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Taiyuan,	China,	1987



In	my	office	at	the	Computer	Center,	1987
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Image Oriented energy Contours

Occluding contour

Image	interpretation	from	local	cues
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Comdex	1994
Decathlete	100m	hurdles
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Two	offerings	of	a	Matlab tutorial
Sep.	13	&	Sep.	14

• Intended	for	people	with	no	Matlab exposure.

• Weds	9/13/2017		11:00	am	32-D507		Zhoutong
• Thurs	9/14/2017		3:00	pm	32-D507		Jiajun



Signals	and	systems
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Time continuous signal Time discrete signal



A	2D	discrete	signal
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A tiny person of 18 x 18 pixels



Signal	/	image	space
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Scalar product between two signals f, g :

L2 norm of f :

Distance between two signals f, g :



Filtering

Image in Image out

We want to remove unwanted sources of variation, and keep the 
information relevant for whatever task we need to solve



Linear	filtering
g [m,n] f [m,n] = H(g [m,n])

f [m,n] = H(a [m,n] + b [m,n]) = H(a [m,n]) + H(b [m,n]) 

For a filter to be linear, it has to verify:

f [m,n] = H(C a [m,n]) = C H(a [m,n]) 



Linear	filtering,	1D
g [n] f [n] = H(g [n])

A linear filter in its most general form can be written as, 
in 1D for a signal of length N:

It is useful to make it more explicit by writing:



Linear	filtering,	1D
g [n] f [n] = H(g [n])

A linear filter in its most general form can be written as, 
in 1D for a signal of length N:

It is useful to make it more explicit by writing:



Linear	filtering
g [m,n] f [m,n] = H(g [m,n])

In 2D:

=

Which can also be written in matrix form as in the 1D case:



Credit picture: Fredo Durand

Why should one pixel be treated differently than any another?



Credit picture: Fredo Durand

Why should one pixel be treated differently than any another?



A	translation	invariant	filter
Example: The output for the sample n is twice the value of the 
input at that same time minus the sum of the two previous time steps

A filter is linear translation invariant (LTI) if it is linear and when 
we translate the input signal by m samples, the output is also 
translated by m samples.



A	translation	invariant	filter

=

The same weighting occurs within each window



Convolution
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For the previous example: h =  [2, -1, -1]



Convolution
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In the 1D case, it helps to make explicit the structure of the 
matrix:



Convolution
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In the 1D case, it helps to make explicit the structure of the 
matrix:

This image cannot currently be displayed.



Convolution
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f [0] = 4

f [1] = 2

f [8] = -1

.
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.
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Convolution
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Properties	of	the	convolution
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Commutative

Associative

Distributive with respect to the sum

Shift property



2D convolution















What does it do?
• Replaces each pixel with an average of its neighborhood
• Achieve smoothing effect (remove sharp features)



2D	convolution

€ 

⊗
-1 2 -1

-1 2 -1

-1 2 -1

g[m,n]
h[m,n] f[m,n]

=

111 115 113 111 112 111 112 111

135 138 137 139 145 146 149 147

163 168 188 196 206 202 206 207

180 184 206 219 202 200 195 193

189 193 214 216 104 79 83 77

191 201 217 220 103 59 60 68

195 205 216 222 113 68 69 83

199 203 223 228 108 68 71 77

m=0  1  2  …
? ? ? ? ? ? ? ?

? -5 9 -9 21 -12 10 ?

? -29 18 24 4 -7 5 ?

? -50 40 142 -88 -34 10 ?

? -41 41 264 -175 -71 0 ?

? -24 37 349 -224 -120 -10 ?

? -23 33 360 -217 -134 -23 ?

? ? ? ? ? ? ? ?



Handling	boundaries
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Handling	boundaries
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11x11 ones

=

Zero padding



Handling	boundaries
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Examples
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Examples
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2 pixels

(using zero padding)



Examples
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Examples
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Rectangular	filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]



Rectangular	filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]



Rectangular	filter

€ 

⊗

g[m,n]

h[m,n]

=

f[m,n]



Important	signals
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The impulse

The result of convolving a signal g[n] with the impulse signal is 
the same signal: 

Convolving a signal f with a translated impulse δ [n − n0] results 
in a translated signal:



Why	the	impulse	is	so	important

Write the input signal as a 
sum of impulses

δ [n] h [n]
LTI system



Why	the	impulse	is	so	important

70

Then the output of an LTI system is the corresponding sum of impulse 
responses.

