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Object detection Various topics

* Viola-Jones « CLEVR
« Part based models (HoQ) « 3D from single images
* iHog » face recognition, AAM
« Region based methods (objectness) + GANSs
« fast RCNN
Action recognition
Vision and language « 3d-convNets
« word2vec, LSTM  Rgb+motion estimation
« captioning, seq2seq model » Datasets for activity recognition
« VQA

« speech + vision- movies

Object segmentation

* CRF- context

« segnet: encoder-decoder-
 mask RCNN



Instances vs. categories

Instances Find these two toys Categories Find a bottle:

Can nail it Can’tdo
unless you do not

care about few errors...



Object detection renaissance
(2013-present)

PASCALVOC

Before deep convnets

Jﬂk

|

Using deep convnets

mean Average Precision (mAP)

2008 2009 2010 2013 2014 2015 2016

Slide credit; Ross Girshick



Why do we care about recognition?
Perception of function: We can perceive the 3D

shape, texture, material properties, without
knowing about objects. But, the concept of
category encapsulates also information about
what can we do with those objects.

“We therefore include the perception of function as a proper —indeed, crucial- subject
for vision science”, from Vision Science, chapter 9, Palmer.




The perception of function
* Direct perception (affordances): Gibson

Flat surface
Horizontal | Sittable
Knee-high ] upon

* Mediated perception (Categorization)

Flat surface _
Horizontal .| Chair || Sittable
Knee-high upon




Direct perception

Some aspects of an object function can be
perceived directly

* Functional form: Some forms clearly
indicate to a function (“sittable-upon”,
container, cutting device, ...)

Sittable-upon gittaple-upon It does not seem easy
to sit-upon this...

Sittable-upon



Object recognition
Is it really so hard?

Find the chair in this image Output of normalized correlation
1

:




Object recognition
Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

My biggest concern while making this slide was:
how do | justify 50 years of research, and this course, if this experiment did work?



Object recognition
Is it really so hard?

Find the chair in this image

A “popular method is that of template matching, by point to point correlation of a
model pattern with the image pattern. These techniques are inadequate for three-

dimensional scene analysis for many reasons, such as occlusion, changes in viewing
angle, and articulation of parts.” Nivatia & Binford, 1977.



A bit of history...



S0, let’'s make the problem simpler:
Block world

e)

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks
world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral
description of the scene, formed automatically from the single image. e) The 3-d scene
displayed with a viewpoint different from the original image to demonstrate its accuracy
and completeness. (b) - e) are taken from [64] with permission MIT Press.)

Nice framework to develop fancy math, but too far from reality...

Object Recognition in the Geometric Era:
a Retrospective. Joseph L. Mundy. 2006



Binford and generalized cylinders

Fig. 3. The representation of objects by assemblies of generalized cylinders. a) Thomas
Binford. b) A range image of a doll. ¢) The resulting set of generalized cylinders. ( b)
and c) are taken from Agin [1] with permission.)

Object Recognition in the Geometric Era:
a Retrospective. Joseph L. Mundy. 2006



(b) Bweeping rule.
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Binford and generalized cylinders

(a) Cross section.

(d) Generalized cylinder

(c) True cylinder



Recognition by components

Irving Biederman
Recognition-by-Components: A Theory of Human Image Understanding.
Psychological Review, 1987.



Objects and their geons
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Scenes and geons

Mezzanotte & Biederman



What is missing?
The notion of geometric structure.

Although they were aware of it, the previous
works put more emphasis on defining the
primitive elements than modeling their
geometric relationships.



Parts and Structure approaches

With a different perspective, these models focused more on the
geometry than on defining the constituent elements:

Fischler & Elschlager 1973
Yuille ‘91

Brunelli & Poggio ‘93
Lades, v.d. Malsburg et al. ‘93 e [AS
Cootes, Lanitis, Taylor et al. ‘95 Reen
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, '00, '03, ‘04

MOUTH

Felzenszwalb & HuttenIOCher ,OO, ’04 FigUrefrom [Fischler & Elschlager 73]
Crandall & Huttenlocher '05, '06

Leibe & Schiele ‘03, '04
Many papers since 2000



Representation

* Object as set of parts
— Generative representation

 Model:
— Relative locations between parts
— Appearance of part

e |[ssues: LEFT [ /¥
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

We will discuss these models more in depth later



Face detection and the success
of learning based approaches

* The representation and matching of pictorial structures Fischler, Elschlager (1973).
* Face recognition using eigenfaces M. Turk and A. Pentland (1991).
* Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)
» Graded Learning for Object Detection - Fleuret, Geman (1999)
» Robust Real-time Object Detection - Viola, Jones (2001)
* Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre,
Mukherjee Poggio (2001)



Face detection
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 The representation and matching of pictorial structures Fischler, Elschlager (1973)

* Face recognition using eigenfaces M. Turk and A. Pentland (1991).

* Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)

» Graded Learning for Object Detection - Fleuret, Geman (1999)

» Robust Real-time Object Detection - Viola, Jones (2001)

* Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre,
Mukherjee, Poggio (2001)



Distribution-Based Face
Detector

« Learn face and nonface models from examples [Sung and
Poggio 95]

« Cluster and project the examples to a lower dimensional space
using Gaussian distributions and PCA

« Detect faces using distance metric to face and nonface clusters

x3  Face Sample X3 Approximation with
T|_ 19— 4 Distibution f
1 9 : ' i : d I':. N3 ..\-..-«ig‘ : e

Frontal Face Pattern TR 2 Test Pattern
samples to approximate 253 ' B c 1
vector subspace of g:e \ 8% 8 g entrol
canonical face views xl g 5
2
Z5
%3 Non-Face Sample x3 Approxration with :
_ Distribution Gaussian clusters e

Special Non-Face Pattern
samples to refine vector
subspace boundaries of
canonical face views

Non-Face Centroids



Distribution-Based Face
Detector

« Learn face and nonface models from examples [Sung and
Poggio 95]

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern




Neural Network-Based Face Detector

* Train a set of multilayer perceptrons and
arbitrate a decision among all outputs
[Rowley et al. 98]

Input image pytamid  Extiacted window  Couected lighting  Histogiam squalized Receplive fiekls
(20 by 20 pixels)

Hidden untis
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Preplocessing Neutal netwotk
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Families of recognition algorithms

Shape matching
Bag of words models Voting models Deformable models

‘ Berg, Berg, Malik, 2005
; Viola and Jones, ICCV 2001 Cootes, Edwards, Taylor, 2001
Csurka, Dance, Fan, Willamowski, and Heisele, Poggio, et. al., NIPS 01
Bray 2004 Schneiderman, Kanade 2004
Sivic, Russell, Freeman, Zisserman, Vidal-Naquet, Uliman 2003 Riaid template models
ICCV 2005

o &

Sirovich and Kirby 1987
Turk, Pentland, 1991
Dalal & Triggs, 2006

Constellation models

weighted weighted
pos wis neg wits

input image

Neural networks

Fischler and Elschlager, 1973
Burl, Leung, and Perona, 1995
Weber, Welling, and Perona, 2000
Fergus, Perona, & Zisserman, CVPR 2003

5 soas \dense
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Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Decision
Background boundary

Where are the screens?

e

Computer screen

Bag of image patches

In some feature space



Formulation

* Formulation: binary classification

== I = —
Features x= X4 X5 X3 - XN XN+1 XN+2 -+ XN+M
Labels y= -1 +1 -1 -1 ? ? ?
e ~ —~ ~ ~— —
Training data: each image patch is labeled Test data

as containing the object or background

e Classification function

:/g\ p— F(CB) Where F(a:') belongs to some family of functions

« Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)



Discriminative methods

Nearest neighbor

108 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005

Neural networks

ps 1E@5x5
3232 C5: layer
1111111 I r 120 5, ayer quTeuT
|
‘ Gaussian connections
- §

. I-. Full conrlection
i Ful

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

upport Vector Machines and Kernels

Guyon, Vapnik
Heisele, Serre, Poggio, 2001

Conditional Random Fields

McCallum, Freitag, Pereira 2000
Kumar, Hebert 2003




Evaluation

When do we have a correct
detection?

Is this correct?

