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General class comments

New TA: Daniel Moon.

The TA’s will have their office hours in pairs, to
address congestion.

Antonio and my office hours: best used for
guestions about the lectures or the material.

For problem set detail questions, betterto use
the TA’s office hours.

Pset2 due Thursday midnight
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Blur occurs under many natural situations




Blur occurs under many natural situations




Box filter

It produces a blurry version of the input. But it 1s not a perfect blur.



Gaussian filter

In the continuous domain:

1

glx,y;0) = exp

2102




Gaussian filter

1 x> 4 y?
exXp —
To?2 b 202

gx,y;0) = 5

Discretization of the Gaussian:

At 30 the amplitude of the Gaussian 1s around 1% of its central value

m? —+ n?
Do 2

glm,n; o] =exp



Gaussian filter

Dali



Gaussian low-pass filters allow for selection of scale




Properties of the Gaussian filter

2 2

1 X<+ y°

2ol 202

gx,y;0) =

* The convolution of two n-dimensional
gaussians is an n-dimensional gaussian.

gx,y;o1)0g(x,y; 00) = g(x,y; 03)
where the variance of the result is the sum

)
0y =0; + 0,

(it 1s easy to prove this using the FT of the gaussian)
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Binomial filter

Binomial coefficients provide a compact
approximation of the gaussian coefficients
using only integers.

The simplest blur filter (low pass) is

[1 1]

Binomial filters in the family of filters obtained as

successive convolutions of [1 1]
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b;

Binomial filter

b, = [1 1]

b, = [11]o[11]=[121]

[11]o[11]0[11]1=[1331]
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Binomial filter

tn

o
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ol =1/4
U§=1/2
oy =3/4
2 =1
6—1 =
of=5/4
U§=3/2
o7 =17/4
032=2



Properties of binomial filters

e Sum of the values is 2"
* The variance of b, is ¢ = n/4

e The convolution of two binomial filters is also
a binomial filter

by © by = byym

With a variance:

2 2 2
GH + O-m - Gn+m

These properties are analogous to the gaussian property in the
continuous domain (but the binomial filter is different than a
dispgetization of a gaussian)



B2

[n]

The simplest binomial is the 3-tap kernel:
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b) =[1,2,1]
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B2[n] versus the 3-tap box filter

b [n]

[12 1] 2 ¢
MWILMW n
—10 0 10
hy [n]
[1 1 1]
pIo
000000000 900000000/
—10 0 10

Which one 1s better?




B2[n] versus the 3-tap box filter

(with N=20, and assuming periodic boundary extension)

b2 [n] . .
; B,(u) =2 + exp(-27j w/N) + exp(2mj w/N) =
f =2 + 2 cos(2m u/N)

H,(u)=1 + exp(-2m) u/N) + exp(2m) u/N) =

=1 + 2 cos(2m u/N)




| B2 [u]]
I 2 + 2 cos(2mu/20)

Zhi «—> .. ...
| il
MQILW» n _._.’?T TT,.-.-) u
—10 0 10 —10 10
[Hp [u]]
hi [n] ?....1 + 2 cos(2m u/20)
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What is a good representation for
image analysis?

* Fourier transform domain tells you “what”
(textural properties), but not “where”.

)

 Pixel domain representation tells you “where’
(pixel location), but not “what".

 Want an image representation that gives you
a local description of image events—what is
happening where.



Gabor wavelets and quadrature filters




Comparing Human and Machine

Perception

2D Fourier Plane

Structure Operations
World L (xY.tA)
i . w_ . . o
- Optics Low-pass spatial filtering
7
\ x” Sampling, more low-pass
\\ JF Photoreceptor filtering, temporal low/bandpass
-Q.\____J,/" Array filtering, A filtering, gain control,
Py 17 response compression
.).h
f"i.f’l l" Y .
RN Spatiotemporal bandpass
@ { LGN Cells filtering,  filtering, multiple
/ ol Nt Q\\ parallel representations
w,.‘-\\
) Simple cells: orientation,
\ / phase, motion, binocular
- — Primary Visual Cortical dIRpArR .. B
| Neurons:
P Simple & Complex Complex cells: no phase
it filtering (contrast energy
detection)
FIGURE 1 Schematic overview of the processing done by the early visual system. On the left, are some of the major

structures to be discussed; in the middle, are some of the major operations done at the associated structure; in the right,
are the 2-D Fourier representations of the world, retinal image, and sensitivities typical of a ganglion and cortical cell.
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2D Receptive Field

