MIT CSAIL COMPUTER

6.869: Advances in Computer Vision VISION

William T. Freeman, Antonio Torralba, 2017

(

Lecture 6

Learned feedforward visual processing
Neural Networks, Deep learning, ConvNets

Some slides modified from R. Fergus

We need translation invariance

Lots of useful linear filters...

Laplacian

Gaussian derivative
b) c)

Gaussian

gn

-g !
m n gyza

&2y

&3, 82 843 8y

gﬁ-gﬁyngﬁy-gxzy,- gMH gy5- Gabor
8 s, 842 - 8o 8ys 8
IHEEEES And many more...

High order Gaussian derivatives

R N

We need translation and scale invariance

Lots of image pyramids...

eeeEEew
\&s

=)

Gaussian Pyr Laplacian Pyr

And many more: QMEF, steerable, ...

We need ...

What 1s the best representation?

 All the previous representation are manually
constructed.

* Could they be learnt from data?

A brief history of Neural Networks

. A
enthusiasm

time

Perceptrons, 1958

http://www.ecse.rpi.edu/homepages/nagy/PDF _chrono/2011 Na
gy Pace FR.pdf. Photo by George Nagy

http://www.manhattanrarebooks-science.com/rosenb latt.htm

Perceptrons, 1958

S

10

Perceptrons,
. A 1958
enthusiasm

time

Minsky and Papert, Perceptrons, 1972

Expanded Edibon

Perceptrons

Marvin L. Minsky
Seymour A Papert

fAVEsEIOR+

FOR BUYING OPTIONS, START HERE

Select Shipping Destination :

Paperback | $35.00 Short | £24,95 |
ISBN: 9780262631112 | 308 pp. | 6 x
8.9 in | December 1987

Perceptrons, expanded edition

An Introduction to Computational Geometry
By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects" or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind."

12

Perceptrons,
. A 1958
enthusiasm

Minsky and Papert, :
1972 time

Parallel Distributed Processing (PDP), 1986

PARALLEL DISTRIBUTED!
, PROCESSING

Explorations i the Mt

“Molume' 1 Fouhdati

DAVID E.RUMELHART, JAMES L. McCLELLAND,
< AND THE PDP RESEARCH GROUP

14

XOR problem

Inputs Output ll
0 0 0

1 0 1

0 1 1 =
1 1 0

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can

represent but a single-layer network cannot: the XOR function.
15

Perceptrons, PDP book,
A 1958 1986

enthusiasm

Minsky and Papert, :
1972 time

LeCun conv nets, 1998

PROC. OF THE TEEE, NOVEMBER 1998 7

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 S2: f. maps C5: |ayer F6: Iayer OUTPUT

6@14x14

|
Full conrllection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://vann.lecun.com/exdb/lenet/index.html

17

ML ..u :n .i .1])1rlFﬁ ?h..._4~ L
/;1’4.

TR ,-.,
W ﬁ.&

- rdEke OB~ N

- [J]

ey E

ﬁa..@ﬁ&%

 of the output label represents

The groy-leve

-,

gnized by LeNet

1 noisy characters correctly reco

Examples of unusual, distorted, an

Fig. 13.

the penalty (lighter for higher penalties).

Neural networks to
recognize handwritten
digits? yes

Neural networks for
tougher problems?
not really

19

http://pub.clement.farabet.net/ecvw(09.pdf

NIPS 2000

* NIPS, Neural Information Processing
Systems, 1s the premier conference on
machine learning. Evolved from an
interdisciplinary conference to a machine
learning conference.

 For the NIPS 2000 conference:

— title words predictive of paper acceptance:
“Belief Propagation” and “Gaussian’.

— title words predictive of paper rejection:
“Neural” and “Network™.

20

Perceptrons, PDP book,
1958 1986

enthusiasm

Minsky and Papert, Al winter, .
1972 2000 1me

Max
pooling

Krizhevsky, Sutskever, and Hinton, NIPS 2012

-.' m 3 ' -Q:::}:’.
192 192 128 2048 2048
57 128 i — —
- 13 \ 13
3 3 . R
- ' 13 o[s ’ 13 dense | |dense
192 192 128 Max | |
: 2048
26 Max pooling 2048
pooling

22

dense

1000

ImageNet Classification 2012

* Krizhevsky et al. -- 16.4% error (top-5)