Area intersection
Area union

> 0.5

« ROC
* Precision-recall



ROC and Precision-Recall

Detection
1.1: classification: test1: motorbikes
rate : 10
il —— Oxford (0.432)
f Al 09l UoCTTI (0.346)
Precision  RISAO318

Darmstadt (0.301)
INRIA_PlusClass (0.294)
INRIA_Normal (0.265)
TKK (0.184)
————MPI_Center (0.172)
————-MPI_ESSOL (0.120)

0.7

0.6

0.5

04

0.3

0.1}

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

False alarm rate Recall

Plots from PASCAL competition



Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zZSzzSzwww. ai. mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones. pdf/violaO1robust. pdf



Coarse-to-Fine Face Detection

Frangois Fleuret * Donald Geman '

June 2000

Finally, in defense of limited goals, nobody has yet demonstrated that objects from
even one generic class under constrained poses can be rapidly detected without errors
in complex, natural scenes; visual selection by humans occurs within two hundred

milleseconds and is virtually perfect.

L Acknowledoements: We are oratefnl to Yali Amit for many snogestions duringe a

“Avant-Projet INEDIA. INRIA-Rocquencourt. Domaine de Volueean., BP105, 78153 Le Ches-

nay. Email:Francois.Flenret@inriafr. Supported in part by the CNET.
tDepartment of Mathematics and Statistics. University of Massachusetts. Amherst, MA 01003.

FEmailigemantmathomass.edu. Supported in part by ONR under contract NOOO14-97-1-0249 and

ARO under MURT grant DAAHO4-96-1-0445.




What is novel about this
approach?

Feature set (... is huge about 16,000,000
features)

Efficient feature selection using AdaBoost
New image representation: Integral Image

Cascaded Classifier for rapid detection
— Hierarchy of Attentional Filters

What is new is the combination of these ideas.
This yields the fastest known face detector for
gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”
Similar to Haar wavelets
Differences between

sums of pixels in
adjacent rectangles

h(X) +1 if f(x)> 6,
otherwise

160,000x100 =16,000,000

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Integral Image

« Define the Integral Image

I'(x,y) = EI(X'ay')
y?;

* Any rectangular sum can be
computed in constant time:

D=1+4-(2+3)
=A+(A+B+C+D)-(A+C+ A+ B)

=D
« Rectangle features can be

computed as differences
between rectangles

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Huge “Library” of Filters

||

— I]E

e |ILH

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Example Classifier for Face
Detection

A classifier with 200 rectangle features was learned using
AdaBoost

95% correct detection on test set with 1 in 14084
false pOSitiveS_ ROC cunve for 200 featurs clazzifier

1 T T T T T T T T T

095

Not quite competitive.
Need to add more features,

0.96 -

but then that slows it down. 8ol
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b d : : ; ; : : ; : :
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2. v 0 0.2 0.4 0.6 0.8 1 12 1.4 18 1.8 2
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ROC curve for 200 feature classifier
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Boosting

* Defines a classifier using an additive model:

?(%) = O{‘1J}1($) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features

vector



Fast and accurate classifier using

« (Cascade

IMAGE
SUB-WINDOW

a cascade

Fleuret and Geman 2001, Viola and Jones 2001
« Given a nested set of classifier hypothesis classes

lF

NON-FACE

T
—— Classifier2

lF

NON-FACE

% False Pos

0

50

T

% Detection

50

T T
FACE

F

NON-FACE




Cascaded Classifier

IMAGE 50% 20% 20 Foat 2%
_ _ _ ealureg——»
SUB-WINDOW FACE

IF If If

NON-FACE NON-FACE NON-FACE

A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)

— using data from previous stage.

A 20 feature classifier achieve 100% detection rate
with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A Real-time Face Detection
System

Training faces: 4916 face images (24 x 24
pixels) plus vertical flips for a total of 9832
faces

Training non-faces: 350 million sub-windows -
from 9500 non-face images p

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium |, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Output of Face Detector on Test
Images

JUDYBATS §

sy

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Fleuret and Geman 2001



Histograms of oriented gradients



Histograms of oriented gradients

Shape context
SIFT, D. Lowe, ICCV 1999 Belongie, Malik, Puzicha, NIPS 2000

Count the number of points
e [T T inside each bin, e.g.:
/ N
A ST 7 TN / /'
=
! S A T ¥ How | e
|- e e e T
s - f')'u * e M - x, . * 2
\l TR R 4 I/ \. - . biaie . B
\\_: e = *?/ Fa W ) Count =10
i . 3
Image gradients Keypoint descriptor S~ o % Compact representation

of distribution of points
relative to each point




Image features:
Histograms of oriented gradients (HOG)