2D Gabor Function
Difference

9961 ‘Uewbneq uyor

illustrations of empirical 2-D receptive field profiles

measured by J. P. Jones and L. A. Palmer (personal communication) in
simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor
elementary function for each neuron, described by (10). Bottom row:

Fig. 5. Top row:

residual error of the fit, indistinguishable from random error in the Chi-

squared sense for 97 percent of the cells studied.
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Analysis of local frequency

Fourier basis:

J2mugx

€

Gabor wavelet:

)Cz+y2

P(x,y)=e 2 e/

We can look at the real and imaginary parts:

x2+y2

P (x,y)=e 2" cos(2mu,x)

X2+y2

Y (x,y)=e 2 sin(2muyx)




Gabor wavelets

X" +y
2
e 20

Y (x,y)
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Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric
(or odd) filters; these are good
for detecting odd-phase
structures like edges.

Bottom row shows the
symmetric (or even) filters,
good for detecting line phase
contours.




Fourier transform of a Gabor wavelet
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Quadrature filter pairs

A quadrature filteris a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through
origin of the frequency domain.




Contrast invariance! ! (same energy
response for white dot on black
background as for a black dot on a
white background).

squared magnitude




energy
response to
an edge




line energy
response to a

line
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A contour detector
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Figure 3.34

Cosine phase Gabor function tuned to different widths, frequencies, and orientations, and their corresponding
Fourier transforms (only the magnitude is shown).
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Local amplitude

—_—

i
it

Figure 3.35

,vo =0.
¢) magnitude and

—1/(20)

2

b) cosine and sine outputs

Zebra picture filtered by cosine and sine Gabor functions at three scales with ¢ = 2,4, 8 and u
Each row shows one scale. a) Shows the cosine and sine kernels,

phase of the output of the complex Gabor filter.
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Derivatives

We want to compute the image derivative:

af (x > y)
ox

If there 1s noise, we might want to “smooth’ 1t with a blurring filter

of (x,y)
ox

o g(x,y)

But derivatives and convolutions are linear and we can move them
around:

7 x.) ogx,y) =f(x,y)o %8%,)




Gaussian derivatives

The continuous derivative is:

| oglx,y;o)
g (x,y;0) = =
OXx
= — cX x2
- 2rot P 202

—X
= —8,y;0)
O



Gaussian derivatives

In general:

an—l—mg(x, v') —1 n—+m X
xnym(X,y;0) = — = (—) Hy, ( )Hm (
ik | ox"oy™ o+/2 o~/2

( ) | xz—l-y2
X,V;0) = ——eXxp————
Al 2w ? P 202

2 2

—X X4y

(Xy)= ——exp——+—
8:(%.) 2wo* P 202




n-th order Gaussian derivatives

g(x)
0 8x ()‘)
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Gaussian Scale




Derivatives of Gaussians: Scale




Laplacian filter

Made popular by Marr and Hildreth in 1980 in the search for
operators that locate the boundaries between objects.

The Laplacian operator i1s defined as the sum of the second order
partial derivatives of a function:

) )
o<1 o-1

_|_

~ .2 2
ox= 0y~

V2 =

To reduce noise and undefined derivatives, we use the same trick:
p)
ViIog= V2 gol

2

Where: Vzg
0-4

g(x,y)



laplacian




Contrast Sensitivity Function

Blackmore & Campbell (1969) . o
Maximum sensitivity

~ 6 cycles / degree of visual angle

Contrast sensitivity

0.1 1 10 ] 100
Low Spatial frequency (cycles/degree) High

Things that are very close Things far away
and large are hard to see are hard to see



Vasarely visual 1llusion



Bandpass filter, in space

cross section of bandpass filter

G

S5 | g

Bandpass filter
amplitude, in frequency

cross section of dft of bandpass filker
T T T T
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40
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b)
Input Output One row of the output

a) )



Orientation

- AKX SO
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What about other orientations not axis aligned?



