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General	class	comments
• New	TA:		Daniel	Moon.
• The	TA’s	will	have	their	office	hours	in	pairs,	to	
address	congestion.

• Antonio	and	my	office	hours:		best	used	for	
questions	about	the	lectures	or	the	material.

• For	problem	set	detail	questions,	better	to	use	
the	TA’s	office	hours.

• Pset2	due	Thursday	midnight
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• Band-pass	filtering	and	oriented	filters
• Motion	and	phase
• Pyramids



Outline

• Low-pass	filtering	
• Band-pass	filtering	and	oriented	filters
• Motion	and	phase
• Pyramids



5

Blur occurs under many natural situations
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Blur occurs under many natural situations



Box	filter

=

It produces a blurry version of the input. But it is not a perfect blur.



Gaussian	filter

In the continuous domain:



Gaussian	filter

Discretization of the Gaussian:
At 3σ the amplitude of the Gaussian is around 1% of its central value



Gaussian	filter

Dali



Gaussian	low-pass	filters	allow	for	selection	of	scale
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Properties	of	the	Gaussian	filter

• The	convolution	of	two	n-dimensional	
gaussians is	an	n-dimensional	gaussian.
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where the variance of the result is the sum

(it is easy to prove this using the FT of the gaussian)



Binomial	filter

Binomial	coefficients	provide	a	compact	
approximation	of	the	gaussian coefficients	
using	only	integers.
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The	simplest	blur	filter	(low	pass)	is	

Binomial	filters	in	the	family	of	filters	obtained	as
successive	convolutions	of	[1	1]

[1  1]



Binomial	filter
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[1 1]    [1 1] = [1 2 1]

[1 1]    [1 1]    [1 1] = [1 3 3 1]

b1 =  [1  1]

b2 =

b3 =



Binomial	filter
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Properties	of	binomial	filters

• Sum	of	the	values	is	2n

• The	variance	of	bn is
• The	convolution	of	two	binomial	filters	is	also	
a	binomial	filter
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With a variance:

These properties are analogous to the gaussian property in the 
continuous domain (but the binomial filter is different than a 
discretization of a gaussian)



B2[n]
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The simplest binomial is the 3-tap kernel:



B2[n]	versus	the	3-tap	box	filter
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[1  2  1]

[1  1  1]

Which one is better?
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(with N=20, and assuming periodic boundary extension)

B2(u) = 2  +  exp(-2πj u/N) + exp(2πj u/N) =

= 2  +  2 cos(2π u/N)

H1(u) = 1  +  exp(-2πj u/N) + exp(2πj u/N) =

= 1  +  2 cos(2π u/N)

B2[n]	versus	the	3-tap	box	filter
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2  +  2 cos(2π u/20)

1  +  2 cos(2π u/20)
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What	is	a	good	representation	for	
image	analysis?

• Fourier	transform	domain	tells	you	“what”
(textural	properties),	but	not	“where”.

• Pixel	domain	representation	tells	you	“where”
(pixel	location),	but	not	“what”.

• Want	an	image	representation	that	gives	you	
a	local	description	of	image	events—what	is	
happening	where.



Gabor	wavelets	and	quadrature filters



Comparing	Human	and	Machine	Perception
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Analysis	of	local	frequency	

(x0, y0)

Fourier basis:

Gabor wavelet:

We can look at the real and imaginary parts:



Gabor	wavelets

u0=0 U0=0.1 U0=0.2



Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric 
(or odd) filters;  these are good 
for detecting odd-phase 
structures like edges.  
Bottom row shows the
symmetric (or even) filters, 
good for detecting line phase 
contours.



Fourier	transform	of	a	Gabor	wavelet

U0=0.1
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Quadrature filter	pairs
A quadrature filter is a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through
origin of the frequency domain.
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Contrast invariance! ! (same energy 
response for white dot on black 
background as for a black dot on a 
white background).

squared magnitude



edge energy 
response to 

an edge



line energy 
response to a 

line
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Local 
energy

Phase ~ 0
Phase ~ 90

edge detector 
output

A	contour	detector
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[-1	1]

g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]



Derivatives
We want to compute the image derivative:

If there is noise, we might want to “smooth” it with a blurring filter

But derivatives and convolutions are linear and we can move them
around:



Gaussian	derivatives

The continuous derivative is:



Gaussian	derivatives

gx(x,y)

In general:



n-th order	Gaussian	derivatives



Gaussian	Scale

43 σ=2 σ=4 σ=8



Derivatives	of	Gaussians:	Scale

σ=2 σ=4 σ=8



Laplacian filter

Made popular by Marr and Hildreth in 1980 in the search for
operators that locate the boundaries between objects.

The Laplacian operator is defined as the sum of the second order 
partial derivatives of a function:

To reduce noise and undefined derivatives, we use the same trick:

Where: 



dx dy laplacian



Contrast	Sensitivity	Function

0.1 1 10010
Spatial	frequency	(cycles/degree)
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Invisible

visible

Blackmore	&	Campbell	(1969)
Maximum	sensitivity

~	6 cycles	/	degree	of	visual	angle

Low High

Things far away
are hard to see

Things that are very close
and large are hard to see



Vasarely visual illusion



?

Bandpass filter 
amplitude, in frequencyBandpass filter, in space



OutputInput One row of the output



Orientation

What about other orientations not axis aligned?



