### 6.869: Advances in Computer Vision

Antonio Torralba and Bill Freeman, 2017

## Lecture 2 <br> Linear filters

## Class web page

http://6.869.csail.mit.edu/fa17/

## About me...

Bill Freeman
Thomas and Gerd Perkins Professor,
Electrical Engineering and Computer Science
MIT CSAIL
Stata Center, 32-D476
Cambridge, MA 02139
e-mail: billf@mit.edu
web: http://www.ai.mit.edu/people/wtf


# (O) 

 explore solutions with the power to... $\quad$ Cl
## product catalc



ProPalette 8000 Digital Film Recorder


## Polaroid

Company Info Produ
Digital Cameras : PhotoMAX PDC 23002 Dig PRODUCT catalog

## Taiyuan, China, 1987








## Steerable Filter Architecture



## Image interpretation from local cues



Image


Oriented energy
Contours


Occluding contour

camera input

(a) television off

(b) turn on television

(c) channel control

## Comdex 1994

## Decathlete 100m hurdles









## Google Cambridge Vision Team


team members:
Bill Freeman, Ce Liu, Miki Rubinstein, Dilip Krishnan, Inbar Mosseri, Forrester Cole, Aaron Sarna, Tali Dekel, Mike Krainin, Aaron Maschinot

We take summer interns!

## PhotoScan



Input: move phone over the print to be digitized


Output: a cropped glarefree image


## Two offerings of a Matlab tutorial

$$
\text { Sep. } 13 \text { \& Sep. } 14
$$

- Intended for people with no Matlab exposure.
- Weds 9/13/2017 11:00 am 32-D507 Zhoutong
- Thurs 9/14/2017 3:00 pm 32-D507 Jiajun


## Signals and systems



Time continuous signal


Time discrete signal

## A 2D discrete signal




 171174177175167161157138103112157164159160165169148144







 $\begin{array}{lllllllllllllllllllllll}160 & 160 & 163 & 163 & 161 & 167 & 100 & 45 & 169 & 166 & 59 & 136 & 184 & 176 & 175 & 177 & 185 & 186\end{array}$







A tiny person of $18 \times 18$ pixels

## Signal / image space

Scalar product between two signals $f, g$ :

$$
\langle f, g\rangle=\sum_{n=0}^{N-1} f[n] g^{*}[n]=f^{T} g^{*}
$$

L2 norm of $f$ :

$$
E_{f}=\|f\|^{2}=\langle f, f\rangle=\sum_{n=0}^{N-1}|f[n]|^{2}=f^{T} f^{*}
$$

Distance between two signals $f, g$ :

$$
d_{f, g}^{2}=\|f-g\|^{2}=\sum_{n=0}^{N-1}|f[n]-g[n]|^{2}=E_{f}+E_{g}-2\langle f, g\rangle
$$

## Filtering



We want to remove unwanted sources of variation, and keep the information relevant for whatever task we need to solve


## Linear filtering



For a filter to be linear, it has to verify:

$$
\begin{aligned}
& \mathrm{f}[\mathrm{~m}, \mathrm{n}]=\mathrm{H}(\mathrm{a}[\mathrm{~m}, \mathrm{n}]+\mathrm{b}[\mathrm{~m}, \mathrm{n}])=\mathrm{H}(\mathrm{a}[\mathrm{~m}, \mathrm{n}])+\mathrm{H}(\mathrm{~b}[\mathrm{~m}, \mathrm{n}]) \\
& \mathrm{f}[\mathrm{~m}, \mathrm{n}]=\mathrm{H}(\mathrm{C} \text { a }[\mathrm{m}, \mathrm{n}])=\mathrm{CH}(\mathrm{a}[\mathrm{~m}, \mathrm{n}])
\end{aligned}
$$

## Linear filtering, 1D



A linear filter in its most general form can be written as, in 1D for a signal of length N :

$$
f[n]=\sum_{k=0}^{N-1} h[n, k] g[k]
$$

It is useful to make it more explicit by writing:

$$
\left[\begin{array}{c}
f[0] \\
f[1] \\
\vdots \\
f[M]
\end{array}\right]=\left[\begin{array}{cccc}
h[0,0] & h[0,1] & \ldots & h[0, N] \\
h[1,0] & h[1,1] & \ldots & h[1, N] \\
\vdots & \vdots & \vdots & \vdots \\
h[M, N] & h[M, 1] & \ldots & h[M, N]
\end{array}\right]\left[\begin{array}{c}
g[0] \\
g[1] \\
\vdots \\
g[N]
\end{array}\right]
$$

