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e Psetl due tonight midnight
e Pset2 out after class



Outline for today’s class

Fourier transform properties
Practice taking Fourier transforms
The importance of phase

Our perception of Fourier components
— Hybrid images

Filtering tricks

— Blur

— Derivatives
— Orientation



2D Discrete Fourier Transform

N—-1M-1

Flu,v]= ) > fln,mlexp (_27[j (L;v_n T %))

n=0 m=0

Note that 2D (and higher-D) DFT's are separable:

=

Flu,v]= Y exp(- 2ny—>Ef[n mlexp(-27j )

Do this xm first
Then do tLis sum
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Properties for the DFT

N—-1M-1
Flu,v] = Z Z f [n,m]exp (_27[j (thv_n T %))
n=0 m=0
* Linearity

 Symmetry: Fourier transform of a real signal
has coefficients that come in pairs, with F [u,
v] being the complex conjugate of F [-u, -V].



Properties for the DFT

N—-1M-1

Flu,v] = zz(;) > fmmlex (—27i (5 +57))
fln,m] = ]:Z—;AjZ;F[u v]exp (+27[J (L;\:l + %))

Both the DFT and its inverse are periodic

As F [u, v] 1s obtained as a sum of complex exponential with a common
period of N , M samples, the function F [u, v] 1s also periodic: F [u + aN,
v+ bM] = 1f[u, v] for any a, b € Z. Also the result of the inverse DFT 1s a
periodic image: f [n + aN, m + bM] = f [n, m] for any a, b € Z.



What will the FT of this look like?

https://www.marshbellofram.com/bellofram-silicones/products/bellofram-closed- 7
cell-silicone-sponge-extrusion-products/



The DFT of this image:

. Dft of luminance
1mage

o

Range [-4.84, 12.8]
Dims [392, 592]
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What the |
DFT sees




To remove any edge effects, let’s
takd the DFT of this image:

Range [-7.93,9.77]

Range [0, 0.514] Dims [592, 592

Dims= [392, 392]




Properties for the DFT

Shift in space corresponds to a phase shift in the frequency domain.

DFT {f [n — ng,m — mg|} =

—ZZ}‘ n— ny, m—mg]exp( 77r](“n

N—1M-1

n=0 m=0

A u(n+np)

N

Flu,v]exp (—27rj(

U ny

Vg

N

M

)

vim

M

)
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Properties for the DFT

fln] F [u] F [u]]
2 2
s {1 -1
0o 1m -2
2 — o — . 2
i . 1
1} U l o
i 1 -1
° M 215 !H n ’
2 o 2
/| .H | o
0* 1m ;

Only the phase changes! The magnitude 1s translation invariant.
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DFT of a convolution is the product
of the DFT’s of the multiplicands

f = go h < Flu,vl]=Glu,v]H |u,v]

Flu,v] = DFT {g o h}

M—1N-1

=22

M—-1N-1

y Yg[m —k,n—11h[k,I]

m=0 n=0

M—-1N-1

Flu,v] = Z zh |k, [] z Z m'.n’ exp (—27rj(

k=0 [=0

M—-1N—-1

k=0 [=0

M—k—1N—-I-1

m'=—k n'=-—I

exp (—27rj (

mu + fw))
M N

Flu,v] = Z Z G lu,v]exp (—27rj (% - %))h [k, (]

k=0 [=0

(m’ + k)u N (n’ + 1)1'))

M N
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Outline for today’s class

Fourier transform properties
Practice taking Fourier transforms
The importance of phase

Our perception of Fourier components
— Hybrid images

Filtering tricks

— Blur

— Derivatives
— Orientation



2D Discrete Fourier Transform

N—-1M-1

Flu,v]= ) > fln,mlexp (—27cj (b]‘v_” T %))

n=0 m=0

Using the real and imaginary components:
Flu,v] = Re{F [u,v]} + jImag {F [u,v]}

Or using a polar decomposition:
Flu,vl]=Alu,v]exp (jO [u,v])
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2D Discrete Fourier Transform

real imaginary

image

magnitude




Frequencies

| Image
DFT amplitude (assuming zero phase)

.