Orientation

2,2 =
XT+yT

dg(x,y) _ =X
ox 2o

20

gx(xay) =

4

The smoothed directional gradient is a linear combination of two kernels
u'Vg® I = (cos(at)g, (x.y) +sin(at)g, (x.3)) @ I(x.) =

Any orientation can be computed as a linear combination of two filtered images
= cos(a)gx (x,y)®I(x,y)+ sin(a)gy (x,y)®I(x,y) =

Steereability of gaussian derivatives, Freeman & Adelson 92



Simple example of steerable filter

“Steerability”-- the ability to synthesize a filter of any
orientation from a linear combination of filters at fixed

orientations. Gé =COS(8)G(1) +Sin(9)G;0

Synthesized 30°

o u . u

Taken from:
ReSponse W. Freeman, T. Adelson, “Tl
RaW I mage and Use of Sterrable Filters

Trans. Patt, Anal. and Mach
n . . . -




| Gain
[I ka(Oi maps

Basis

filter

bank
Input Summing  Adaptively
image junction filtered image

0 §
Y NNE

Fig. 3. Steerable filter system block diagram. A bank of dedicated filters
process the image. Their outputs are multiplied by a set of gain maps that
adaptively control the orientation of the synthesized filter.



Orientation analysis

High resolution in
MmN _=» orientation requires

c —\| ‘L'-—) many oriented filters
— 7T as basis (high order
. L./ gaussian derivatives
(&) (d) (0 or fine-tuned Gabor

wavelets).
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Orientation analysis




(b)

| - §
S —- P oodpos P
I R ~8-8-8-
= = e — . *m%w+m
N | %8 -8 -8
X s — Qoocﬂaooq‘}
N % § -
(c) (d)

Fig. 10. Measures of orientation derived from G4 and H, steerable filter out-
puts: (a) Input image for orientation analysis; (b) angular average of oriented
energy as measured by G4, H4 quadrature pair. This is an oriented features
detector; (c) conventional measure of orientation: dominant orientation piotted
at each point. No dominant orientation is found at the line intersection or
corners; (d) oriented energy as a function of angle, shown as a polar plot for
a sampling of points in the image (a). Note the multiple orientations found at
intersection points of lines or edges and at corners, shown by the florets there.



Discretization Gaussian derivatives

There are many discrete approximations. For instance, we can take
samples of the continuous functions. In practice it 1s common to use
the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]



Discretization 2D Gaussian derivatives

As Gaussians are separable, we can approximate two 1D derivatives
and then convolve them.

One example 1s the Sobel-Feldman operator:

1] 10 =1]
Sobeix=[1 0 —1]0 =120 -2
1| |1o0-1

—2
Sobely,=1 0 0 0O
1 2 1




Image sharpening filter

Subtract away the blurred components of the image:

000 1 (121
sharpening filter= 102 0 BEY 2472
000 121

This filter has an overall DC component of 1. It de-emphasizes
the blur component of the image (low spatial frequencies).

The DC component is the mean value of the image
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Showing the relationship between positional offset and DFT phase

Impulse at 0,0 Impulse at 0,1 Impulse at 0,3




Properties for the DFT

Shift in space corresponds to a phase shift in the frequency domain.

DFT {f [n — ng.m — mgpl} =

66

= Z z f[n—ng,m—mglexp (._Zn-j (

N—1M-1

n=>0 m=0
N—1M-1

n=>0 m=0

N

F [u,v]exp (—27rj(

ung — vmg

N+M

)

un

N

vVim

M

)

M

u(n+ no v(m+ my
( 0) L 0)))



Showing the relationship between positional offset and DFT phase

Phase (complex angle) of Phase of dft of Phase of dft of
dft of impulse at (0,0) impulse at (0,1) impulse at (0,3)
0 everywhere -3pi
N—1

Flul="> flnlexp (—27z]";v—")
n=0
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Image pyramids



Image information occurs at all




Gaussian filter

( ) 1 xz+y2
X,V,0) = exp —
5 Qo2 P 202




The Gaussian pyramid

For each level
Blur input image with a Gaussian filter
Downsample by a factor of 2
Output downsampled 1mage

72



The Gaussian pyramid

512x512 256x256  128x128 64x64 32x32

N/A & € °
| :j , /B

(original image)
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The Gaussian pyramid

For each level
1. Blur input image with a Gaussian filter

[1,4,6,4, 1]
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The Gaussian pyramid

For each level
1. Blur input image with a Gaussian filter
2. Downsample 1mage

75



Downsampling

o -

A2

(no frequency

content 1s lost)
76




In 1D, one step of the Gaussian pyramid is:

GAUSSIAN PYRAMID

B . * 9
a
. .%j\ | B
- - - - - \a\o - & dy
g, = IMAGE

g, = REDUCE [g, ]

Fig 1. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.

