
Lecture 19
Object	recognition



Object detection
• Viola-Jones
• Part based models (Hog)
• iHog
• Region based methods (objectness)
• fast RCNN

Vision and language
• word2vec, LSTM
• captioning, seq2seq model
• VQA
• speech + vision- movies

Object segmentation
• CRF- context
• segnet: encoder-decoder-
• mask RCNN

Various topics
• CLEVR
• 3D from single images 
• face recognition, AAM
• GANs

Action recognition
• 3d-convNets
• Rgb+motion estimation
• Datasets for activity recognition



Find a bottle:Categories

Can’t do
unless you do not 

care about few errors…

Instances Find these two toys

Can nail it

Instances vs. categories



Slide credit: Ross Girshick



Why do we care about recognition?
Perception of function: We can perceive the 3D 

shape, texture, material properties, without 
knowing about objects. But, the concept of 
category encapsulates also information about 
what can we do with those objects. 

“We therefore include the perception of function as a proper –indeed, crucial- subject 
for vision science”, from Vision Science, chapter 9, Palmer.



The perception of function
• Direct perception (affordances): Gibson

Flat surface
Horizontal
Knee-high
…

Sittable
upon

Chair Chair

Chair?

Flat surface
Horizontal
Knee-high
…

Sittable
upon

Chair

• Mediated perception (Categorization)



Direct perception
Some aspects of an object function can be 

perceived directly
• Functional form: Some forms clearly 

indicate to a function (“sittable-upon”, 
container,  cutting device, …)

Sittable-upon Sittable-upon

Sittable-upon

It does not seem easy
to  sit-upon this…



Object recognition
Is it really so hard?

This is a chair

Find the chair in this image Output of normalized correlation



Object recognition
Is it really so hard?

My biggest concern while making this slide was:
how do I justify 50 years of research, and this course, if this experiment did work?

Find the chair in this image 

Pretty much garbage
Simple template matching is not going to make it



Object recognition
Is it really so hard?

Find the chair in this image 

A “popular method is that of template matching, by point to point correlation of a 
model pattern with the image pattern. These techniques are inadequate for three-
dimensional scene analysis for many reasons, such as occlusion, changes in viewing 
angle, and articulation of parts.” Nivatia & Binford, 1977.



A bit of history…



So, let’s make the problem simpler:
Block world

Nice framework to develop fancy math, but too far from reality…
Object Recognition in the Geometric Era: 
a Retrospective. Joseph L. Mundy. 2006



Object Recognition in the Geometric Era: 
a Retrospective. Joseph L. Mundy. 2006

Binford and generalized cylinders



Binford and generalized cylinders



Recognition by components

Irving Biederman
Recognition-by-Components: A Theory of Human Image Understanding. 
Psychological Review, 1987.



Objects and their geons



Scenes and geons

Mezzanotte & Biederman 



What is missing?

The notion of geometric structure.

Although they were aware of it, the previous 
works put more emphasis on defining the 
primitive elements than modeling their 
geometric relationships.



Parts and Structure approaches
With a different perspective, these models focused more on the 

geometry than on defining the constituent elements:

• Fischler & Elschlager 1973
• Yuille ‘91
• Brunelli & Poggio ‘93
• Lades, v.d. Malsburg et al. ‘93
• Cootes, Lanitis, Taylor et al. ‘95
• Amit & Geman ‘95, ‘99 
• Perona et al. ‘95, ‘96, ’98, ’00, ’03, ‘04, ‘05
• Felzenszwalb & Huttenlocher ’00, ’04 
• Crandall & Huttenlocher ’05, ’06
• Leibe & Schiele ’03, ’04
• Many papers since 2000

Figure from [Fischler & Elschlager 73]



Representation
• Object as set of parts

– Generative representation

• Model:
– Relative locations between parts
– Appearance of part

• Issues:
– How to model location
– How to represent appearance
– Sparse or dense (pixels or regions)
– How to handle occlusion/clutter

We will discuss these models more in depth later



Face detection and the success 
of learning based approaches

• The representation and matching of pictorial structures Fischler, Elschlager (1973). 
• Face recognition using eigenfaces M. Turk and A. Pentland (1991). 
• Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995) 
• Graded Learning for Object Detection - Fleuret, Geman (1999) 
• Robust Real-time Object Detection - Viola, Jones (2001)
• Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, 
Mukherjee, Poggio (2001)
•….