.

Images are 64x64 pixels. The wave is a cosine (if phase is zero).







Some important Fourier transforms

Image Magnitude DFT Phase DFT

Images are 64x64 pixels.

19



Some important Fourier transforms

Image Magnitude DFT Phase DFT
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Some important Fourier transforms

Image

Magnitude DFT

Phase DFT
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Some important Fourier transforms

Image Magnitude DFT Phase DFT
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Image Magnitude DFT

né.
.9-

Scale

Small 1image
details produce
content in high
spatial frequencies




Some important Fourier transforms

Image Magnitude DFT Phase DFT
I I I I - I I I I I




Some important Fourier transforms

Magnitude DFT Phase DFT




Image Magnitude DFT

Orientation

A line transforms to
a line oriented
perpendicularly to
the first.

_>



Linear filtering

g [m,n] ) f[m,n]g)

h [m,n]

In the spatial domain:

flmnl=hog= Zh[m—k,n—l]g[k,l]
k,l

In the frequency domain:

Fluv]l=Glu,vlH |u,v]



Product of images

The Fourier transform of the product of two images

fn,m]=gln,mlh[n,m]
is the convolution of their DFTs:

|
Flu,v] = N—MG lu, vl o H[u,v]

28
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Outline for today’s class

Fourier transform properties
Practice taking Fourier transforms
The importance of phase

Our perception of Fourier components
— Hybrid images

Filtering tricks

— Blur

— Derivatives
— Orientation



Phase and Magnitude

e Curious fact
— all natural images have about the same magnitude transform
— hence, phase seems to matter, but magnitude largely doesn’t

e Demonstration

— Take two pictures, swap the phase transforms, compute the
inverse - what does the result look like?



Phase and Magnitude
Flu,vl=Au,v] exp (O [u,v])

Each color channel is processed in the same way.
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Phase and magnitude

Flu,v] =Au,v] exp (O [u,v])

DFT Amplitude

Random phase

Using random
amplitude does not
look good.

34



Does phase always win?

DFT Amplitude ~ DFT a Random phase /f amplitude




Outline for today’s class

Fourier transform properties
Practice taking Fourier transforms
The importance of phase

Our perception of Fourier components
— Hybrid images

Filtering tricks

— Blur

— Derivatives
— Orientation



Some visual areas...

retina

From M. Lewicky



Campbell & Robson chart

Let’s define the following image:

I[n,m] =|A [n] Isin( 2xf lm]lm/M)

With:

Aln|l=A,;
(1] min A

What do you think you should see when looking at this image?



Iin.m]| =A[n]smQ2zf|m]|m/M)

1
08~ -
06|~ -
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02~ -
| | I— | | | | | |
100 20 0 0 500 600 0 B00 90 1000

-0.2
-0.4
-0.6
-0.8

200




Iin.m]|=A[n|smQ2zf|m]m/M)




Contrast sensitivity

Contrast Sensitivity Function
Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles / degree of visual angle

0.1 1 10
Low Spatial frequency (cycles/degree)

High

100



Figure 1. Stimulus presentation scheme, The stimuli were
originally calibrated to be seen at a distance of 150 ¢cm in a
19" display.
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Contrast Sensitivity Function

Spatial frequency (cycles/degree)
0.1 1 10 100
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Spatial frequency (cycles/mm on retina)
From:

http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/channels/channels.html

OXFORD PSYCHOLOGY SERIES « 14

Spatial Vision

RUSSELL L. DE VALOIS
KAREN K. DE VALOIS

OXFORD SCIENCE PUBLICATIONS



















Copyright @ 2007 Aude Oliva, MIT




Copyright @ 2007 Aude Oliva, MIT

http://cvcl.mit.edu/hybrid _gallery/gallery.html



Outline for today’s class

* Fourier transform properties
 Practice taking Fourier transforms
* The importance of phase
* QOur perception of Fourier components
— Hybrid images
 Filtering tricks
— Blur