Bin gradients from 8x8 pixel neighborhoods into 9
orientations

(Dalal & Triggs CVPR 05)

Source: Deva Ramanan



Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de 1’Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Input Normalize Compute Weighted vote Contrast normalize Collect HOG’s Li Person /
im")ngo gamma & | » gradil;nts —>| into spatial & | —>| over overlapping  [—| over detection [—>| S{?;Iar —> non-—person
¢ colour orientation cells spatial blocks window classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.
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SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H ( I) — Z AmYm k ( €I, Im)

m=1

Where {X;, Ym}, for m =1 .. .M, are the training data with x,, being
the input feature vector and y,, = +1,-1 the class label. k(x, x,,) is the kernel and
it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, Xp,) = X" X,
 Radial basis function: k(x, x,,) = exp(=|x = x,|2/02).
» Histogram intersection: k(x,X,,) = sum;(min(x(i), Xm(i)))



Linear SVM
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f(x) = (W . x + b)



Scanning-window templates

Dalal and Triggs CVPR05 (HOG)

Papageorgiou and Poggio ICIP99 (wavelets)

pos

neg

w = weights for orientation and spatial bins \
w-x >0

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Source: Deva Ramanan



How to interpret positive and negative weights?

w-x >0
(Wpos - Wneg):X> 0

Wpos X = Wheg*X

A4

| Pedestrian
"1~} background
template

Pedestrian
template

o b | o

. o St

gt e
N ede ) r
B S et

’ ' <
W%
Wpos,Wneg = Weighted average of positive, negative support vectors

Right approach is to compete pedestrian, pillar, doorway... models

Background class is hard to model - easier to penalize particular vertical
edges

Source: Deva Ramanan



Histograms of oriented gradients
Dalal & Trigs, 2006

X Not a person
%m? " —» person




missrate

DET - different descriptors on MIT database DET - different descriptors on INRIA database

02— 0.5~ —

Vi : : [~e= Lin. R-HOG [ LA wt SO
L : : | -m- Lin. C-HOG - P b R B
"\ : : | - Lin. EC-HOG e : b 2
: i | -4 - Wavelet By ;A

T MR |
. .

N : | -p- Lin. G-ShaceC : TP b, X
W L Lin. E-ShaceC [ SN - b, S
: k- : i | =& - MIT best (part)
0.1 : S : MIT baseline

o= Ker. R-HOG

missrate

A N U | .o~ Lin.R-HOG | : R "\,&\ AN
“ia g | ; | -4- Lin.C-HOG | AN
0.05 ks eimreireierene ST SR S S L _ <t~ Lin. EC-HOG | . q RN

AL Twa-ia PPy R0e PCA-SIFT g AN G
002 R, %...cA.._..A:.:.g....::.\.......- . .g................ .\l\._. .............. . -y - Lin. G_Shapec : : \G \\]:h
001 _........... .......... '...-...................' ..... é.._..;é&._.._.. .:..........:.....“-,, . ...._.P Lin. E-ShapeC : : “ %

b i | .-+~ PCA_SIFT 0.2._ .......... 5‘%; ................ — | IR -\.& .................. -

0.1 [Fetsssnotosasansns ;. ................. %ﬁ.x .......... :'"'b\' .......... :....\ ....... _:

. E : 0.05H -=m - Lin. R2-HOG E, .............. $::,.E...‘-a,,,, ........... :E.\ ................ N

o T S LA § | -5 - Wavelet AT RN W il

aaal " aoa s s sual N 4 P 111

e 0.01 -
10 10 107 10° 10° 10° 10° 10° 107 10° 10

false positives per window (FPPW) false positives per window (FPPW)

-2

Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.



Representation

* Object as set of parts
— Generative representation

* Model:
— Relative locations between parts
— Appearance of part

* |ssues:
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]



The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the
following. Given some description of a visual object, find that object
in an actual photograph. Part of the solution to this problem is the
specification of a descriptive scheme, and a metric on which to base
the decision of “goodness” of matching or detection.

We offer a combined descriptive scheme and decision metric
which is general, intuitively satisfying, and which has led to promis-
ing experimental results. We also present an algorithm which takes
the above descriptions, together with a matrix representing the in-
tensities of the actual photograph, and then finds the described
object in the matrix. The algorithm uses a procedure similar to
dynamic programming in order to cut down on the vast amount of
computation otherwise necessary.