* Next best (non-convnet) — 26.2% error

Top-5 error rate %
= N

SuperVision

Krizhevsky, Sutskever, and Hinton, NIPS 2012

mife motor scooter

| mite container motor scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah

tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

i
\

¥ ° 4

o s

K

o]
B
V)

\.

musnroom cherry adagascar cat

convertible agaric dalmatian squirrel monkey

| grille mushroom grape | spider monkey

] pickup jelly fungus elderberry titi
beach wagonllf gill fungus |ffordshire bullterrier indri

fire engine | dead-man’s-fingers currant howler monkey

24

Test Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012 25

Krizhevsky,

Perceptrons, PDP book, Sutskever,
1958 1986 Hinton, 2012

enthusiasm

Minsky and Papert, Al winter, .
1972 2000 1me

28 years 28 years

< > < >
Krizhevsky,
Perceptrons, PDP book, Sutskever,
1958 1986 Hinton, 2012

enthusiasm

>

Minsky and Papert, Al winter, .
1972 2000 time
Google Scholar

Q
: 9

GeOff Hlnton S Citation indices All Since 2009

citations index e

i10-index 239 177

2006 2007 2008 2009 2010 2011 2012 2013 2014

What comes next?

Krizhevsky,
Perceptrons, PDP book, Sutskever,
1958 1986 Hintony 2012
enthusiasm
Minsky and P Al wi g
Insky and Papert, winter, 9 .
1972 2000 2028 7 time
28 years 28 years
- > € >

What comes next?

Krizhevsky,

Perceptrons, PDP book, Sutskever,
1958 1986 Hinton, 2012

enthusiasm
Minsky and P Al wi g
Insky and Papert, winter, 9 .
1972 2000 2028 7 time
28 years 28 years

< > € >

http://www.deeplearningbook.org/

By Ian Goodfellow, Yoshua Bengio
and Aaron Courville

Tutorials for Deep Learning Frameworks

TensorFlow Sessions:
* 5-6pm, Tue 10/3, 3-270, by Hunter
« 2-3pm, Thu 10/5, 3-270, by Jimmy

PyTorch Sessions:
* 4-5pm, Thu 10/5, 4-370, by Xiuming
 6-7pm, Thu 10/5, 4-270, by Daniel

Information available on the class website

Neural networks

* Neural nets composed of layers of Input Output
artificial neurons.

* Each layer computes some
function of layer beneath.

* Inputs mapped in feed-forward
fashion to output.

* Consider only feed-forward
neural models at the moment, 1.e.
no cycles

An individual neuron (unit)

* Input: vector x (size nx1)

 Unit parameters: vectorw (size nx1) X

bias b (scalar) K
X3,y W3 _)yzf(a)

* Unit activation: a = E L XWi b //07 4:
«o/

é

* Output:y = f(a) = f(Ei xXWwW, +b

f(.) 1s a point-wise non-linear function. E.g.:

_ea

f(a) =tanh(a) =

—-da

e’ +e

Can think of bias as weight w,, connected
to constantinput 1: y =f ([w,, w]' [1; x]).

Single layer network

* Input: column vector x (size nx1)

Input Output
layer layer

* Output: column vector y (size mx1)

* Layer parameters:
weight matrix W (size nxXm)
bias vectorb (mx1)

e Units activation: a=Wx+b

Single layer network

* Input: column vector x (size nx1)

Input Output
layer layer

* Output: column vector y (size mx1)

* Layer parameters:
weight matrix W (size nxXm)
bias vectorb (mx1)

e Units activation: a=Wx+b

ex. 4 inputs, 3 outputs

+
b
s
b

 Output: y = f(a) = f(Wx+b)

Non-linearities: sigmoid

| * Interpretation as firing rate of

f(a) = sigmoid(a) = neuron

—-d

+é€

A

* Bounded between [0,1]
{ — sigmoid(x)

* Saturation for large +ve,-ve inputs

6.5 * Gradients go to zero

* Outputs centered at 0.5
(poor conditioning)

Y

6 —4 -2 2 4 6
* Not used 1n practice

Non-linearities: tanh

e’ —e™
f(a) =tanh(a) = ——
e’ +e
y = tanh(z)
1 1
2 4

* Bounded between [-1,+1]

* Saturation for large +ve,-ve inputs
* Gradients go to zero

* Outputs centered at 0

* Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) —1

Non-linearities:

f(a) = max(a,0)

rectified linear (RelLU)

64¥
y = RelLU(z)
4*
2*
6 —4 -2 > 4 ¢

» Unbounded output (on positive side)

» Efficient to implement:

i 0O a<0
@) {1 a=0

* Also seems to help convergence (see
6x speedup vs tanh in [Krizhevsky et

al.])

