MIT CSAIL

6.869/6.819 Advances in Computer Vision

Lecture 1

A Simple Vision System

Exciting times for computer vision

What is vision?

What does it mean, to see?
"to know what is where by looking".
from Marr, 1982

To discover from images what is present in the world, where things are, what actions are taking place.

A bit of history...

50 years ago...

30 years ago...

But 15 years ago...

- The representation and matching of pictorial structures Fischler, Elschlager (1973).
- Face recognition using eigenfaces M. Turk and A. Pentland (1991).
- Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)
- Graded Learning for Object Detection - Fleuret, Geman (1999)
- Robust Real-time Object Detection - Viola, Jones (2001) - Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, Mukherjee, Poggio (2001)
-....

Why is vision hard?

The structure of ambient light

The structure of ambient light

 NUWUN

Why is vision hard?

Measuring light vs. measuring scene properties

We perceive two squares, one on top of each other.

Measuring light vs. measuring scene

 properties
by Roger Shepard ("Turning the Tables")

Depth processing is automatic, and we can not shut it down...

Measuring light vs. measuring scene properties

IVeasuring light vs. measuring scene properties

Measuring light vs. measuring scene properties

(c) 2006 Walt Anthony

Assumptions can be wrong

Ames room (1934)

Why is vision hard?

Some things have strong variations in appearance

Some things know that you have eyes

Brady, M. J., \& Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 PROJECT MAC

Artificial Intelligence Group
July 7, 1966
Vision Memo. No. 100.

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Problem set 1

The "one week" vision project

The goal of the first problem set is to solve vision

A Simple Visual System

- A simple world
- A simple image formation model
- A simple goal

A Simple World

A Simple World

MACHINE PERCEPTION OF THREE-DIMENSIONAL SOLIDS
by

LAWRENCE GILMAN ROBERTS

Submitted to the Department of Electrical Engineering on May 10, 1963, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

The problem of machine recognition of pictorial data has long been a challenging goal, but has seldom been attempted with anything more complex than alphabetic characters. Many people have felt that research on character recognition would be a first step, leading the way to a more general pattern recognition system. However, the multitudinous attempts at character recognition, including my own, have not led very far. The reason, I feel, is that the study of abstract, twodimensional forms leads us away from, not toward, the techniques necessary for the recognition of three-dimensional objects. The per-

Complete Convex Polygons. The polygon selection procedure would select the numbered polygons as complete and convex. The number indicates the probable number of sides. A polygon is incomplete if one of its points is a collinear joint of another polygon.
http://www.packet.cc/files/mach-per-3D-solids.html

A Simple World

A simple image formation model

Simple world rules:

- Surfaces can be horizontal or vertical.
- Objects will be resting on a white horizontal ground plane

A simple image formation model

Perspective projection

Parallel (orthographic) projection

A simple image formation model

(right-handed reference system)

A simple image formation model

Image and projection of the world coordinate axes into the image plane

A simple goal

To recover the 3D structure of the world

We want to recover $X(x, y), Y(x, y), Z(x, y)$ using as input $I(x, y)$

Why is this hard?

Sinha \& Adelson 93

Why is this hard?

Sinha \& Adelson 93

Why is this hard?

Figure 1. (a) A line drawing provides information only about the x, y coordinates of points lying along the object contours. (b) The human visual system is usually able to reconstruct an object in three dimensions given only a single 2D projection (c) Any planar line-drawing is geometrically consistent with infinitely many 3D structures.

Sinha \& Adelson 93

A simple visual system

The input image

- Proposition 1. The primary task of early vision is to deliver a small set of useful measurements about each observable location.
- Proposition 2. The elemental operations of early vision involve the measurement of local change along various directions.

Adelson, Bergen. 91

- Goal: to transform the image into other representations (rather than pixel values) that makec crono informotinn moro ovnlinit

What we think we see

What we really see
Cavanagh, Perception 95

Edges

Finding edges in the image

Image gradient:

$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)
$$

Approximation image derivative:

$$
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
$$

Edge strength

$$
E(x, y)=|\nabla \mathbf{I}(x, y)|
$$

Edge orientation:

$$
\theta(x, y)=\angle \nabla \mathbf{I}=\arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}
$$

Edge normal:

$$
\mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}
$$

Finding edges in the image

$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right) \quad \mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}
$$

Edge classification

- Figure/ground segmentation
- Using the fact that objects have color
- Occlusion edges
- Occlusion edges are owned by the foreground
- Contact edges

From edges to surface constraints

From edges to surface constraints

- Ground

- Contact edge

- What happens inside the objects?
... now things get a bit more complicated.