One desirable feature of the approach is its generality. A new
programming system does not need to be written for every new
description; instead, one just specifies descriptions in terms of a
certain set of primitives and parameters.

There are many areas of application: scene analysis and descrip-
tion, map matching for navigation and guidance, optical tracking,

Manuscript received November 30, 1971; revised May 22, 1972,
and August 21, 1972, ¥
The authors are with the Lockheed Palo Alto Research Labora-

;3':3)84 Lockheed Missiles & Space Company, Inc., Palo Alto, Calif.

stereo compilation, and image change detection. In fact, the ability
to describe, match, and register scenes is basic for almost any

image processing task.

Index Terms—Dynamic
picture description, picture 1
tation.
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Martin A. Fischler (S'57-M’58) was born in
New York, '} Y., on February 15, 1932. He
received the B.E.E. degree from the City Col-
lege of New York, New York, in 1954 and the
M.S. and Ph.D. degrees in electrical engineer-
ing from Stanford University, Stanford, Calif.,
in 1958 and 1962, respectively.

He served in the U. S. Army for two years
and held positions at the National Bureau of
Standards and at Hughes Aircraft Corpora-
tion during the period 1954 to 1958. In 1958
he joined the technical staff of the Lockheed Missiles & Space Com-
pany, Inc., at the Lockheed Palo Alto Research Laboratory, Palo
Alto, Calif., and currently holds the title of Staff Scientist. He has
conducted research and published in the areas of artificial intelligence,
picture processing, switching theory, computer organization, and
information theory.

Dr. Fischler is a member of the Association for Computing Ma-
chinery, the Pattern Recognition Society, the M athematical Associa-
tion of America, Tau Beta Pi, and Eta Kappa Nu. He is currently
an Associate Editor of the journal Pattern Recognition and is a past
Chairman of the San Francisco Chapter of the IEEE Society on Sys-
tems, Man, and Cybernetics.

o

Robert A. Elschlager was born in Chicago,
I1l., on May 25, 1943. He received the B.S.
degree in mathematics from the University of
Ilinois, Urbana, in 1964, and the M.S. degree
in mathematics from the University of Cali-
fornia, Berkeley, in 1969.

Since then he has been an Associate
Scientist with the Lockheed Missiles & Space
Company, Inc., at the Lockheed Palo Alto Re-
search Center, Palo Alto, Calif. His current
: interests are picture processing, operating
systems, computer languages, and computer understanding.

Mr. Elschlager is a member of the American Mathematical
Society, the Mathematical Association of America, and the Associa-

tion for Symbolic Logic.



Object Detection with Discriminatively Trained
Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Abstract—We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able
to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While
deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the
PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-
sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of
MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is

specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive
examples and optimizing the latent SVM objective function.

Index Terms—Object Recognition, Deformable Models, Pictorial Structures, Discriminative Training, Latent SVM
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PASCAL Visual Object Challenge

£l

: I!\ ‘ g
r.i-:u;;ﬁrigl‘ut ' o 11
mk i ’
'-, 3 ; d | ~ P \ 1t ‘\
\_ ¥ — e 11 % ‘
000 training images 5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table
dog horse motorbike person plant sheep sofa train tv

Source: Deva Ramanan



5 years of PASCAL people detection

50

37.5
average

precision 25

1% to 45% in 5 years

Discriminative mixtures of star models 2007-2010 Felzenszwalb,
McAllester, Ramanan CVPR 2008
Felzenszwalb, Girshick, McAllester,and Ramanan P4MI 2009

Source: Deva Ramanan



Deformable part models

Source: Deva Ramanan



Image pyramid
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score(x,z

Source: Deva Ramanan



Scoring function
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score(x,z) =Zw; ¢ (X, z))

X = image

zi = (Xi,Yi)
z={z1,22...}

part template
scores

Source: Deva Ramanan



Scoring function
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score(x,z) 2 w; ¥(z;, )

X = image

zi = (Xi,Yi)
z={z1,22...}

part template pring deformation model
scores

E = relational graph

Source: Deva Ramanan



Scoring function

3
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X373

score(x,z) = 2w, o(x, z) HZ w; V(z, Z)

X = image

zi = (Xi,Yi)
z={z1,22...}

part template spring deformation model
scores

Score is linear in local templates wi and spring parameters wi

score(x,z) = w:- d(x, z)