* Drawback: if strongly in negative
region, unit 1s dead forever (no
gradient).

* Default choice: widely used in
current models.

-]

Non-linearities: Leaky RelLU

max(0,a)
amin(0,a) a<0

|= PReLU(z)

a>0

—6

—2

* where a 1s small (e.g. 0.02)

» Efficient to implement:

__f_ a a<0
J(a) {1 a>0

* Also known as probabilistic ReLU
(PReLU)

* Has non-zero gradients everywhere
(unlike ReLU)

* o can also be learned (see
Kaiming He et al. 2015).

Multiple layers

* Neural networks are composed of
multiple layers of neurons.

Input Hidden Output
layer layer layer

* Acyclic structure. Basic model
assumes full connections between
layers.

* Layers between input and output are
called hidden.

e Various names used:
* Artificial Neural Nets (ANN)

* Multi-layer Perceptron (MLP)
* Fully-connected network

* Neurons typically called units.

Example: 3 layer MLP

- By convention, number of layers Input Hiddenl Hidden2 Output

1s hidden + output (i.e. does not
include 1nput).

layer layer layer layer

* So 3-layer model has 2 hidden
layers.

* Parameters:
weight matrices W; W,; W,
bias vectors b;; b,; b;.

Multiple layers

(output) X, S =
Output layer n e
Xp-1

Xj

| 1
| IXi1

Output
layer

X1
Hidden layer 1

Input layer ~ (input) X,

Architecture selection

How to pick number of layers and units/layer?

e Active area of research

* For fully connected models 2 or 3 layers seems
the most that can be effectively trained.

* Regarding number of units/layer:
— Parameters grows with (units/layer)? .

— With large units/layer, can easily overfit.

Representational power of two-layer network

Figure 5.3 lllustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(z) = 27, (b)
f(z) = sin(z), (¢), f(z) = |z|,
and (d) f(z) = H(z) where H(z)

s the Heaviside step function. In
eachcase.N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in z over the interval
(—1,1) and the corresponding val-
ues of f(z) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
three

Neural Networks for
Pattern Recognition

Christopher M. Bishop
blas
i=4

5 = Z wis tanh(wizi + wo:)
i=2

Representational power

e 1 layer? Linear decision surface.

e 2+ layers? In theory, can represent any

function. Assuming non-trivial non-linearity.

— Bengio 2009,
http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

— Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org /contents/mlp.html

— Simple proofby M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

— D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

e Butissue is efficiency: very wide two layers vs
narrow deep model? In practice, more layers
helps.

Training a model: overview

Given dataset {x; y}, pick appropriate cost
function C.

Forward-pass (f-prop) training examples
through the model to get network output.

Get error using cost function C to compare
output to targetsy

Use Stochastic Gradient Descent (SGD) to
update weights adjusting parameters to
minimize loss/energy E (sum of the costs for
each training example)

Object detection

Canon

™ ©F Mme ewwsraa e
v e Ay

STAR TREIA
DEEP SPACE NINE

THE WAY OF THE .
WARRIOR n

S . —

'
{ ‘o
5

N L
Y

- . A Nevnl by Dusne vy
e d 08 The Wy of b Wamigr wrten 'y
Sreves Babt B Dadae! Famo Walte

Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Decision
Background boundary

Where are the screens?

e

Computer screen

Bag of image patches

In some feature space

Formulation

* Formulation: binary classification

- k X i el | B E
Features x= X4 Xo X3 .- XN+1 XN+2 -+ XN+M
Labels y= -1 +1 -1 -1 ? ? ?
- YT — ~ YT ~
Training data: each image patch is labeled Test data

as containing the object or background

e Classification function

:/g\ p— F(CB) Where F(a:') belongs to some family of functions

« Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)

Cost functions

Squared error

Misclassification error |

N
Squared error | J — Z [yt _ F(ibt)]Q
t=1

Exponential loss |

Exponential loss

N
J = Z o~ YitF (xt)
t=1

-1.5 -1 -0.5 0 0.5 1 15

yF(x) = margin

MiniPlaces Challenge

Goal: identify the scene category depicted in a photograph.

