& r \wedge \sim \geqslant+\times \times \times \times \times \times \lll> \\
& v>\wedge \neg++x+x+x>v< \\
& r<7 \text { i } x+x+x \times r<r \\
& 7 \lll x x++x+x \text { rrr } \\
& \wedge \neg \neg r+t+t+x \times \wedge \sim \leqslant \\
& \text { \& } u=x \times x+x \times+23
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle 3 * L J \leqslant<v>{ }^{\wedge} \ll \nu\right\rangle
\end{aligned}
$$

Preattentive texture discrimination with early vision mechanisms

Jitendra Malik and Pietro Perona
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720

Received July 7, 1989; accepted December 28, 1989
We present a model of human preattentive texture perception. This model consists of three stages: (1) convolution of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neuralresponse profiles that results in the suppression of weak responses when there are strong responses at the same or nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of the degree of discriminability of different texture pairs match well with experimental measurements of discriminability in human observers.

Fig. 1. Simplified schematics of our model for texture perception. The image (bottom) is filtered using the kernels $F_{1} \ldots F_{m}$ and is half-wave rectified to give the set of simple-cell responses $R_{1} \ldots R_{n}$. The postinhibition responses $\mathrm{PIR}_{1} \ldots \mathrm{PIR}_{n}$ are computed by thresholding the R_{i} and taking the maximum of the result over small neighborhoods. The thresholds depend on the activity of all channels. The texture gradient is computed by taking the maximum of the responses of wide odd-symmetric filters acting on the postinhibition responses PIR_{i}.

Two big families of models

1- Parametric models of filter outputs

2- Example-based non-parametric models

The trivial texture synthesis algorithm

Texture synthesis and representation

Set of equivalent textures

Space of all images
Set of equivalent textures: generated by exactly the same physical process

Texture synthesis and representation

Set of equivalent textures
 equivalent textures

Set of equivalent textures: generated by exactly the same physical process Set of perceptually equivalent textures: "well, they just look the same to me"

If matching the averaged squared filter values is a good way to match a given texture, then maybe matching the entire marginal distribution (eg, the histogram) of a filter's response would be even better.

Jim Bergen proposed this...

Pyramid-Based Texture Analysis/Synthesis

The main idea: it works by 'kind of' projecting a random image into the set of equivalent textures

Overview of the algorithm

```
Match-texture(noise,texture)
Match-Histogram (noise,texture)
    analysis-pyr = Make-Pyramid (texture)
    Loop for several iterations do
            synthesis-pyr = Make-Pyramid (noise)
            Loop for a-band in subbands of analysis-pyr
            for s-band in subbands of synthesis-pyr
            do
            Match-Histogram (s-band,a-band)
        noise = Collapse-Pyramid (synthesis-pyr)
        Match-Histogram (noise,texture)
```

Two main tools:
1- steerable pyramid
2- matching histograms

1-The steerable pyramid

1-The steerable pyramid

But why do I want to represent images like this?

1-The steerable pyramid

Argument used by H \& B: Statistical measures in the subband representation seem to provide a "distance" between textures that correlates with human perception better than pixel-based representations.

1-The steerable pyramid

In general seems a good idea to have a representation that:
-Preserves all image information (we can go back to the image)
-Provides more independent channels of information than pixel values (we can mess with each band independently)

But all this is just indirectly related to the texture synthesis task. But let assume is good enough...

1-The steerable pyramid

Overview of the algorithm

```
Match-texture(noise,texture)
Match-Histogram (noise,texture)
    analysis-pyr = Make-Pyramid (texture)
    Loop for several iterations do
            synthesis-pyr = Make-Pyramid (noise)
            Loop for a-band in subbands of analysis-pyr
            for s-band in subbands of synthesis-pyr
            do
            Match-Histogram (s-band,a-band)
            noise = Collapse-Pyramid (synthesis-pyr)
            Match-Histogram (noise,texture)
```

Two main tools:
1- steerable pyramid

2- matching histograms

2-Matching histograms

9% of pixels have an intensity value within the range[0.37, 0.41]
75% of pixels have an intensity val smaller than 0.5

5% of pixels have an intensity value within the range[0.37, 0.41]

2-Matching histograms

$$
Z(x, y)
$$

We look for a transformation of the image Y
$Y^{\prime}=f(Y)$
Such that
$\operatorname{Hist}(\mathrm{Y})=\operatorname{Hist}(f(Z))$
$Y(x, y)$

\dagger

Problem: there are infinitely many functions that can do this transformation.

A natural choice is to use f being:

- pointwise non linearity
- stationary
- monotonic (most of the time invertible)

2-Matching histograms

The function f is just a look up table: it says, change all the pixels of value Y into a value $f(Y)$.

$$
Y^{\prime}=f(Y)
$$

$Y=0.8$
Original
intensity

2-Matching histograms

Another example: Matching histograms

5% of pixels have an intensity value within the range[0.37, 0.41]

Another example: Matching histograms

The function f is just a look up table: it says, change all the pixels of value Y into a value $f(Y)$.

$$
Y^{\prime}=f(Y)
$$

Another example: Matching histograms

In this example, f is a step function.