## Linear filtering, 1D



A linear filter in its most general form can be written as, in 1D for a signal of length N :

$$
f[n]=\sum_{k=0}^{N-1} h[n, k] g[k]
$$

It is useful to make it more explicit by writing:
$\left[\begin{array}{c}f[0] \\ f[1] \\ \vdots \\ f[M]\end{array}\right]=\left[\begin{array}{cccc}h[0,0] & h[0,1] & \cdots & h[0, N-1] \\ h[1,0] & h[1,1] & \cdots & h[1, N-1] \\ \vdots & \vdots & & \vdots \\ h[M, 0] & h[M, 1] & \cdots & h[M, N-1]\end{array}\right]\left[\begin{array}{c}g[0] \\ g[1] \\ \vdots \\ g[N-1]\end{array}\right]$

## Linear filtering



In 2D:

$$
f[n, m]=\sum_{k, l=0}^{N-1, M-1} h[n, m, k, l] g[k, l]
$$

Which can also be written in matrix form as in the 1D case:



Why should one pixel be treated differently than any another?

$$
\left[\begin{array}{c}
f[0] \\
f[1] \\
\vdots \\
f[M]
\end{array}\right]=\left[\begin{array}{cccc}
h[0,0] & h[0,1] & \cdots & h[0, N-1] \\
h[1,0] & h[1,1] & \cdots & h[1, N-1] \\
\vdots & \vdots & & \vdots \\
h[M, 0] & h[M, 1] & \cdots & h[M, N-1]
\end{array}\right]\left[\begin{array}{c}
g[0] \\
g[1] \\
\vdots \\
g[N-1]
\end{array}\right]
$$

Why should one pixel be treated differently than any another?

## A translation invariant filter

Example: The output for the sample $n$ is twice the value of the input at that same time minus the sum of the two previous time steps

$$
\begin{aligned}
f[0] & =2 g[0]-g[-1]-g[-2] \\
f[1] & =2 g[1]-g[0]-g[-1] \\
f[2] & =2 g[2]-g[1]-g[0] \\
& \ldots \\
f[n] & =2 g[n]-g[n-1]-g[n-2]
\end{aligned}
$$

A filter is linear translation invariant (LTI) if it is linear and when we translate the input signal by $m$ samples, the output is also translated by $m$ samples.

## A translation invariant filter



The same weighting occurs within each window

## Convolution

$$
f[n]=h \circ g=\sum_{k=0}^{N-1} h[n-k] g[k]
$$

For the previous example: $\mathrm{h}=[2,-1,-1]$


## Convolution

In the 1D case, it helps to make explicit the structure of the matrix:
$\left[\begin{array}{c}f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[N]\end{array}\right]=\left[\begin{array}{ccccc}h[0] & h[-1] & h[-2] & \ldots & h[-N] \\ h[1] & h[0] & h[-1] & \ldots & h[1-N] \\ h[2] & h[1] & h[0] & \ldots & h[2-N] \\ \vdots & \vdots & \vdots & \vdots & \\ h[N] & h[N-1] & h[N-2] & \ldots & h[0]\end{array}\right]\left[\begin{array}{c}g[0] \\ g[1] \\ g[2] \\ \vdots \\ g[N]\end{array}\right]$

## Convolution



## Convolution

$$
f[n]=h \circ g=\sum_{k=0}^{N-1} h[n-k] g[k]
$$



## Convolution



## Properties of the convolution

Commutative

$$
h[n] \circ g[n]=g[n] \circ h[n]
$$

Associative

$$
h[n] \circ g[n] \circ q[n]=h[n] \circ(g[n] \circ q[n])=(h[n] \circ g[n]) \circ q[n]
$$

Distributive with respect to the sum

$$
h[n] \circ(f[n]+g[n])=h[n] \circ f[n]+h[n] \circ g[n]
$$

Shift property

$$
f\left[n-n_{0}\right]=h[n] \circ g\left[n-n_{0}\right]=h\left[n-n_{0}\right] \circ g[n]
$$

