
Lecture	3	
	Linear	filters	

Antonio Torralba and Bill Freeman, 2017 



•  Pset1	due	tonight	midnight	
•  Pset2	out	a5er	class	



Outline	for	today’s	class		

•  Fourier	transform	proper=es	
•  Prac=ce	taking	Fourier	transforms	
•  The	importance	of	phase	
•  Our	percep=on	of	Fourier	components	

– Hybrid	images	

•  Filtering	tricks	
– Blur	
– Deriva=ves	
– Orienta=on		
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2D	Discrete	Fourier	Transform	

4	€ 

F[u,v]= exp(−2πj un
N
)

n=0

N−1

∑ f [n,m]exp(−2πj vm
M
)

m=0

M −1

∑

 Note that 2D (and higher-D) DFT’s are separable: 

Do this sum first 

Then do this sum 



Proper=es	for	the	DFT	

•  Linearity		
•  Symmetry:	Fourier	transform	of	a	real	signal	
has	coefficients	that	come	in	pairs,	with	F	[u,	
v]	being	the	complex	conjugate	of	F	[-u,	-v].	
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Proper=es	for	the	DFT	

•  Both	the	DFT	and	its	inverse	are	periodic	
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As F [u, v] is obtained as a sum of complex exponential with a common 
period of N , M samples, the function F [u, v] is also periodic: F [u + aN, 
v + bM] = f [u, v] for any a, b ∈ Z. Also the result of the inverse DFT is a 
periodic image: f [n + aN, m + bM] = f [n, m] for any a, b ∈ Z. 



What	will	the	FT	of	this	look	like?	

7	https://www.marshbellofram.com/bellofram-silicones/products/bellofram-closed-
cell-silicone-sponge-extrusion-products/ 



The	DFT	of	this	image:		
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image Dft of luminance 



What	will	the	FT	of	this	look	like?	
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What the 
DFT sees 



To	remove	any	edge	effects,	let’s	
takd	the	DFT	of	this	image:	
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Proper=es	for	the	DFT	
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 Shift in space corresponds to a phase shift in the frequency domain. 



Proper=es	for	the	DFT	
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Only the phase changes! The magnitude is translation invariant. 



DFT	of	a	convolu=on	is	the	product	
of	the	DFT’s	of	the	mul=plicands	
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Outline	for	today’s	class		

•  Fourier	transform	proper=es	
•  Prac+ce	taking	Fourier	transforms	
•  The	importance	of	phase	
•  Our	percep=on	of	Fourier	components	

– Hybrid	images	

•  Filtering	tricks	
– Blur	
– Deriva=ves	
– Orienta=on		
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2D	Discrete	Fourier	Transform	

15	

 Using the real and imaginary components: 

Or using a polar decomposition: 



2D	Discrete	Fourier	Transform	
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Frequencies	
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DFT amplitude 

Images are 64x64 pixels. The wave is a cosine (if phase is zero). 

Image  
(assuming zero phase) 



Frequencies	
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Images are 64x64 pixels. The wave is a cosine (if phase is zero). 



Some	important	Fourier	transforms	
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Image Magnitude DFT Phase DFT 

Images are 64x64 pixels. 



Some	important	Fourier	transforms	
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Image Magnitude DFT Phase DFT 



Some	important	Fourier	transforms	

21	

Image Magnitude DFT Phase DFT 



Some	important	Fourier	transforms	
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Image Magnitude DFT Phase DFT 
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Image Magnitude DFT 

Scale 
Small image 
details produce 
content in high 
spatial frequencies 



Some	important	Fourier	transforms	
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Image Magnitude DFT Phase DFT 



Some	important	Fourier	transforms	
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Image Magnitude DFT Phase DFT 
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Image Magnitude DFT 

Orientation 
A line transforms to 
a line oriented 
perpendicularly to 
the first. 