Face detection

…



• The representation and matching of pictorial structures Fischler, Elschlager (1973). 
• Face recognition using eigenfaces M. Turk and A. Pentland (1991). 
• Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995) 
• Graded Learning for Object Detection - Fleuret, Geman (1999) 
• Robust Real-time Object Detection - Viola, Jones (2001)
• Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, 
Mukherjee, Poggio (2001)
•….



Distribution-Based Face 
Detector

• Learn face and nonface models from examples [Sung and 
Poggio 95] 

• Cluster and project the examples to a lower dimensional space 
using Gaussian distributions and PCA

• Detect faces using distance metric to face and nonface clusters 



Distribution-Based Face 
Detector

• Learn face and nonface models from examples [Sung and 
Poggio 95] 

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern



Neural Network-Based Face Detector
• Train a set of multilayer perceptrons and 

arbitrate a decision among all outputs 
[Rowley et al. 98]





Families of recognition algorithms
Bag of words models Voting models

Constellation models

Rigid template models

Sirovich and Kirby 1987
Turk, Pentland, 1991
Dalal & Triggs, 2006

Fischler and Elschlager, 1973
Burl, Leung, and Perona, 1995

Weber, Welling, and Perona, 2000
Fergus, Perona, & Zisserman, CVPR 2003 

Viola and Jones, ICCV 2001
Heisele, Poggio, et. al., NIPS 01

Schneiderman, Kanade 2004
Vidal-Naquet, Ullman 2003 

Shape matching
Deformable models

Csurka, Dance, Fan, Willamowski, and 
Bray 2004
Sivic, Russell, Freeman, Zisserman, 
ICCV 2005

Berg, Berg, Malik, 2005
Cootes, Edwards, Taylor, 2001

Neural networks

Le Cun et al, 98



Discriminative methods
Object detection and recognition is formulated as a classification problem. 

Bag of image patches

Decision 
boundary

… and a decision is taken at each window about if it contains a target object or not.

Computer screen

Background

In some feature space

Where are the screens?

The image is partitioned into a set of overlapping windows



• Formulation: binary classification

Formulation

+1-1

x1 x2 x3 xN

…

… xN+1 xN+2 xN+M

-1 -1 ? ? ?

…

Training data: each image patch is labeled
as containing the object or background

Test data

Features  x =

Labels y =

Where                 belongs to some family of functions

• Classification function

• Minimize misclassification error
(Not that simple: we need some guarantees that there will be generalization)



Discriminative methods

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005
…

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines and Kernels Conditional Random Fields

McCallum, Freitag, Pereira 2000
Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 2001
…



Evaluation

• ROC
• Precision-recall

When do we have a correct 
detection?

Is this correct?

Area intersection
Area union > 0.5



ROC and Precision-Recall

Detection 
rate

False alarm rate

Precision

Recall

Plots from PASCAL competition



Paul Viola       Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)

Cambridge,  MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Rapid Object Detection Using a Boosted 
Cascade of Simple Features

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones.pdf/viola01robust.pdf

Manuscript available on web:





What is novel about this 
approach?

• Feature set (… is huge about 16,000,000 
features)

• Efficient feature selection using AdaBoost
• New image representation: Integral Image 
• Cascaded Classifier for rapid detection

– Hierarchy of Attentional Filters

What is new is the combination of these ideas. 
This yields the fastest known face detector for 
gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”

Similar to Haar wavelets 

Differences between 
sums of pixels in 
adjacent rectangles

{ht(x)  = +1   if  ft(x) > θt
-1    otherwise

000,000,16100000,160 =×

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Integral Image
• Define the Integral Image

• Any rectangular sum can be 
computed in constant time:

• Rectangle features can be 
computed as differences 
between rectangles 
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Huge “Library” of Filters

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Example Classifier for Face 
Detection

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned using 
AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Not quite competitive.  
Need to add more features, 
but then that slows it down.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



• Defines a classifier using an additive model:

Boosting

Strong 
classifier

Weak classifier

Weight
Features
vector



Fast and accurate classifier using 
a cascade

• Given a nested set of classifier hypothesis classes

• Cascade

vsfalse neg determined by
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Cascaded Classifier

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW

• A 1 feature classifier achieves 100% detection rate 
and about 50% false positive rate.