Matching histograms of a subband

Matching histograms of a subband

Texture analysis

(Steerable pyr; Freeman \& Adelson, 91)

The texture is represented as a collection of marginal histograms.

Texture synthesis

Heeger and Bergen, 1995
Input texture

Why does it work? (sort of)

Why does it work? (sort of)

The black and white blocks appear by thresholding (f) a blobby image
Iteration 0
Filter bank

Why does it work? (sort of)

The black and white blocks appear by thresholding (f) a blobby image

Why does it work? (sort of)

Color textures

Three textures

Color textures

Color textures

Color textures

Problem: we create new colors not present in the original image.
Why? Color channels are not independent.

PCA and decorrelation

In the original image, R and G are correlated, but, after synthesis,...

PCA and decorrelation

The texture synthesis algorithm assumes that the channels are independent.
What we want to do is some rotation

See that in this rotated space, if I specify one coordinate the other remains unconstrained.

PCA and decorrelation

PCA finds the principal directions of variation of the data. It gives a decomposition of the covariance matrix as:

$$
\mathbf{C}=\mathrm{D} \mathrm{D}^{\prime} \quad \mathrm{D}=\begin{array}{ccc}
0.6347 & 0.6072 & 0.4779 \\
0.6306 & -0.0496 & -0.7745 \\
0.4466 & -0.7930 & 0.4144
\end{array}
$$

By transforming the original data (RGB) using D we get:

U1

The new components ($\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3)$ are decorrelated.

Color textures

Color textures

Color textures

Color channels

Color channels

Color channels

Examples from the paper

Figure 3: In each pair left image is original and right image is synthetic: stucco, iridescent ribbon, green marble, panda fur, slag stone, figured yew wood.

Examples from the paper

Figure 4: In each pair left image is original and right image is synthetic: red gravel, figured sepele wood, brocolli, bark paper

Examples not from the paper

Input texture

Synthetic texture

But, does it really work even when it seems to work?

But, does it really work???
 How to measure how well the representation constraints the set of equivalent textures?

。

All the textures in this set have the same parameters.

?

How to identify the set of equivalent textures?

We need a space that is more perceptual

We need a space that is more perceptual

How to identify the set of equivalent textures?

These trajectories are more perceptually salient

This set is huge

How to identify the set of equivalent textures?

How to identify the set of equivalent textures?

These trajectories are more perceptually salient

Portilla and Simoncelli

- Parametric representation, based on Gaussian scale mixture prior model for images.
- About 1000 numbers to describe a texture.
- Ok results; maybe as good as DeBonet.

Portilla and Simoncelli

Portilla \& Simoncelli

How to identify the set of equivalent textures?

Now they look good, but maybe they look too good...

A summary-statistic representation in peripheral vision explains visual crowding

Benjamin Balas ${ }^{1}$, Lisa Nakano ${ }^{2}$ and Ruth Rosenholtz 3

Journal of Vision November 19, 2009 vol. 9 no. 12

Zhu, Wu, \& Mumford, 1998

- Principled approach. Based on an assumption of heavy-tailed distributions for an over-complete set of filters.
- Synthesis quality not great, but ok.

Zhu, Wu, \& Mumford

a

- Cheetah

b
Synthetic

De Bonet (and Viola) SIGGRAPH 1997

Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images

Jeremy S. De Bonet =
Learning \& Vision Group
Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EmAIL: jsd@ai.mit.edu
Homepage: http://www.ai.mit.edu/_jsd

DeBonet

Learn: use filter conditional statistics across scale.

Figure 8: The distribution from which pixels in the synthesis pyramid are sampled is conditioned on the "parent" structure of those pixels. Each element of the parent structure contains a vector of the feature measurements at that location and scale.

Figure 9: An input texture is decomposed to form an analysis pyramid, from which a new synthesis pyramid is sampled, conditioned on local features within the pyramids. A filter bank of local texture measures, based on psychophysical models, are used as features.