2D convolution


$$
f[m, n]=h \circ g=\sum_{k, l} h[m-k, n-l] g[k, l]
$$



$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |




| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |







## What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)


## 2D convolution

$$
f[m, n]=h \circ g=\sum_{k, l} h[m-k, n-l] g[k, l]
$$

$$
m=0 \quad 12 \ldots
$$

| 111 | 115 | 113 | 111 | 112 | 111 | 112 | 111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 135 | 138 | 137 | 139 | 145 | 146 | 149 | 147 |
| 163 | 168 | 188 | 196 | 206 | 202 | 206 | 207 |
| 180 | 184 | 206 | 219 | 202 | 200 | 195 | 193 |
| 189 | 193 | 214 | 216 | 104 | 79 | 83 | 77 |
| 191 | 201 | 217 | 220 | 103 | 59 | 60 | 68 |
| 195 | 205 | 216 | 222 | 113 | 68 | 69 | 83 |
| 199 | 203 | 223 | 228 | 108 | 68 | 71 | 77 |

$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $?$ | -5 | 9 | -9 | 21 | -12 | 10 | $?$ |
| $?$ | -29 | 18 | 24 | 4 | -7 | 5 | $?$ |
| $?$ | -50 | 40 | 142 | -88 | -34 | 10 | $?$ |
| $?$ | -41 | 41 | 264 | -175 | -71 | 0 | $?$ |
| $?$ | -24 | 37 | 349 | -224 | -120 | -10 | $?$ |
| $?$ | -23 | 33 | 360 | -217 | -134 | -23 | $?$ |
| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |

f[m,n]

## Handling boundaries



## Handling boundaries

Zero padding


$11 \times 11$ ones

## Handling boundaries



## Examples



## Examples



## Examples



$$
\bigcirc \begin{array}{|l|l|l|l|l|}
\hline .5 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & .5 \\
\hline
\end{array}=
$$

## Examples



## Rectangular filter


$g[m, n]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

## Rectangular filter


$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

f[m,n]

## Rectangular filter


$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

## Important signals

The impulse


The result of convolving a signal $g[\mathrm{n}]$ with the impulse signal is the same signal:

$$
f[n]=\delta \circ g=\sum_{k} \delta[n-k] g[k]=g[n]
$$

Convolving a signal $f$ with a translated impulse $\delta[n-n 0]$ results in a translated signal:

$$
f\left[n-n_{0}\right]=\delta\left[n-n_{0}\right] \circ f[n]
$$

## Why the impulse is so important

$$
f[n]=\sum_{k} f[k] \delta[n-k]
$$

Write the input signal as a sum of impulses


## Why the impulse is so important



Passing $\mathrm{f}[\mathrm{n}]$ through the LTI system, replace every $\delta[\mathrm{n}]$ in $\mathrm{f}[\mathrm{n}]$ with $\mathrm{h}[\mathrm{n}]$

$$
g[n]=\sum_{k} f[k] h[n-k]=f \circ h=h \circ f
$$



Then the output of an LTI system is the corresponding sum of impulse responses.



## Important signals

## Cosine and sine waves

$$
s(t)=A \sin (w t-\theta)
$$

A discrete signal $f[n]$ is periodic, if there exists $T \in$ integers such that $f[n]=f[n+m T]$ for all $m \in$ integers. For the discrete sine (and cosine) wave to be periodic the frequency has to be $w=2 \pi K / N$ for $K, N \in$ integers. If $K / N$ is an irreducible fraction, then the period of the wave will be $T=N$ samples.

$$
s_{k}[n]=\sin \left(\frac{2 \pi}{N} k n\right) \quad c_{k}[n]=\cos \left(\frac{2 \pi}{N} k n\right)
$$

$k \in[1, N / 2]$ denotes the number of wave cycles that will occur within the region of support

## Important signals

Cosine and sine waves, $\mathrm{N}=20$

$\cos \left(\frac{2 \pi}{N} k n\right)$

$\sin \left(\frac{2 \pi}{N} k n\right) \quad \mathrm{k}=2$

$\sin \left(\frac{2 \pi}{N} k n\right) \quad \mathrm{k}=3$


## Waves in 2D

$$
s_{u, v}[n, m]=A \sin \left(2 \pi\left(\frac{u n}{N}+\frac{v m}{M}\right)\right) \quad c_{u, v}[n, m]=A \cos \left(2 \pi\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$