Any orientation can be computed as a linear combination of two filtered images

The smoothed directional gradient is a linear combination of two kernels

= cos(α) +sin(α) =

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation



Simple	example	of	steerable	filter
“Steerability”-- the ability to synthesize a filter of any 

orientation from a linear combination of filters at fixed 
orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991





Orientation	analysis

High resolution in
orientation requires
many oriented filters
as basis (high order
gaussian derivatives
or fine-tuned Gabor
wavelets).



Orientation	analysis





Discretization Gaussian	derivatives
There are many discrete approximations. For instance, we can take 
samples of the continuous functions. In practice it is common to use 
the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]

[1, -1]



Discretization 2D	Gaussian	derivatives
As Gaussians are separable, we can approximate two 1D derivatives 
and then convolve them. 

One example is the  Sobel-Feldman operator:



Image	sharpening	filter
Subtract away the blurred components of the image:

This filter has an overall DC component of 1. It de-emphasizes
the blur component of the image (low spatial frequencies).

The DC component is the mean value of the image  



Input image
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original motion magnified



original motion magnified



Impulse at 0,0 Impulse at 0,1 Impulse at 0,3

Showing the relationship between positional offset and DFT phase



Properties	for	the	DFT
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Shift in space corresponds to a phase shift in the frequency domain.



Phase (complex angle) of 
dft of impulse at (0,0)

Phase of dft of 
impulse at (0,1)

Phase of dft of 
impulse at (0,3)

0 everywhere pi                                  -pi 3pi                             -3pi     

Showing the relationship between positional offset and DFT phase
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Image	pyramids



Image	information	occurs	at	all	
spatial	scales
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Gaussian	filter
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The Gaussian pyramid

For each level
Blur input image with a Gaussian filter
Downsample by a factor of 2
Output downsampled image
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7373

512×512 256×256 128×128 64×64 32×32

The Gaussian pyramid

(original image)



The Gaussian pyramid
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For each level
1. Blur input image with a Gaussian filter

[1, 4, 6, 4, 1]



The Gaussian pyramid
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For each level
1. Blur input image with a Gaussian filter
2. Downsample image



Downsampling
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Blur

ê2

(no frequency 
content is lost)
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In 1D, one step of the Gaussian pyramid is:

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Convolution and subsampling as a matrix multiply (1D case)

1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0

(Normalization constant of 1/16 omitted for visual clarity.)
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Next pyramid level

1     4     6     4     1     0     0     0

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4
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The combined effect of the two pyramid levels

1     4    10    20   31    40    44    40    31    20    10     4      1      0      0     0     0      0     0     0

0     0     0      0      1     4     10    20    31    40    44    40   31    20    10     4     1      0     0     0

0     0     0      0      0     0       0     0      1     4      10    20   31    40    44    40    30   16    4     0

0     0     0      0      0     0       0     0      0     0        0      0     1     4     10    20    25   16    4     0
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1D Gaussian pyramid matrix, for  [1 4 6 4 1]  low-pass filter

full-band image, 
highest resolution

lower-resolution 
image

lowest resolution 
image
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Gaussian pyramids used for

• up- or down- sampling images.
• Multi-resolution image analysis

– Look for an object over various spatial scales
– Coarse-to-fine image processing:  form blur 

estimate or the motion analysis on very low-
resolution image, upsample and repeat.  Often a 
successful strategy for avoiding local minima in 
complicated estimation tasks.
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The Laplacian Pyramid

• Synthesis
– Compute the difference between upsampled 

Gaussian pyramid level and Gaussian pyramid 
level.

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other level.
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Image down-sampling
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Blur

ê2

Image up-sampling

é2



Image up-sampling

64×64

Start by inserting zeros

1 2 1
2 4 2
1 2 1

=

128×128



Image up-sampling

64×64

1 2 1
2 4 2
1 2 1

=

=



Convolution and up-sampling as a matrix multiply (1D case)

6     1     0     0   

4     4     0     0 

1     6     1     0 

0     4     4     0 

0     1     6     1

0     0     4     4

0     0     1     6

0     0     0     4

Insert zeros between pixels, then 
apply a low-pass filter, [1 4 6 4 1]
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Down-sampling
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Original Blurred
Downsampled



Down-sampling and Up-sampling
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Original Blurred
Downsampled

Blurred Upsampled



Laplacian pyramid algorithm
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Showing, at full resolution, the information captured at each level 
of a Gaussian (top) and Laplacian (bottom) pyramid.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and x4

G# is the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
L1 = (I – F1 G1) x1
L2 = (I – F2 G2) x2
L3 = (I – F3 G3) x3
x2 = G1 x1
x3 = G2 x2
x4 = G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3 = L3 + F3 x4
x2 = L2 + F2 x3
x1 = L1 + F1 x2
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and g3

+

+
+
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Gaussian pyramid



Laplacian pyramid

(Low-pass
residual)
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1-d Laplacian pyramid matrix, for [1 4 6 4 1]  low-pass filter

high frequencies

mid-band 
frequencies

low frequencies



Laplacian pyramid applications

• Texture synthesis
• Image compression
• Noise removal
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end
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Gabor wavelet:

Tuning filter orientation:

Space

Fourier domain

Real

Imag

Real

Imag



Second directional derivative of a Gaussian and its quadrature pair