Generic view assumption

Generic view assumption: the observer should not assume that he has a special position in the world... The most generic interpretation is to see a vertical line as a vertical line in 3 D .

Freeman, 93

Non-accidental properties

D. Lowe, 1985

Figure 4. Five nonaccidental relations. (From Figure 5.2, Perceptual organization and visual recognition [p. 77] by David Lowe. Unpublished doctorial dissertation, Stanford University. Adapted by permission.)

Non-accidental properties in the simple world

From edges to surface constraints

How can we relate the information in the pixels with 3D surfaces in the world?

- Vertical edges

image coordinates

Given the image, what can we say about X, Y and Z in the pixels that belong to a vertical edge?

$$
\rightarrow\left\{\begin{array}{l}
\mathrm{Z}=\text { constant along the edge } \\
\partial Y / \partial y=1 / \cos (\theta)
\end{array}\right.
$$

From edges to surface constraints

- Horizontal edges

Given the image, what can we say about X, Y and Z in the pixels that belong to an horizontal 3D edge?

Where \mathbf{t} is the vector parallel to the edge

$$
\mathbf{t}=\left(-n_{y}, n_{x}\right)
$$

$\partial Y / \partial \mathbf{t}=-n_{y} \partial Y / \partial x+n_{x} \partial Y / \partial y$

From edges to surface constraints

- What happens where there are no edges?

Assumption of planar faces:

$$
\begin{aligned}
\partial^{2} Y / \partial x^{2} & =0 \\
\partial^{2} Y / \partial y^{2} & =0 \\
\partial^{2} Y / \partial y \partial x & =0
\end{aligned}
$$

Information has to be propagated from the edges

A simple inference scheme

All the constraints are linear

$$
\begin{array}{ll}
Y(\mathrm{x}, \mathrm{y})=0 & \text { if }(\mathrm{x}, \mathrm{y}) \text { belongs to a ground pixel } \\
\begin{array}{|l|l}
\partial Y / \partial y=1 / \cos (\theta) & \text { if }(\mathrm{x}, \mathrm{y}) \text { belongs to a vertical edge } \\
\partial Y / \partial \mathbf{t}=0 & \text { if }(\mathrm{x}, \mathrm{y}) \text { belongs to an horizontal edge } \\
\begin{aligned}
\partial^{2} Y / \partial x^{2}=0 & \text { if }(\mathrm{x}, \mathrm{y}) \text { is not on an edge } \\
\partial^{2} Y / \partial y^{2}=0 & \\
\partial^{2} Y / \partial y \partial x=0 &
\end{aligned}
\end{array} . \begin{array}{l}
\end{array} .
\end{array}
$$

A similar set of constraints could be derived for Z

Discrete approximation

We can transform every differential constrain into a discrete linear constraint on $\mathrm{Y}(\mathrm{x}, \mathrm{y})$

$$
\begin{equation*}
\frac{d Y}{d x} \approx Y(x, y)-Y(x-1, y) \tag{tabular}
\end{equation*}
$$

A slightly better approximation
(it is symmetric, and it averages horizontal derivatives over 3 vertical locations)

-1	0	1
-2	0	2
-1	0	1

Discrete approximation

Transform the "image" $\mathrm{Y}(\mathrm{x}, \mathrm{y})$ into a column vector:

$$
x=2, y=2
$$

$\frac{d Y}{d x} \approx Y(x, y)-Y(x-1, y) \stackrel{\downarrow}{=} Y(2,2)-Y(1,2)=$

0	0	0	0	0	-1	0	0	0	1	0	0	0	0	0	0

A simple inference scheme

Results

Edge strength

3D orientation
Edge normals

Contact edges

Z
Depth discontinuities

Input

New view points:

Changing view point

Violations of simple world assumptions

Violations of simple world assumptions

Shading is due to painted stripes

Violations of simple world assumptions

Shading is due to illumination

Impossible steps

Impossible steps

Problem set 1
The "one week" vision project