— Derivatives
— Orientation
51



A collection of useful filters



BLUR

Low pass-filters

53



Box filter

] if = N<n<Nand - M<m<M

0 otherwise

hy pm [n,m] = [

2N+1




Box filter




Box filter

The box filter is separable as a 2-d box can be written as the
convolution of two 1D kernels

hy ym [n.m] = hyoohom

ek
[
[
I
ke
ke



Box filter

But if you convolve two boxes along the same dimension:

111 O111=12321

el T

The convolution of two box filters is not another box filter.
It 1s a triangular filter.




Box filter

It produces a blurry version of the input. But it is not a perfect blur.



Gaussian filter

In the continuous domain:

| X2

g(xay;o-) — ) 2 CXP — 52




Gaussian filter

( ) 1 x> 4 y?
X,y;0) = exp —
W) 2702 p 3

20

Discretization of the Gaussian:

At 30 the amplitude of the Gaussian is around 1% of its central value

2
m* + n”

Do 2

glm,n; o] =exp



Blur occurs under many natural situations

61



Blur occurs under many natural situations




Gaussian filter

Dali



Scale




Properties of the Gaussian filter

1 X+ y?
exp —
2o P 202

gx,y;0) =

 The n-dimensional Gaussian is the only
completely circularly symmetric operator that
is separable.

* The (continuous) Fourier transform is a
gaussian

2y 2

G(u,v, o) =exp —2%2(:{2 +Vv)o~©



Properties of the Gaussian filter

1 X+ y?
exp —
2o P 202

glx,y;0) =

* The convolution of two n-dimensional
gaussians is an n-dimensional gaussian.

glx,y;01) 0 g(x,y; 02) = g(x,y; 03)
where the variance of the result is the sum

2 )
Oy =0 +0,

(it 1s easy to prove this using the FT of the gaussian)



Properties of the Gaussian filter

1 X2+ y?
exp —
2ol P 202

gx,y;0) =

* Repeated convolutions of any function
concentrated in the origin result in a gaussian
(central limit theorem).



Discretization of the Gaussian

There are very efficient approximations to the
Gaussian filter for certain values of ¢ with
nicer properties than when working with
discretized gaussians.



Binomial filter

Binomial coefficients provide a compact
approximation of the gaussian coefficients
using only integers.

The simplest blur filter (low pass) is
[T 1]

Binomial filters in the family of filters obtained as

successive convolutions of [1 1]



Binomial filter

b, = [1 1]

b, =[11]o[11]=]121]

b, = [11]Jo[11]o[11]=[1331]



Binomial filter
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Properties of binomial filters

 Sum of the values is 2"
* The variance of b_is ¢ =n/4
* The convolution of two binomial filters is also
a binomial filter
by © by = bpim
With a variance:

2 2 2
O'n + C'-m - Gn—l—m

These properties are analogous to the gaussian property in the
continuous domain (but the binomial filter is different than a

discretization of a gaussian)



B2[n]

The simplest approximation to the Gaussian filter is the 3-tap
kernel:

b =[1,2,1]

b [n]

—10 0 10

73



B2[n] versus the 3-tap box filter

by [n]
[12 1] 2 ¢
mlj—mw n
~10 0 10
hy [n]
11 1] )
| X X
000000000 900000000/
—10 0 10

Which one is better?

74




B2[n] versus the 3-tap box filter
Zf[n exp( ZEJW)

(with N=20, and assuming periodic boundary extension)

by [n] . .
) B,(u) =2 + exp(-2m) u/N) + exp(2m) u/N) =
I% =2 + 2 cos(2m u/N)

~10 0 0

H,(u) =1 + exp(-2m) u/N) + exp(2mj u/N) =

| =1 + 2 cos(2m u/N)




|B2 [u]]

b ) 1 2 + 2 cos(2mu/20)

22 <> .. ..’
| gkl
%m»llmwn _._.’*T T?,.—.) u
—10 0 10 —10 10
[Hyp [ull
hu [n] .?....1 + 2 cos(2m u/20)

*.’M...;.—) TT?.?TT. il .TT«JTITG
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B2[n]

[1,2,1]o[..., 1,-1,1,-1,1,-1, ...] =
[...,0,0,0,0,0,0,...]