Source: Deva Ramanan



Inference: max score(x,z)

Felzenszwalb & Huttenlocher 05

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent

Source: Deva Ramanan



Classification

Source: Deva Ramanan



[ atent-variable classification

fw(x)=mgx S(x,z)

=max w - d(Xx, z)

i +=-xSource: Deva Ramanan



Latent SVMs
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0l ¢
f" 'i

Given positive and negative training windows {xn}

L(w) = [l + 3 max(0,1 - fulz.) + 3 max(0,1+ fu(z))

neEpos neneg

fale = max w - P(z, 2)

L(w) is “almost” convex

Source: Deva Ramanan



Latent SVMs
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Given positive and negative training windows {xn}

L(w) = ||lw|*+ ) max(0,1— fu{z,)) + »  max(0,1+ fu(za))
nepos . (I)(:En, Zn)néneg

T = max w - d(z, 2)

L(w) is convex if we fix latent values for positives

Source: Deva Ramanan



Coordinate descent

1) Given positive part locations, learn w with a convex program
w = argmin L(w) with fixed {z,:n € pos}
w

2) Given w, estimate part locations on positives

zp = argmaxw - ®(x,,2) Vn € pos
z

The above steps perform coordinate descent on a joint loss

Source: Deva Ramanan



Treat ground-truth labels
as partially latent

Allows for “cleaning up” of noisy labels
(in ) during iterative learning

Source: Deva Ramanan



Initialization

Learn root filter with SVM

Initialize part filters to regions in
root filter with lots of energy
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Example models
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Example models
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class: person, year 2006

-
k=)
L4

&

—

Q

—+—1 Root (0.24)

2 Root (0.24)

1 Root+Parts (0.38)
—e—2 Root+Parts (0.37) L
—v—2 Root+Parts+BB (0.39)(

Other tricks:
*Mining hard negative examples
*Noisy annotations






Scanning window approach




Starting from object proposals

Selective Search for Object Recognition

J.R.R. Uijlings*!2, K.E.A. van de Sande'?, T. Gevers?, and A.W.M. Smeulders?

IUniversity of Trento, Italy
2University of Amsterdam, the Netherlands

2011

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf



Selective search

Input image Candidate bounding boxes ~ Detected objects
(by applying classifier on

candidate bb)



Selective search

Input Iage Segmentatlon

Candidate objects



Training

Ground truth v

Model False Positives Training Examples

etgd

Train SVM Search for
—p _—

(Histogram Intersection
Kernel)

] Retrain

Add to training
—

false positives examples




Removing the need for scanning

What is an object ?

Bogdan Alexe, Thomas Deselaers, Vittorio Ferrari
Computer Vision Laboratory, ETH Zurich

{bogdan, deselaers, ferrari}@vision.ee.ethz.ch

e S (b : o
Fig. 1: Desgred behavior of an oz)jectness measure. The desired
objectness measure should score the blue windows, partially cov-
ering the objects, lower than the ground truth windows (green),

and score even lower the red windows containing only stuff or
small parts of objects.

http://groups.inf.ed.ac.uk/calvin/objectness/



The limit of hand-cracted features

HOGgles: Visualizing Object Detection Features™

Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, Antonio Torralba
Massachusetts Institute of Technology
{vondrick, khosla,tomasz, torralba}l@csail.mit.edu

ICCV 2013

http://carlvondrick.com/ihog/iccv.pdf









What does a detector sees though
HOG eyes?



What does a detector sees though
HOG eyes?
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What does a detector sees though
HOG eyes?
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But, what is lost in this transformation?

Carl Vondrick A. Khosla

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



What does a detector sees though
HOG eyes?
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Carl Vondrick  A. Khosla Can we recover the input image from HOG?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



What does a detector sees though
HOG eyes?
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Carl Vondrick  A. Khosla Can we recover the input image from HOG?

¢! (y) = argmin ||¢(z) — y||;
rERD T

HOG Recovered image

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



What does a detector sees though
HOG eyes?

l_

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



What does a detector sees though
HOG eyes?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Person

Can you tell which ones are the false alarms?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Person
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Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”




Precision

09
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04
0.3
0.2
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...........................................................

..............................................................