Data

— 100,000 images for training, 10,000 for validation and 10,000 for
testing

— 100 scene categories

Task: produceup to 5 categories in descendingorder of
confidence

places*@® s

THE SCENE RECOGNITION DATABASE |

MiniPlaces Challenge

Steps:

e Students have to sign up with a team name and the
team members to receive a team code and
instructions for submitting to the leaderboard. This
can be done here.

* After sign-up, upload the prediction results here.
Each team is allowed to upload a submission at most
every 4 hours.

* The leaderboard is here.

MiniPlaces Challenge

Suggestions:

e Computation: Amazon's EC2

— Students can receive free $100 credit through the AWS
Educate program.

 Model: Itis very helpful to go through the examples
of training convolutional neural nets in Caffe,

TensorFlow, or PyTorch.

* Algorithm: Use data augmentation, deeper layers, or
object annotation etc, to boost the classification

accuracy.

GO ugle bedroom ® “ abtorralba@gmail.com ~

Search About 299,000,000 results (0.19 seconds) i ® SafeSearch off v o]

Everything Related searches: bedroom designs master bedroom modern bedroom simple bedroom small bedroom

Images
Maps
Videos
News
Shopping

More

Any time

Past 24 hours
Past week
Custom range...

All results
By subject
Personal

Any size
Large
Medium

Ilcon

Larger than...
Exactly...

GO USIQ student bedroom O] “ abtorr.

Search About 66,700,000 results (0.15 seconds) L SafeSearch of

Everything
Images
Maps
Videos
News
Shopping

More

Any time

Past 24 hours
Past week
Custom range...

All results
By subject
Personal

Any size
Large
Medium

Icon

Larger than...
Exactly...

Any color
Full color

629

7067

s1ock.com

www . big

Cost function

Consider model with N layers.

Layer i has vector of weights Wi.

Forward pass: takes input x and

passes it through each layer F::
X = Fi (X0, W)

Output of layeri is x..
Network output (top layer) is x,,

(output) X,

TXn—l

1Xi

| Xi-1

1%

X1

(input) X,

Cost function

Consider model with N layers.

Layer i has vector of weights Wi.

Forward pass: takes input x and

passes it through each layer F::
X = Fi (X0, W)

Output of layeri is x;.
Network output (top layer) is x,,
Cost function C compares x, toy

Overall energy is the sum of the
cost over all training examples:

M
E = EC(XZ’,y’")
m=1

(output) X,

TXn—l

1Xi

| Xi-1

1%

X1

(input) X,

Stochastic gradient descend

Want to minimize overall loss function E. Loss is sum of individual
losses over each example.

In gradient descent, we start with some initial set of parameters 6
Update parameters: gk+1 . gk L p\7g

k is iteration index, n is learning rate (scalar; set semi-manually).
Gradients Vg _ % computed by b-prop.

In Stochastic gradient descent, compute gradient on sub-set
(batch) of data.

If batchsize=1 then 6 is updated after each example.
If batchsize=N (full set) then this is standard gradient descent.

Gradient direction is noisy, relative to average over all examples
(standard gradient descent).

Stochastic gradient descend

* We need to compute gradients of the cost with respect
to model parameters w;,

* Back-propagation is essentially chain rule of derivatives
back through the model.

* By dessign, each layer is differentiable with respect to
parameters and input.

Computing gradients

* Training will be an iterative procedure, and at
each iteration we will update the network
parameters gk+1 . gk 1 ;¢

 We want to compute the gradients

Computing gradients

To compute the gradients, we could start by
wring the full energy E as a function of the
network parameters.

E
A

M
E(Q) = EC(F,,(F,@_l(FZ(FI(x(T,wl),wz),wn_l),wn),ym) ooy Clxye ¥)
m=1
Xy

%xi_
And then compute the partial v
derivatives... istead, we can use the TR
chain rule to derive a compact

algorithm: back-propagation

Fl(xm wl)

(input) X,

i<

Matrix calculus
* x column vector of size [nx1] [M
Xs
=
'xn

» We now define a function on vector x: y = F(X)
* [f y 1s a scalar, then

dix=d/x &, - Fi&,]

The derivative of y 1s a row vector of size [1xn]

* [fy is a vector [m% 1], then (Jacobian formulation):

-@)l/dcl @1/&2 @}l/dcn-
Fidk=| = :

9,/& o, /&, ... &,/,]

The derivative of y 1s a matrix of size [mXxn]
(m rows and n columns)