• A 5 feature classifier achieves 100% detection rate 
and 40% false positive rate (20% cumulative)
– using data from previous stage. 

• A 20 feature classifier achieve 100% detection rate 
with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A Real-time Face Detection 
System

Training faces: 4916 face images (24 x 24 
pixels) plus vertical flips for a total of 9832 
faces

Training non-faces: 350 million sub-windows 
from 9500 non-face images

Final detector: 38 layer cascaded classifier 
The number of features per layer was 1, 10, 
25, 25, 50, 50, 50, 75, 100, …, 200, …

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Speed of Face Detector

Speed is proportional to the average number of features 
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out 
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium III, a 384x288 pixel image takes 
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Output of Face Detector on Test 
Images

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Histograms of oriented gradients



Histograms of oriented gradients

Shape context
Belongie, Malik, Puzicha, NIPS 2000SIFT, D. Lowe, ICCV 1999



Image features:

Bin gradients from 8x8 pixel neighborhoods into 9 
orientations

(Dalal & Triggs CVPR 05)

Histograms of oriented gradients (HOG)

Source: Deva Ramanan





A Support Vector Machine (SVM) learns a classifier with the form:

Where {xm, ym}, for m = 1 . . .M, are the training data with xm being
the input feature vector and ym = +1,-1 the class label. k(x, xm) is the kernel and 
it can be any symmetric function satisfying the Mercer Theorem. 

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries: 

• Linear kernel: k(x, xm) = xT xm
• Radial basis function: k(x, xm) = exp(−|x − xm|2/σ2).
• Histogram intersection: k(x,xm) = sumi(min(x(i), xm(i)))

SVM



Linear SVM

f(x) = (w . x + b) 

w

margin



Scanning-window templates
Dalal and Triggs CVPR05 (HOG)

w·x > 0

w
w = weights for orientation and spatial bins

Papageorgiou and Poggio ICIP99 (wavelets)

Train with a linear classifier (perceptron, logistic regression, SVMs...)

neg

pos

Source: Deva Ramanan



How to interpret positive and negative weights?
w·x > 0

(wpos - wneg)·x > 0

wpos·x > wneg·x

>

Right approach is to compete pedestrian, pillar, doorway... models

Pedestrian 
template

Pedestrian 
background
template

Background class is hard to model - easier to penalize particular vertical 
edges

wpos,wneg = weighted average of positive, negative support vectors

Source: Deva Ramanan



Histograms of oriented gradients
Dalal & Trigs, 2006

x Not a person

x person





Representation
• Object as set of parts

– Generative representation

• Model:
– Relative locations between parts
– Appearance of part

• Issues:
– How to model location
– How to represent appearance
– Sparse or dense (pixels or regions)
– How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]







PASCAL Visual Object Challenge

5000 training images 5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table 
dog horse motorbike person plant sheep sofa train tv

Source: Deva Ramanan



5 years of PASCAL people detection

average
precision

Discriminative mixtures of star models 2007-2010 Felzenszwalb, 
McAllester, Ramanan CVPR 2008
Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2009 

