Guest Lecture for 6.869 Advances in Computer Vision

Activity Recognition

Bolei Zhou MIT CSAIL

Challenge for Image Recognition

• Variation in appearance.

Challenge for Activity Recognition

 Describing activity at the proper level Image recognition? Skelete No motion needed? Which

Skeleton recognition? Which activities?

Challenge for Activity Recognition

- Describing activity at the proper level A chain of events
- Making chocolate cookies

Outline

Video Recognition DatasetsVideo Recognition Models

A little bit about my recent work:
Temporal Relational Reasoning in Videos

• Review on image datasets

HMDB:51Kinetics:400KTH:6UCF: 101Moments: 339ActivtyNet:200

Two video collection methods:

- Collect videos from the web (Youtube, Flickr, etc)

- Crowd-sourcing video collection.

- KTH Dataset: recognition of human actions
- 6 classes, 2391 videos

https://www.youtube.com/watch?v=Jm69kbCC17s

Recognizing Human Actions: A Local SVM Approach. ICPR 2004

- UCF101 from University of Central Florida
- 101 classes, 9,511 videos in training

https://www.youtube.com/watch?v=hGhuUaxocIE

UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild. 2012

- Kinetics from Google DeepMind
- 400 classes, 239,956 videos in training

<u>https://deepmind.com/research/open-source/open-source-datasets/kinetics/</u>

- Moments from MIT
- 1 million 3-second video from339 generic actions

http://moments.csail.mit.edu/index_test.html

- Charades dataset: Hollywood in Homes
- Crowdsourced video dataset

http://allenai.org/plato/charades/

- Charades dataset: Hollywood in Homes
- Long chain of actions

https://www.youtube.com/watch?v=x9AhZLDkbyc

- Charades dataset: Hollywood in Homes
- Crowd-sourced video dataset

- Charades dataset: Hollywood in Homes
- Demo video

https://www.youtube.com/watch?v=x9AhZLDkbyc

- Something-Something dataset: human object interaction
- 174 categories: 100,000 videos
- Holding something
- Turning something upside down
- Turning the camera left while filming something
- Opening something

Poking a stack of something so the stack collapses

Plugging something into something

https://www.twentybn.com/datasets/something-something

Crowd-sourcing Video Collection

https://www.twentybn.com/datasets/something-something

Something-to-Something

http://visiongpu23.csail.mit.edu/deepscene/moments/models/datasets/something/plot_gif.html

0 Approaching something with your camera

1 Attaching something to something

2 Bending something so that it deforms

3 Bending something until it breaks

Video = Sequence of RGB images

How to represent temporal information?

- Capture the temporal dependency
- Efficiency: 1min 25fps video = 1500 images

Video Recognition Models

Pre-Deep learning era
 Optic flow, trajectories, bag of words.

Deep learning era
 Neural Networks

Pre-deep learning Activity Recognition

- Optic Flow: the displacement of pixels
- Gesture lecture by Ce Liu next week on motion estimation

Motion Representations in Activity Recognition

• Optic Flow

https://www.youtube.com/watch?v=JSzUdVBmQP4

Motion Representations in Activity Recognition

• Trajectories: key-point tracking over frames

https://www.youtube.com/watch?v=YN2IDqXz-uc

Motion Representations in Activity Recognition

Improved Dense Trajectory (iDT)

- Global motion compensation (camera motion removal)
- Features from trajectories and HoG
- Bag of trajectories + Fisher Vector + PCA

Action Recognition with Improved Trajectories. ICCV 2013

Deep Learning Models for Activity Recognition

- RGB frame fusion network
- 2-stream network
- 3D convolution network
- Temporal segment network

Single-frame image model

Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Performance on the UCF101

Spatial ConvNets	Temporal ConvNets	Two-Stream
72.7%	81.0%	87.0%

Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Multi-frame fusion model

Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Multi-frame LSTM fusion model

Long-term Recurrent Convolutional Networks for Visual Recognition and Description. CVPR 2015

LSTM: recursive neural networks

• Video Captioning

Sequence to Sequence – Video to Text https://arxiv.org/pdf/1505.00487.pdf 2015

2-Stream Network

Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Temporal segment network

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016

3D convolutional Networks

Computationally expensive, and a lot of model parameters

If it is RGB frame rather than grey frame, it is actually 4D convolution. H x W x C x T

Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

3D convolutional Networks

• 3D filters at the first layer.

Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

Summary of Video Recognition Networks

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. ICCV 2017

Pose Estimation in Videos

https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CVPR'17

Pose Estimation in Videos

<u>Demo Video:</u> <u>https://www.youtube.com/watch?v=pW6nZXeWIGM&t=77s</u>

https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CVPR'17

Some of my latest work:

Temporal Relational Reasoning in Videos

Bolei Zhou, Alex Andonian, Antonio Torralba CVPR'18 submission

https://arxiv.org/pdf/1711.08496.pdf

Temporal Relational Reasoning

• Infer the temporal relation between frames.

Poking a stack of something so it collapses

Temporal Relational Reasoning

• It is the **temporal transformation/relation** that defines the activity, rather than the **appearance of objects**.

Poking a stack of something so it collapses

Relational Reasoning for Visual Question Answering

Original Image:

Non-relational question:

What is the size of the brown sphere?

Relational question:

Are there any rubber things that have the same size as the yellow metallic cylinder?

Relational Reasoning for Visual Question Answering

Google DeepMind: A simple neural network module for relational reasoning. <u>https://arxiv.org/pdf/1706.01427.pdf</u>

Temporal Relations in Videos

Pretending to put something next to something

Framework of Temporal Relation Networks

Something-Something Dataset

• 100 K videos from 174 human-object interaction classes.

Moving something away from something

Plugging something into something

Pulling two ends of something so that it gets stretched

Jester Dataset

• 140 K videos from 27 gesture classes.

Zooming in with two fingers

Thumb down

Drumming fingers

Experimental Results

• On Something-Something dataset

model	Top1 acc.(%)	Top5 acc.
single frame	11.41	33.39
2-frame TRN	22.23	48.80
3-frame TRN	26.22	54.15
4-frame TRN	29.83	58.21
5-frame TRN	30.39	58.29
7-frame TRN	31.01	59.24
MultiScale TRN	33.01	61.27
MultiScale TRN (10-crop)	34.44	63.20

model	Top1 acc.(%)
Yana Hasson	25.55
Harrison.AI	26.38
I3D by [8]	27.23
Guillaume Berger	30.48
Besnet (Top1 on leaderboard)	31.66
MultiScale TRN	33.60

Experimental Results

• On Jester dataset

model	Top1 acc.(%)	Top5 acc.
single frame	63.60	92.44
2-frame TRN	75.65	94.40
MultiScale TRN	93.70	99.59
MultiScale TRN (10-crop)	95.31	99.86

model	Top1 acc.(%)
20BN's Jester System	82.34
VideoLSTM	85.86
Guillaume Berger	93.87
Ford's Gesture Recognition System	94.11
Besnet (Top1 on leaderboard)	94.23
MultiScale TRN	94.78

Experimental Results

• Demo Video:

http://relation.csail.mit.edu/

Common sense knowledge learned by models

Importance of temporal orders

Activity Forecasting

First Frames Forecasts **Ground Truth** 1: Tearing sth just a little bit (0.998) 2: Tearing sth into two pieces (0.001) 3: Pretending to be tearing sth that is not tearable (0.001) - 1: Lifting a surface with sth on it but not enough for it to slide down (0.490) 2: Lifting sth with sth on it (0.423) 3: Tilting sth with sth on it slightly so it doesn't fall down (0.079) 1: Poking sth so lightly that it doesn't or almost doesn't move (0.466) 2: Poking a stack of sth so the stack collapses (0.207) 3: Poking sth so it slightly moves (0.164) 1: Swiping Down (0.881) 2: Swiping Up (0.105)

3: Stop Sign (0.008)

Activity Forecasting

	Something		Jester	
Data	baseline	TRN	baseline	TRN
first 25%	9.08	11.14	27.25	34.23
first 50%	10.10	19.10	41.43	78.42
full	11.41	33.01	63.60	93.70

Future Directions in Activity Recognition

How to better model temporal relation?

How to make model more efficient? -Remove the dependency on optic flow. -Sampling of discrete frames

Non-local Neural Networks

Xiaolong Wang^{1,2*} ¹Carnegie Mellon University

Ross Girshick²

Abhinav Gupta¹ ²Facebook AI Research

Abstract

nvolutional and recurrent operations are building t process one local neighborhood at a time. In we present non-local operations as a generic wilding blocks for capturing long-range depenspired by the classical non-local means method

Kaiming He²

Future Directions in Activity Recognition

Activity forecasting What's next? kiss, hug, highfive

Understanding long videos Such as movie and TV shows?