Linear	filtering	
g [m,n] f [m,n] 

h [m,n] 

In the spatial domain: 

In the frequency domain: 



Product	of	images	
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The Fourier transform of the product of two images 

is the convolution of their DFTs: 
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* = 



Game:	find	the	right	pairs	

A B C 

1 2 3 

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size) 

Images 

DFT 
magnitude 



Outline	for	today’s	class		

•  Fourier	transform	proper=es	
•  Prac=ce	taking	Fourier	transforms	
•  The	importance	of	phase	
•  Our	percep=on	of	Fourier	components	

– Hybrid	images	

•  Filtering	tricks	
– Blur	
– Deriva=ves	
– Orienta=on		

31	



Phase	and	Magnitude	

•  Curious	fact	
–  all	natural	images	have	about	the	same	magnitude	transform	
–  hence,	phase	seems	to	ma_er,	but	magnitude	largely	doesn’t	

•  Demonstra=on	
–  Take	two	pictures,	swap	the	phase	transforms,	compute	the	

inverse	-	what	does	the	result	look	like?	



Phase	and	Magnitude	
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Each color channel is processed in the same way. 



Phase	and	magnitude	

34	

Using random 
amplitude does not 
look good. 



Does	phase	always	win?	
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Outline	for	today’s	class		

•  Fourier	transform	proper=es	
•  Prac=ce	taking	Fourier	transforms	
•  The	importance	of	phase	
•  Our	percep+on	of	Fourier	components	

– Hybrid	images	

•  Filtering	tricks	
– Blur	
– Deriva=ves	
– Orienta=on		
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Some	visual	areas…	

From M. Lewicky 



Campbell	&	Robson	chart	
Let’s define the following image: 

With: 

What do you think you should see when looking at this image? 







Contrast	Sensi=vity	Func=on	

0.1	 1	 100	10	
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visible	

Blackmore	&	Campbell	(1969)	

Maximum	sensi=vity	

~	6	cycles	/	degree	of	visual	angle	

Low	 High	
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Contrast Sensitivity Function 
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From:  
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/channels/channels.html 



Human Visual Perception 
Low	spa=al	frequency	

Medium	spa=al	frequency	

High	spa=al	frequency	

Blur	image	 Sharp	image	



Hybrid Images Oliva	&	Schyns	



Hybrid Images 



= + 



Hybrid Images 





http://cvcl.mit.edu/hybrid_gallery/gallery.html 



Outline for today’s class   

•  Fourier transform properties 
•  Practice taking Fourier transforms 
•  The importance of phase 
•  Our perception of Fourier components 

– Hybrid images 
•  Filtering tricks 

– Blur 
– Derivatives 
– Orientation  
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A	collec=on	of	useful	filters	
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Low pass-filters 



Box	filter	

2N+1 

2M+1 
1  1  1  1  1 … 1 
1  1  1  1  1      1 
 
1  1  1  1  1      1 

…
 

…
 

…
 

…
 

…
 

…
 



Box	filter	

= 



Box	filter	
The box filter is separable as a 2-d box can be written as the 
convolution of two 1D kernels 

1 
1 
1 

1  1 = 
1  1 
1  1 
1  1 



Box	filter	

But if you convolve two boxes along the same dimension: 

1  1  1 1  1  1 = 1  2  3  2  1 

= 

The convolution of two box filters is not another box filter. 
It is a triangular filter. 



Box	filter	

= 

It produces a blurry version of the input. But it is not a perfect blur. 



Gaussian	filter	
In the continuous domain: 



Gaussian	filter	

Discretization of the Gaussian: 
 At 3σ  the amplitude of the Gaussian is around 1% of its central value 
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Blur occurs under many natural situations 
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Blur occurs under many natural situations 



Gaussian	filter	

Dali 



Scale	
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Proper=es	of	the	Gaussian	filter	

•  	The	n-dimensional	Gaussian	is	the	only	
completely	circularly	symmetric	operator	that	
is	separable.	