1% to 45% in 5 years

Source: Deva Ramanan



Deformable part models

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan





Scoring function

x = image 
zi = (xi,yi)
z = {z1,z2...}

part template 
scores

spring deformation model

Source: Deva Ramanan

score(x,z)  = Σ wi Φ(x, zi) + Σ wij Ψ(zi, zj)  i i,j 



Scoring function

part template 
scores

spring deformation model
x = image 
zi = (xi,yi)
z = {z1,z2...}

Source: Deva Ramanan

score(x,z)  = Σ wi φ (x, zi) + Σ wij Ψ(zi, zj)  i i,j 



Scoring function

part template 
scores

spring deformation model

E = relational graph 

x = image 
zi = (xi,yi)
z = {z1,z2...}

Source: Deva Ramanan

score(x,z)  = Σ wi φ (x, zi) + Σ wij Ψ(zi, zj)  i i,j 



Scoring function

part template 
scores

spring deformation model

Score is linear in local templates wi and spring parameters wij

x = image 
zi = (xi,yi)
z = {z1,z2...}

Source: Deva Ramanan

score(x,z)  = Σ wi φ(x, zi) + Σ wij Ψ(zi, zj)  i i,j 

score(x,z)  =  w . Φ(x, z) 



Inference: max score(x,z)
Felzenszwalb & Huttenlocher 05 

z

Source: Deva Ramanan

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent

root

root



Classification

Source: Deva Ramanan

fw(x)>0

fw(x)=w . Φ(x)



Latent-variable classification

Source: Deva Ramanan

fw(x)>0

fw(x)=w . Φ(x) fw(x)=max S(x,z)

=max w . Φ(x, z)
z

z



Latent SVMs

Given positive and negative training windows {xn}

pos neg

L(w) is “almost” convex

Source: Deva Ramanan



Latent SVMs

Given positive and negative training windows {xn}

L(w) is convex if we fix latent values for positives

pos neg

Source: Deva Ramanan



1) Given positive part locations, learn w with a convex program

The above steps perform coordinate descent on a joint loss 

2) Given w,  estimate part locations on positives 

Coordinate descent

Source: Deva Ramanan



Treat ground-truth labels 
as partially latent

Allows for “cleaning up” of noisy labels 
(in blue) during iterative learning

Source: Deva Ramanan



Initialization
Learn root filter with SVM

Initialize part filters to regions in 
root filter with lots of energy

Source: Deva Ramanan



Example models

Source: Deva Ramanan



Example models

Source: Deva Ramanan



Example models

False positive due to imprecise 
bounding box

Source: Deva Ramanan



Other tricks:
•Mining hard negative examples
•Noisy annotations





Scanning window approach

…



Starting from object proposals

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

2011



Selective search

Input image Candidate bounding boxes Detected objects
(by applying classifier on 
candidate bb)



Selective search



Training



Removing	the	need	for	scanning

http://groups.inf.ed.ac.uk/calvin/objectness/



The	limit	of	hand-cracted features

http://carlvondrick.com/ihog/iccv.pdf

ICCV 2013





car



What	does	a	detector	sees	though	
HOG	eyes?



What	does	a	detector	sees	though	
HOG	eyes?



What	does	a	detector	sees	though	
HOG	eyes?

But,	what	is	lost	in	this	transformation?	

Carl Vondrick

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”

A. Khosla



What	does	a	detector	sees	though	
HOG	eyes?

Can	we	recover	the	input	image	from	HOG?

?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”

Carl	Vondrick A. Khosla



What	does	a	detector	sees	though	
HOG	eyes?

Can	we	recover	the	input	image	from	HOG?

?

HOG Recovered	image

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”

Carl	Vondrick A. Khosla



What	does	a	detector	sees	though	
HOG	eyes?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



What	does	a	detector	sees	though	
HOG	eyes?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Can	you	tell	which	ones	are	the	false	alarms?
Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”

Person

Chair

Car



Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”

Person

Chair

Car



Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”

Maybe	this	is	the	only	room	for	
improvement	 left	for	HOG



car

HOGThe	image	patch What	HOG	sees

http://mit.edu/vondrick/ihog/

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Krizhevsky et	al.	[NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model  (8 layers)

- More data    (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)



Slide credit: Ross Girshick



CVPR 2014

https://dl.dropboxusercontent.com/s/293tu0hh9ww08co/r-cnn-cvpr.pdf?dl=0















https://arxiv.org/pdf/1406.4729.pdf























Slide credit: Ross Girshick



https://arxiv.org/pdf/1506.01497.pdf