δ [n] h [n]
LTI system

Passing f[n] through the LTI system, replace every δ[n] in f[n] with h[n]

f [n] g [n] 
LTI system



Why	the	impulse	is	so	important
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Why	the	impulse	is	so	important
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Important	signals

Cosine and sine waves

k∈ [1, N /2] denotes the number of wave cycles that will occur 
within the region of support 

A discrete signal f [n] is periodic, if there exists T ∈ integers such 
that f [n] = f [n + mT] for all m∈ integers. For the discrete sine 
(and cosine) wave to be periodic the frequency has to be w = 2πK/N 
for K,N ∈ integers. If K/N is an irreducible fraction, then the period 
of the wave will be T = N samples. 



Important	signals
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Cosine and sine waves, N=20

k=2 k=2

k=3k=3



Waves	in	2D
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u = 2, v = 0 u = 3, v = 1 u = 7, v = −5



Important	signals
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Complex exponential

In discrete time (setting A = 1), we can write:

And in 2D, the complex exponential wave is:



Important	signals
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Complex exponential

N = 40, k = 1 N = 40, k = 4 



Each	of	impulses,	sine	and	cosine	waves	or	
complex	exponentials	can	form	an	orthogonal	
basis	for	signals	of	length	N
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Linear	image	transformations

In	analyzing	images,	it’s often	useful	to	make	
a	change	of	basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

Vectorized imageTransformed image

=



Self-inverting	transforms

Same basis functions are used for the inverse transform

U transpose and complex conjugate



The	Discrete	Fourier	transform
Discrete Fourier Transform (DFT) transforms an image
f [m, m] into the complex image Fourier transform F [u, v] as:

The inverse Fourier transform is:



Discrete	Fourier	transform	visualization



Fourier	transform	visualization



Some	useful	transforms
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Fourier transform of an impulse, the Delta function δ[n ,m]:

If we apply the inverse DFT to both sides, we have:



Some	useful	transforms

85

The Fourier transform of the cosine wave

is:

Same for the sine wave:



Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s	pictorial	dictionary	of	Fourier	transform	pairs
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2D	Discrete	Fourier	Transform
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Note that 2D (and higher-D) DFT’s are separable:

This is a 1D DFT over m, followed by 1D DFT over n.



2D	Discrete	Fourier	Transform
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Using the real and imaginary components:

Or using a polar decomposition:



2D	Discrete	Fourier	Transform
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Properties	for	the	DFT

• Linearity	
• Symmetry:	Fourier	transform	of	a	real	signal	
has	coefficients	that	come	in	pairs,	with	F [u,	
v]	being	the	complex	conjugate	of	F [-u,	-v].
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Properties	for	the	DFT

• Both	the	DFT	and	its	inverse	are	periodic

92

As F [u, v] is obtained as a sum of complex exponential with a common 
period of N , M samples, the function F [u, v] is also periodic: F [u + aN, 
v + bM] = f [u, v] for any a, b∈ Z. Also the result of the inverse DFT is 

a periodic image: f [n + aN, m + bM] = f [n, m] for any a, b∈ Z.



Properties	for	the	DFT
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• Shift in space



Properties	for	the	DFT
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Only the phase changes! The magnitude is translation invariant.



Properties	for	the	DFT
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• Modulation

Multiplying by a complex exponential results in a translation of the DFT



Frequencies
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DFT amplitude

Images are 64x64 pixels. The wave is a cosine (if phase is zero).

Image 
(assuming zero phase)



Frequencies
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Images are 64x64 pixels. The wave is a cosine (if phase is zero).
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Some	important	Fourier	transforms
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Image Magnitude DFT Phase DFT

Images are 64x64 pixels.



Some	important	Fourier	transforms
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Image Magnitude DFT Phase DFT



Some	important	Fourier	transforms
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Image Magnitude DFT Phase DFT



Some	important	Fourier	transforms
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Image Magnitude DFT Phase DFT
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Image Magnitude DFT

Scale
Small image
details produce 
content in high 
spatial frequencies



Some	important	Fourier	transforms
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Image Magnitude DFT Phase DFT



Some	important	Fourier	transforms
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Image Magnitude DFT Phase DFT
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Image Magnitude DFT

Orientation
A line transforms to 
a line oriented 
perpendicularly to 
the first.



The	Fourier	Transform	of	some	
important	images
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More	properties	for	the	DFT
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DFT	of	the	convolution
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Linear	filtering
g [m,n] f [m,n]

h [m,n]

In the spatial domain:

In the frequency domain:



Product	of	images

111

The Fourier transform of the product of two images

is the convolution of their DFTs:
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* =



Game:	find	the	right	pairs

A B C

1 2 3

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size)

Images

DFT
magnitude