•  The	(con=nuous)	Fourier	transform	is	a	
gaussian	
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Proper=es	of	the	Gaussian	filter	

•  The	convolu=on	of	two	n-dimensional	
gaussians	is	an	n-dimensional	gaussian.	
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 where the variance of the result is the sum 

(it is easy to prove this using the FT of the gaussian) 



Proper=es	of	the	Gaussian	filter	

•  	Repeated	convolu=ons	of	any	func=on	
concentrated	in	the	origin	result	in	a	gaussian	
(central	limit	theorem).	
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Discre=za=on	of	the	Gaussian	

There	are	very	efficient	approxima=ons	to	the	
Gaussian	filter	for	certain	values	of	σ	with	
nicer	proper=es	than	when	working	with	
discre=zed	gaussians.	
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Binomial	filter	

Binomial	coefficients	provide	a	compact	
approxima=on	of	the	gaussian	coefficients	
using	only	integers.	
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The	simplest	blur	filter	(low	pass)	is		

Binomial	filters	in	the	family	of	filters	obtained	as	
successive	convolu=ons	of	[1	1]	

[1  1] 



Binomial	filter	
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[1 1]    [1 1] = [1 2 1] 

[1 1]    [1 1]    [1 1] = [1 3 3 1] 

b1  =  [1  1] 

b2  = 

b3  = 



Binomial	filter	
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Proper=es	of	binomial	filters	

•  Sum	of	the	values	is	2n	
•  The	variance	of	bn	is	
•  The	convolu=on	of	two	binomial	filters	is	also	
a	binomial	filter	
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With a variance: 

These properties are analogous to the gaussian property in the 
continuous domain (but the binomial filter is different than a 
discretization of a gaussian) 



B2[n]	
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 The simplest approximation to the Gaussian filter is the 3-tap 
kernel: 



B2[n]	versus	the	3-tap	box	filter	
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[1  2  1] 

[1  1  1] 

Which one is better? 
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(with N=20, and assuming periodic boundary extension) 

B2(u) = 2  +  exp(-2πj u/N) + exp(2πj u/N) = 

= 2  +  2 cos(2π u/N) 

H1(u) = 1  +  exp(-2πj u/N) + exp(2πj u/N) = 

= 1  +  2 cos(2π u/N) 

B2[n]	versus	the	3-tap	box	filter	
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2  +  2 cos(2π u/20) 

1  +  2 cos(2π u/20) 



B2[n]	
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[…, 0, 0, 0, 0, 0, 0, …] 

[1, 2, 1]   […, 1, -1, 1, -1, 1, -1, …]  =   

This does not happen with the sampled version of a Gaussian. 

[…, -1, 1, -1, 1, -1, 1, …] 

[1, 1, 1]   […, 1, -1, 1, -1, 1, -1, …]  =   



B2[n]	



Linear blur occurs under many natural situations 

This is not a Gaussian kernel... 

(from Fergus et al, 2007) 



Contrast	Sensi=vity	Func=on	

0.1	 1	 100	10	
Spa=al	frequency	(cycles/degree)	
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visible	

Blackmore	&	Campbell	(1969)	
Maximum	sensi=vity	

~	6	cycles	/	degree	of	visual	angle	

Low	 High	

Things far away 
are hard to see 

Things that are very close 
and large are hard to see 



Vasarely visual illusion 



? 
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Finding	edges	in	the	image	
Image gradient: 

Approximation image derivative: 

Edge strength 

Edge orientation: 

Edge normal: 



[-1	1]	

g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1] 



[-1	1]T	

g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1]T 



Differen=al	Geometry	Descriptors	



Discrete	deriva=ves	
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Discrete	deriva=ves	
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= 

= 



Discrete	deriva=ves	

91	

= 

= 



[-1	1]	

g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1] 



[-1	1]T	

g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1]T 



Back	to	the	image	

? 



Reconstruc=on	from	1D	deriva=ves	

c	= c	

Can we compute the inverse? 

f = D g 



Reconstruc=on	from	1D	deriva=ves	
f = D g 

c	= c	



Reconstruc=on	from	1D	deriva=ves	
What happens if we remove the output pixels affected by the boundary? 