77
http://www-bcs.mit.edu/people/adelson/pub pdfs/pyramid83.pdf

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31,NO. 4, APRIL 1953
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G, x,

Convolution and subsampling as a matrix multiply (1D case)
Xy

o 06 0 0 06 0600 0 0 0 O0 0 0 O

1

4

6
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4
4

1

6

1

4
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1
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1
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1
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o 06 0 60 0 060 0 0 0 O O O 0 O

6
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(Normalization constant of 1/16 omitted for visual clarity.)



Next pyramid level

x; = G,x,

6

1

1 4
0 0 0 0 0 O

0O 0 0 O

4
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The combined effect of the two pyramid levels

x, = G,Gyx,
G2G1=
1 4 10 20 31 40 44 40 31 20 10 4 1 0 0 0 0 0 0 0
0 0 0 0 1 4 10 20 31 40 44 40 31 20 10 4 1 0 0 0
00 0 0 0 0 0 0 1 4 10 20 31 40 44 40 30 16 4 0
00 0 0 0 0 00 00 0 0 1 4 10 202516 4 0

81



1D Gaussian pyramid matrix, for [1 4 6 4 1] low-pass filter

full-band 1image,
highest resolution

lower-resolution
image

lowest resolution

1mage
g 82




Gaussian pyramids used for

* up- or down- sampling 1images.
e Multi-resolution 1image analysis

— Look for an object over various spatial scales

— Coarse-to-fine 1mage processing: form blur
estimate or the motion analysis on very low-
resolution image, upsample and repeat. Often a
successful strategy for avoiding local minima in
complicated estimation tasks.
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The Laplacian Pyramid

* Synthesis

— Compute the difference between upsampled
Gaussian pyramid level and Gaussian pyramid
level.

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other level.
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Image down-sampling
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Image up-sampling

121
0242 =
121

64 x64

Start by inserting zero 128%128



Image up-sampling

121
O 242 =

64 x 64 121




Convolution and up-sampling as a matrix multiply (1D case)

Vy, = }733% Insert zeros between pixels, then
apply a low-pass filter, [1 4 6 4 1]
F,= 6 1 0 0
4 4 0 O
1 6 1 O
0 4 4 0
0 1 6 1
0 0 4 4
0O 0 1 6
0O 0 0 4
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Down-sampling
Blurred

Original

Downsampled

89



Down-sampling and Up-samplin
Original P ]§1urred P PHES

Downsampled




Laplacian pyramid algorithm

%—»@
ii

iz

H
(I - F;G;)x,

91




Showing, at full resolution, the information captured at each level
of a Gaussian (top) and Laplacian (bottom) pyramid.

Fag S Fast e leveds of the Gawssan aod Laphe an pommed. Gawssan syages, wpper ron, were obdamedy expandeg pavamed amans (g 4)
throagh Grassim st apohitioa. Each kevd ofthe Laphcnin pymmnd 15 the di ffemence bt neen the cormespondng and naxt bigha kevels of the
Cavesssin paraemd

92

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31.NO. 4, APRIL 1953

http://www-bcs.mit.edu/people/adelson/pub pdfs/pyramid83.pdf




Laplacian pyramid reconstruction algorithm:
recover X, from L, L,, L; and x,

G# 1s the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
L1 =-F1Gl)xl
L2=(0-F2 G2)x2
L3=(I-F3 G3)x3

x2 =G1 x1

x3 =G2 x2

x4 =G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3=L3 +F3 x4
x2=L2+F2x3
xl =L1 +F1 x2

93



Laplacian pyramid reconstruction algorithm:
recover x, from L, L,, L; and g,
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Laplacian pyramid




1-d Laplacian pyramid matrix, for [1 4 6 4 1] low-pass filter

high frequencies

mid-band
frequencies

low frequencies
97




Laplacian pyramid applications

* Texture synthesis
* Image compression

e Noise removal

98



end
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Gabor wavelet:
x2 +y2

Y(x,y)=e 2 /?m0*

Tuning filter orientation:
x'=cos(a)x + sin(a)y

y'==sin(a)x + cos(a)y

[
Real & ‘! " " {/
Space
Imag £ i i / /i
Real & *° JC 2 '
Fourier domain
Imag % .o ‘e ‘o *a




Second directional derivative of a Gaussian and 1ts quadrature pair

(b) real compenent of fil- (c) imaginary component (d) sum of the squares of
tered image of filtered image (b) and (c)

(a) Original image
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