## Important signals

## Complex exponential

$$
s(t)=A \exp (j w t)
$$

In discrete time (setting $A=1$ ), we can write:

$$
e_{k}[n]=\exp \left(j \frac{2 \pi}{N} k n\right)=\cos \left(\frac{2 \pi}{N} k n\right)+j \sin \left(\frac{2 \pi}{N} k n\right)
$$

And in 2D, the complex exponential wave is:

$$
e_{u, v}[n, m]=\exp \left(2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

## Important signals

## Complex exponential


$N=40, k=1$

$N=40, k=4$

Each of impulses, sine and cosine waves or complex exponentials can form an orthogonal basis for signals of length N

## Linear image transformations

In analyzing images, it's often useful to make a change of basis.


## Self-inverting transforms

$$
\vec{F}=\overrightarrow{U f} \Longleftrightarrow \vec{f}=U^{-1} \vec{F}
$$

Same basis functions are used for the inverse transform

$$
\begin{aligned}
\vec{f} & =U^{-1} \vec{F} \\
& =U^{+} \vec{F}
\end{aligned}
$$

U transpose and complex conjugate

## The Discrete Fourier transform

Discrete Fourier Transform (DFT) transforms an image $f[m, m]$ into the complex image Fourier transform $F[u, v]$ as:

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

The inverse Fourier transform is:

$$
f[n, m]=\frac{1}{N M} \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F[u, v] \exp \left(+2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

## Discrete Fourier transform visualization


imaginary


## Fourier transform visualization



## Some useful transforms

Fourier transform of an impulse, the Delta function $\delta[\mathrm{n}, \mathrm{m}]$ :

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \delta[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)=1
$$

If we apply the inverse DFT to both sides, we have:

$$
\delta[n, m]=\frac{1}{N M} \sum_{u=-N / 2}^{N / 2} \sum_{v=-M / 2}^{M / 2} \exp \left(2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

## Some useful transforms

The Fourier transform of the cosine wave

$$
\cos \left(2 \pi\left(\frac{u_{0} n}{N}+\frac{v_{0} m}{M}\right)\right)
$$

is:

$$
\begin{aligned}
F[u, v] & =\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \cos \left(2 \pi\left(\frac{u_{0} n}{N}+\frac{v_{0} m}{M}\right)\right) \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)= \\
& =\frac{1}{2}\left(\delta\left[u-u_{0}, v-v_{0}\right]+\delta\left[u+u_{0}, v+v_{0}\right]\right)
\end{aligned}
$$

Same for the sine wave:
$\sin \left(2 \pi\left(\frac{u_{0} n}{N}+\frac{v_{0} m}{M}\right)\right) \leftrightarrow F[u, v]=\frac{1}{2 j}\left(\delta\left[u-u_{0}, v-v_{0}\right]-\delta\left[u+u_{0}, v+v_{0}\right]\right)$

## Bracewell's pictorial dictionary of Fourier transform pairs



Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978


Table 3.2 Some useful (continuous) Fourier transform pairs: The dashed line in the Fourier transform of the shifted impulse indicates its (linear) phase. All other transforms have zero phase (they are real-valued). Note that the figures are not necessarily drawn to scale but are drawn to illustrate the general shape and characteristics of the filter or its response. In particular, the Laplacian of Gaussian is drawn inverted because it resembles more a "Mexican

## 2D Discrete Fourier Transform

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

Note that 2D (and higher-D) DFT's are separable:

$$
F[u, v]=\sum_{n=0}^{N-1} \exp \left(-2 \pi j \frac{u n}{N}\right) \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j \frac{v m}{M}\right)
$$

This is a 1D DFT over m, followed by 1D DFT over $n$.

## 2D Discrete Fourier Transform

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

Using the real and imaginary components:

$$
F[u, v]=\operatorname{Re}\{F[u, v]\}+j \operatorname{Imag}\{F[u, v]\}
$$

Or using a polar decomposition:

$$
F[u, v]=A[u, v] \exp (j \theta[u, v])
$$

## 2D Discrete Fourier Transform



## Properties for the DFT

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

- Linearity
- Symmetry: Fourier transform of a real signal has coefficients that come in pairs, with $F[u$, $v$ ] being the complex conjugate of $F[-u,-v]$.