Reconstruc=on	from	1D	deriva=ves	
What happens if we remove the output pixels affected by the boundary? 

1 
1 
2 
2 
0 

= 
 0 
-1 
 0 
 2 

Can we still recover the input? 

If the derivative D is not invertible, we can compute the pseudo-inverse: 

D = (DTD)-1 DT  ^ 



Reconstruc=on	from	1D	deriva=ves	

D = ^  
D =  

Derivative matrix 
(without boundary) 

Pseudo-inverse 
of derivative matrix 



Reconstruc=on	from	deriva=ves	

1 
1 
2 
2 
0 

= 
 0 
-1 
 0 
 2 

Derivative: 

Reconstruction: 

Input Derivative 

 0 
-1 
 0 
 2 

Derivative 

= 

-0.2 
-0.2 
 0.8 
 0.8 
-1.2 

Reconstruction input 

Did it work? 



Reconstruc=on	from	2D	deriva=ves	

[-1 1] 

[-1 1]T 

c	

c	

= c	

In 2D, we have multiple derivatives (along n and m) 

and we compute the pseudo-inverse of the full matrix. 



Reconstruc=on	from	2D	deriva=ves	

[1 -1] 

[1 -1]T 



Edi=ng	the	edge	image	

[1 -1] 

[1 -1]T 



Thresholding	edges	



2D	deriva=ves	
There are several ways in which 2D derivatives can be approximated. 

 Robert-Cross operator: 

And many more…  



Issues	with	image	deriva=ves	
•  Deriva=ves	are	sensi=ve	to	noise	

•  If	we	consider	con=nuous	image	deriva=ves,	
they	might	not	be	define	in	some	regions	(e.g.,	
object	boundaries,	…)	



Deriva=ves	
We want to compute the image derivative: 

If there is noise, we might want to “smooth” it with a blurring filter 

But derivatives and convolutions are linear and we can move them 
around: 



Gaussian	deriva=ves	

The continuous derivative is: 



Gaussian	deriva=ves	

gx(x,y) 

In general: 



n-th	order	Gaussian	deriva=ves	



Orienta=on	

What about other orientations not axis aligned? 



Any orientation can be computed as a linear combination of two filtered images 

The smoothed directional gradient is a linear combination of two kernels 

= cos(α) +sin(α) = 

Steereability of gaussian derivatives, Freeman & Adelson 92 

Orienta=on	



Gaussian	Scale	

113	 σ=2 σ=4 σ=8 



Deriva=ves	of	Gaussians:	Scale	

σ=2 σ=4 σ=8 



Discre=za=on	Gaussian	deriva=ves	
There are many discrete approximations. For instance, we can take 
samples of the continuous functions. In practice it is common to use 
the discrete approximation given by the binomial filters. 

Convolving the binomial coefficients with [1, -1] 

 [1, -1] 



Discre=za=on	2D	Gaussian	deriva=ves	
As Gaussians are separable, we can approximate two 1D derivatives 
and then convolve them.  

One example is the  Sobel-Feldman operator: 



Effect	of	different	approxima=ons	



Effect	of	different	approxima=ons	

[1,-1] 

[1,0,-1]/2 



Laplacian	filter	
Made popular by Marr and Hildreth in 1980 in the search for 
operators that locate the boundaries between objects. 

The Laplacian operator is defined as the sum of the second order 
partial derivatives of a function: 

To reduce noise and undefined derivatives, we use the same trick: 

Where:  



dx dy laplacian 



Comparison	deriva=ve	and	laplacian	

Zero crossings 



Image	sharpening	filter	
Subtract away the blurred components of the image: 

This filter has an overall DC component of 1. It de-emphasizes 
the blur component of the image (low spatial frequencies). 



Input image 



Other	“naturally”	occurring	filters	



Camera shake 

This is not a Gaussian kernel... 

(from Fergus et al, 2007) 