This does not happen with the sampled version of a Gaussian.

(1, 1,110[...,1,-1,1,-1,1,-1, ...] =
[,-1,1,-1,1,-1, 1, ...]



B2[n]

| 121
bz,zzbz,oobo,zz[l ) 1]0 2| =242
] Sl 121




Linear blur occurs under many natural situations

(from Fergus et al, 2007)

Blur kernel

This 1s not a Gaussian kernel...



Contrast Sensitivity Function

Blackmore & Campbell (1969) . o
Maximum sensitivity

~ 6 cycles / degree of visual angle

Contrast sensitivity

0.1 1 10 _ 100
Low Spatial frequency (cycles/degree) High

Things that are very close Things far away
and large are hard to see are hard to see



Vasarely visual illusion
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Finding edges in the image

Edge strength

Edge orientation:

Edge normal:

Image gradient:
ol 01
VI=(—, =
(Bﬂ:’ay)

Approximation image derivative:

S—i ~ I(z,y) - I(z —1,y)

E(z,y) = |VI(z,y)|

o1/0y
0l/0x

O(z,y) = £LVI = arctan

VI
|V

n



o Kﬁ B .

g[m,n]



1y
—
e

g[m,n]



Differential Geometry Descriptors

b S
—

o

7

Scale-Space Theory in
Computer Vision

| SOLID SHAPE

| e -
‘ JAN J. KOENDERINK 7




Discrete derivatives

do=1[1,—1]
fodo=fI[nl—fI[n—1]

di =1[1,0,—1]/2
fod, _fIn+ 1 —fln—1]

2



Discrete derivatives

90



Discrete derivatives

91



-11]

Kﬁ B

g[m,n]



-1 1]

1y
—
e

O [-1’ 1]T

h[m,n]

g[m,n]






Reconstruction from 1D derivatives

Can we compute the inverse?



Reconstruction from 1D derivatives




Reconstruction from 1D derivatives

What happens if we remove the output pixels affected by the boundary?




Reconstruction from 1D derivatives

What happens if we remove the output pixels affected by the boundary?

—1 1 0 0 0[] T
0 =1 1 0 of [t [
00—1105_0

2
0 0 0 —11]]o] &

Can we still recover the input?

If the derivative D is not invertible, we can compute the pseudo-inverse:

N
D = (D'D)' DT



Reconstruction from 1D derivatives

11 0 0 0 —4 =3 =2l
0 -1 1 0 0 N I A,
_ D=§ I 2 =2 —1
0 0 —1 1 0 Lo 3
0 0 0 —-11 1 2 3 4

Pseudo-inverse

Derivative matrix o :
of derivative matrix

(without boundary)



Reconstruction from derivatives

Derivative:
—1 1 0
0O —1 1
0O 0 -1
i O 0 O
Reconstruction:
4 -3 =2 —1
0 1 -3 =2 —1
5 1 2 =2 -1
1 2 3 -1
i 1 2 3 4

Input
O Of [q]
0 0 (1
2 —
1 0 )
—1 1 0
Derivative
0 -0.2
) _ -0.2
0 0.8
7 0.8
- -1.2 |

Derivative
0
-1
0
2

Reconstruction imput

Did 1t work?




Reconstruction from 2D derivatives

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.



Reconstruction from 2D derivatives




Editing the edge image




ing edges

Threshold




2D derivatives

There are several ways 1n which 2D derivatives can be approximated.

—11 [1_1]

Robert-Cross operator:
1 0] ] o1
0—1 —10

And many more...