DeBonet

Two big families of models

1- Parametric models of filter outputs

2- Example-based non-parametric models

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung Computer Science Division University of California, Berkeley Berkeley, CA 94720-1776, U.S.A. \{efros,leungt\}@cs.berkeley.edu

Efros \& Leung Algorithm

Synthesizing a pixel
Assuming Markov property, compute $\mathrm{P}(\mathbf{p} \mid \mathrm{N}(\mathbf{p}))$

- Building explicit probability tables infeasible
- Instead, we search the input image for all similar neighborhoods - that's our pdf for \mathbf{p}
- To sample from this pdf, just pick one match at random

Neighborhood Window

Varying Window Size

Increasing window size

Synthesis Results

french canvas

rafia weave

\square

More Results
white bread

$工$

brick wall

I

Homage to Shannon
 oning int ure unsenseauor

r Dick Gephardt was fai rful riff on the looming nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy 5 people about continuir rrdtbegan, patiently obs ; that the legal system r
co with this latest tanser
thaim. them " "Whephartfe lartifelintomimen el ck Clirtioout omaim thartfelinsuf aut sanento the ry onst wartfe lck Gephtoomimeationl sigab Cliooufit Clinut Cll riff on. hat's yo'dn, parut tly ons yoontonsteht wasked, paim t sahe loo riff on nskoneploourtfeas leil A nst Clit, "Wheontongal s K Cirtioouirtfepe.ong pme abegal fartfenstemem tiensteneltorydt telemephinsverdt was agemer ff ons artientont Cling peme asırtfe atith, "Boui s hal s fartfelt sig pedrtlodt ske abounutie aboutioo tfeonewas yous abownthardt thatins fain, ped, ains. them, pabout wasy arfint countly d, $\ln \mathrm{A} h$ ble emthringbooneme agas fa bontinsyst Clinut ory about continst Clipeouinst Clone agatiff out stome ainemen tly ardt beorabol n, therly as $t ~ G$ cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbout cout congagal comininga mifmst Cliny abon al coountha.emungairt tf oun Whe looorystan loontieph. intly on, theoplegatick ul tatieeontly atie Diontiomt wal s f tbegae ener mothaheat'senenhimas fan. "intehthoryahonsw

Hole Filling

Extrapolation

Image Quilting [Efros \& Freeman]

Input image
Synthesizing a block

- Observation: neighbor pixels are highly correlated Idea: unit of synthesis = block
- Exactly the same but now we want $\operatorname{P}(\mathrm{B} \mid \mathrm{N}(\mathrm{B}))$
- Much faster: synthesize all pixels in a block at once
- Not the same as multi-scale!

Random placement of blocks

Neighboring blocks constrained by overlap

Minimal error boundary cut

Minimal error boundary

overlapping blocks
 overlap error
vertical boundary

min. error boundary

Texture Transfer

- Take the texture from one object and "paint" it onto another object
- This requires separating texture and shape
- That's HARD, but we can cheat
- Assume we can capture shape by boundary and rough
 shading
-Then, just add another constraint when sampling: similarity to underlying image at that spot

parmesan

rice

Pixel Recurrent Neural Networks

Aäron van den Oord Nal Kalchbrenner Koray Kavukcuoglu

AVDNOORD@GOOGLE.COM
NALK@GOOGLE.COM
KORAYK@GOOGLE.COM

Google DeepMind

samples from a model trained on ImageNet 32×32 (right) images.

Conditional Image Generation with PixelCNN Decoders

Aäron van den Oord
Google DeepMind avdnoord@google.com

Lasse Espeholt
Google DeepMind
espeholt@google.com

Nal Kalchbrenner
Google DeepMind
nalk@google.com

Alex Graves
Google DeepMind
gravesa@google.com

Oriol Vinyals
Google DeepMind
vinyals@google.com

Koray Kavukcuoglu
Google DeepMind
korayk@google.com

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Generator

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie* Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio ${ }^{\ddagger}$
Département d'informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Generated images

Trained with CIFAR-10

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Alec Radford \& Luke Metz
indico Research
Boston, MA
\{alec,luke\}@indico.io

Soumith Chintala
Facebook AI Research
New York, NY
soumith@fb.com

Introduced a form of ConvNet more stable under adversarial training than previous attempts.

Generator

Synthesizing the preferred inputs for neurons in neural networks via deep generator networks

Anh Nguyen
anguyen8@uwyo.edu
Alexey Dosovitskiy
dosovits@cs.uni-freiburg.de
Jason Yosinski
jason@geometricintelligence.com
Thomas Brox
brox@cs.uni-freiburg.de
Jeff Clune
jeffclune@uwyo.edu

Two components

Generator

Two components

Generator

Network to visualize

Two components

Synthesizing Images Preferred by CNN

ImageNet-Alexnet-final units (class units)

mosque

library

lipstick

cheeseburger

water jug

leaf beetle

barn

pool table

badger

candle

toaster

table lamp

cellphone

broom

triumphal arch

sandbar

chest

running shoe

aircraft carrier

Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. (2016). "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks.". arXiv:1605.09304.

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

Figure 3: (a) Our model contains two mapping functions $G: X \rightarrow Y$ and $F: Y \rightarrow X$, and associated adversarial discriminators D_{Y} and $D_{X} . D_{Y}$ encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for D_{X} and F. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency loss: $x \rightarrow G(x) \rightarrow F(G(x)) \approx x$, and (c) backward cycle-consistency loss: $y \rightarrow F(y) \rightarrow G(F(y)) \approx y$