Maybe this is the only room for
improvement left for HOG

:"—"""'H‘éé;Hu'rﬁAh'A"b -063] .
‘RGB+Human AP =096 | "

I —HOG+DPM AP = 0 51 """""

0 02 06 08 1

Recall

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



The image patch HOG What HOG sees

http://mit.edu/vondrick/ihog/

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Krizhevsky et al. [NIPS2012]

e Same model as LeCun’98 but:
- Bigger model (8 layers)
- More data (10° vs 10° images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)

Sy, k p
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* 7 hidden layers, 650,000 neurons, 60,000,000 parameters
 Trained on 2 GPUs for a week
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Object detection renaissance
(2013-present)

PASCALVOC

Before deep convnets

Jﬂk

|

Using deep convnets

mean Average Precision (mAP)

2008 2009 2010 2013 2014 2015 2016

Slide credit; Ross Girshick



Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg, jdonahue, trevor,malik}@eecs.berkeley.edu

CVPR 2014

=] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

N (AL W

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

https://dl.dropboxusercontent.com/s/293tu0hh9ww08co/r-cnn-cvpr.pdf?dI=0



Slow R-CNN

Input image

Girshick et al. CVPR14.




S I—— GG~
Slow R-CNN

o Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

Girshick et al. CVPR14.
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Slow R-CNN

' Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

Girshick et al. CVPR14.



Slow R-CNN

ConvNet
ConvNet

Forward each region
through ConvNet

’

’ Warped image regions

— Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

Girshick et al. CVPR14.




Slow R-CNN

SV|\/|5 Classify regions with SVMs

SVMs

Forward each region
through ConvNet

’

’ Warped image regions

A

”

Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

Girshick et al. CVPR14. Post hoc component




S | OW R_C N N Apply bounding-box regressors

Bbox reg SVMs Classify regions with SVMs

Bbox reg || SVMs

”

Bbox reg SVMs

Forward each region
through ConvNet

’

’ Warped image regions

— Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

Girshick et al. CVPR14. Post hoc component




Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

https://arxiv.org/pdf/1406.4729.pdf



.
SPP-net

He et al. ECCV14.



SPP-net

“conv5” feature map of image

Forward whole image through ConvNet

Input image

He et al. ECCV14.



SPP-net

M’COWS” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method

Regions of

ConvNet

He et al. ECCV14.



SPP-net

&Y = & Spatial Pyramid Pooling (SPP) layer

Regions of l”ZA.!i; “conv5” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method

ConvNet

He et al. ECCV14.



L
SPP-net

SVMs Classify regions with SVMs

F(_Zs Fully-connected layers

N
&Y &= &% Spatial Pyramid Pooling (SPP) layer

Regions of l”ZA.!i; “conv5” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method

ConvNet

Input image

He et al. ECCV14. ’ Post hoc component l




S P P' n et Apply bounding-box regressors

Bbox reg | | SVMs Classify regions with SVMs
o N |
L FCs Fully-connected layers
< 1 X

y — 4 vy ==y Spatial Pyramid Pooling (SPP) layer

Regions of z”ZA.!); “conv5” feature map of image
Interest (Rols) t
Forward whole image through ConvNet

method

ConvNet

He et al. ECCV14. ‘ Post hoc component




FCs

‘ Bbox reg ILSVMS
N
ConvNet

p—




SPP-net: the main limitation

— ’ Bbox reg H ’ SVMs ‘

;};‘ > % W e "
He et al. ECCV14. Post hoc component H



Fast R-CNN

Ross Girshick
Microsoft Research

rbg@microsoft.com



-
Fast R-CNN (test time)

o JEE .

FCs Fully-connected layers

“ N
A o &=

l’&:-!.!ﬁ; “conv5” feature map of image
Interest (Rols)
Forward whole image through ConvNet

method

Regions of

ConvNet




mean Average Precision (mAP)

80%

70%

60%

50%

40%

30%

20%

10%

0%

2006

2007

2008

2009

PASCAL VOC
A
A
2010 2011
year

2012

Fast R-CNN

®

R-CNNv1 A . Accurate

@ + Fast

+ Streamlined
+ Accurate

- Slow
- Inelegant

2013 2014 2015 2016

Slide credit; Ross Girshick



Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

classifier

propoy
Region Proposal Network 4

conv layers /

AT 77

e

https://arxiv.org/pdf/1506.01497 .pdf
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