## Properties for the DFT

$$
\begin{aligned}
& F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right) \\
& f[n, m]=\frac{1}{N M} \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F[u, v] \exp \left(+2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
\end{aligned}
$$

- Both the DFT and its inverse are periodic

As $F[u, v]$ is obtained as a sum of complex exponential with a common period of $\mathrm{N}, \mathrm{M}$ samples, the function $\mathrm{F}[\mathrm{u}, \mathrm{v}]$ is also periodic: $\mathrm{F}[\mathrm{u}+\mathrm{aN}$, $v+b M]=f[u, v]$ for any $a, b \in Z$. Also the result of the inverse DFT is a periodic image: $\mathrm{f}[\mathrm{n}+\mathrm{aN}, \mathrm{m}+\mathrm{bM}]=\mathrm{f}[\mathrm{n}, \mathrm{m}]$ for any $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$.

## Properties for the DFT

- Shift in space
$\operatorname{DFT}\left\{f\left[n-n_{0}, m-m_{0}\right]\right\}=$

$$
\begin{aligned}
& =\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f\left[n-n_{0}, m-m_{0}\right] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)= \\
& =\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u\left(n+n_{0}\right)}{N}+\frac{v\left(m+m_{0}\right)}{M}\right)\right)= \\
& =F[u, v] \exp \left(-2 \pi j\left(\frac{u n_{0}}{N}+\frac{v m_{0}}{M}\right)\right)
\end{aligned}
$$

## Properties for the DFT



Only the phase changes! The magnitude is translation invariant.

## Properties for the DFT

- Modulation

$$
f[n, m] \exp \left(-2 \pi j\left(\frac{u_{0} n}{N}+\frac{v_{0} m}{M}\right)\right)
$$

Multiplying by a complex exponential results in a translation of the DFT

$$
D F T\left\{f[n, m] \exp \left(-2 \pi j\left(\frac{u_{0} n}{N}+\frac{v_{0} m}{M}\right)\right)\right\}=F\left[u-u_{0}, v-v_{0}\right]
$$

## Frequencies



## Frequencies



Images are $64 \times 64$ pixels. The wave is a cosine (if phase is zero).


## Some important Fourier transforms



Images are 64x64 pixels.

## Some important Fourier transforms

Image


Magnitude DFT
Phase DFT


## Some important Fourier transforms

Image


Phase DFT


## Some important Fourier transforms

Image


Phase DFT


## Magnitude DFT



# Scale 

Small image details produce content in high spatial frequencies

## Some important Fourier transforms

Image


Phase DFT


## Some important Fourier transforms

Image



## Image

## Magnitude DFT



## The Fourier Transform of some important images



## More properties for the DFT

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

## DFT of the convolution

$$
f=g \circ h \longleftrightarrow F[u, v]=G[u, v] H[u, v]
$$

$$
\begin{aligned}
F[u, v] & =D F T\{g \circ h\} \\
& =\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} g[m-k, n-l] h[k, l] \exp \left(-2 \pi j\left(\frac{m u}{M}+\frac{n v}{N}\right)\right) \\
F[u, v] & =\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} h[k, l] \sum_{m^{\prime}=-k}^{M-k-1} \sum_{n^{\prime}=-l}^{N-l-1} g\left[m^{\prime}, n^{\prime}\right] \exp \left(-2 \pi j\left(\frac{\left(m^{\prime}+k\right) u}{M}+\frac{\left(n^{\prime}+l\right) v}{N}\right)\right) \\
F[u, v] & =\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} G[u, v] \exp \left(-2 \pi j\left(\frac{k u}{M}+\frac{l v}{N}\right)\right) h[k, l]
\end{aligned}
$$

## Linear filtering



In the spatial domain:

$$
f[m, n]=h \circ g=\sum_{k, l} h[m-k, n-l] g[k, l]
$$

In the frequency domain:

$$
F[u, v]=G[u, v] H[u, v]
$$

## Product of images

The Fourier transform of the product of two images

$$
f[n, m]=g[n, m] h[n, m]
$$

is the convolution of their DFTs:

$$
F[u, v]=\frac{1}{N M} G[u, v] \circ H[u, v]
$$



## Game: find the right pairs