Issues with image derivatives

e Derivatives are sensitive to noise

* |f we consider continuous image derivatives,
they might not be define in some regions (e.g.,
object boundaries, ...)



Derivatives

We want to compute the image derivative:
of (x,)
0x
If there 1s noise, we might want to “smooth” it with a blurring filter

of (x,y)
OX

O g (.X-, .)‘)

But derivatives and convolutions are linear and we can move them
around:

of (x,y) 0g(x,y)

x, ? p— x, )
™ ogx,y) =f(x,y)o ™




Gaussian derivatives

‘ ( ) 1 X2+ y?
X,V;0) = exp —
s 2mo? P 202

The continuous derivative 1s:

., 0glx,y;0)
gr(x,y;0) = =
ox
= - cX )C2
- 2rot P 202

—X
= —8,y;0)
O



Gaussian derivatives

X,V,0) = ——eXxp————
W) 2w o? b 202
—X x? —|—y2
gx(X9Y) — 4 CXp — 20_2




n-th order Gaussian derivatives

g(x)
0.4+ 8x (")
1 I I | > X
> X -3 —1 1 3
gx2 (X) gy3 (X)
0.5 » A

( ) — "m+1fng(}t y) ( 1 )n+rnH ( X )H ( ) (x.y: 0)
ym(x,y;0) = — .
s ox"oy™ o2 /2 a2 s



Orientation

g (xy) = B _ _—xe_ngz
o ox 270"
x%+y?

3\ ,,,,,

o

-

(X
7AUKE

N ":’:‘:‘“

G by I = o - N w

~n

What about other orientations not axis aligned?



Orientation

ag(xay) _ —-X €_ 252 »

X,y) =
8:(x.7) ox 27O

The smoothed directional gradient is a linear combination of two kernels
u'Vg®1I = (cos(a)gx(x,y) + sin(a)gy (x,y)) ®I(x,y) =

Any orientation can be computed as a linear combination of two filtered images
= cos(a)g, (x,y) ®I(x,y) + sin(a)gy (x,y)®I(x,y) =

Steereability of gaussian derivatives, Freeman & Adelson 92



Gaussian Scale




Derivatives of Gaussians: Scale




Discretization Gaussian derivatives

There are many discrete approximations. For instance, we can take
samples of the continuous functions. In practice it 1s common to use
the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]

| 2 | [1,-1] 1 0 -1



Discretization 2D Gaussian derivatives

As Gaussians are separable, we can approximate two 1D derivatives
and then convolve them.

One example 1s the Sobel-Feldman operator:

1] [10 =1
Sobe/x=[1 0 _1]0 =120 -2
1] [10-1

-2
Sobely,=1 0 0 0
1 2 1




Effect of different approximations

()

[[n,m]




Effect of different approximations




Laplacian filter

Made popular by Marr and Hildreth in 1980 in the search for
operators that locate the boundaries between objects.

The Laplacian operator is defined as the sum of the second order
partial derivatives of a function:

To reduce noise and undefined derivatives, we use the same trick:
)
ViIog = Vz gol

2 2 2
xX“+y-—20
Where:  V2g = =" g(x,y)
O




laplacian




Comparison derivative and laplacian

fln]
9 ! 00000000
1 0 0
— eeeoe e00000 > /i
y 0 5 10 20
dy [n] fn]od[n]
1 1 1 ji u
a—QLQT‘—H n Hﬂll.mﬁmm Il
-3 3 N 10 20
by T o ~'T ?
do [n] o dy [n] fn]odgn] Zero crossings




Image sharpening filter

Subtract away the blurred components of the image:

000
sharpening filter= 1020
000

I
16

(121
2472
121

Thais filter has an overall DC component of 1. It de-emphasizes
the blur component of the image (low spatial frequencies).
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Other “naturally” occurring filters




Camera shake

(from Fergus et al, 2007)

Blur kernel

This 1s not a Gaussian kernel...