Matrix calculus

* [f y 1s a scalar and X 1s a matrix of size [nxm], then

Y/, Hik, .. &,]
dIXK=| : 5

@}/dclm @}/&12 @}/dcnm

The output 1s a matrix of size [m*xn]

Matrix calculus

* Chain rule:
For the function: z = h(x) = f (g(x))

Its derivative 1s: h’(x) = £ (g(x)) g’(x)

and writing z=f(u), and u=g(x):

A _de| du
x| _, dul,_,., dxl._
/ 1 \

[mXxn] [mxp] [pxn]
with p = length vectoru =|u|, m =|z|, and n = x|

Example, if |z|=1, |u| = 2, |x|=4

= [HHH - HH HEEE
HEEE

Matrix calculus
e Chainrule:
For the function: h(x) = f (f,.,(...(f;(X))))

Wlth u1= fl (X)
u; = fi(u;)
Z = U,= fn(un-l)

The derivative becomes a product of matrices:

%
dx

dz

xX=a dun 1

. du,_,
du,_,

 du,

dx
u, =f(a)

o du,
-

X=a

Uy =fn—l (un—Z) U, > =fn—2(un—3)

(exercise: check that all the matrix dimensions work fine)

Computing gradients

To compute the gradients, we could start by
wring the full energy E as a function of the
network parameters.

E
A

M
E(Q) = EC(F,,(F,@_l(FZ(FI(x(T,wl),wz),wn_l),wn),ym) ooy Clxye ¥)
m=1
Xy

%xi_
And then compute the partial v
derivatives... istead, we can use the TR
chain rule to derive a compact

algorithm: back-propagation

Fl(xm wl)

(input) X,

i<

Computing gradients

The energy E is the sum of the costs associated
to each training example x™, y™

E(9)=§_C(X,’f’,ym; 0l

Computing gradients

The energy E is the sum of the costs associated
to each training example x™, y™

E(9)=§_C(X,’f’,ym; 0l

Its gradient with respect to the networks
parameters 0O is:

E X C(xry"s 0
90, mzl 90,

1s how much E varies when the parameter 0; 1s varied.

Computing gradients

We could write the cost function to get the gradients:

C(x,.y: 6 = C(F, (x,w,).)
with ¢= [wl,wz,---,wn]

If we compute the gradient with respect to the parameters of
the last layer (output layer) w,, using the chain rule:

ax X & a &y ,.w,)
O & O & Ow

n

(how much the cost changes when we change w,: 1s the product between how much the cost
changes when we change the output of the last layer and how much the output changes when we
change the layer parameters.)

Computing gradients: cost layer

If we compute the gradient with respect to the parameters of
the last layer (output layer) w,, using the chain rule:

ax X & & Flx,w)

dvdcdv?c o

Will depend on the
For example, for an Euclidean loss: layer structure and
1 non-linearity.
The gradient 1s:
ac

0,3

n

Computing gradients: layer i

We could write the full cost function to get the gradients:

C(’xn’y; 9) = C(Fn(Fn—l(FZ(E(xO’wl)’WZ)’Wn—l)’wn)’y)
If we compute the gradient with respect to w,, using the chain rule:

ax oa o &, &, &

i+1

o, &, &, , &,, & O

\)
' \

E dpi(xi-lawi)
&, O,
And this can be This 1s easy.

computed iteratively!

Backpropagation

dj _ &‘ . &Cn . dcn—l . dcz+1 &C
a/Vi an dcn—l dcn—Z d(f af\/
J
\ y ’\
a (Ti(xi—lawi)
&, o
If we have the value of we can compute the gradient at the
layer bellow as: <,

&L &L &,

&, & &,
A

Gradi§nt Gradient F, (Xi1>W,)

layeri1-1 layeri dci |

Backpropagation: layer i

* Layer 1 has two inputs (during training)
X; X
1-1 _—
Fiii _ 2.3
& ° Forlayeri, we need the derivatives:
KF(x, ,w,) dH(x, ;W)
&, A,

* We compute the outputs

Hidden layer i

X; = E('xi—l’wi)

a A F(x,_.w)
Fiy &, & o

l l 1—

Forward Backward «Tphe weight update equation is:
pass pass ad A& F(x,_.w)
O, dc o,

l

1 d*j (sum over all
< W + h - training examples

! a/V to get E)

wk+

Backpropagation: summary E

* Forward pass: for each
training example. Compute
the outputsfor all layers

Xp = Fz(x
* Backwards pass: compute

cost derivatives iteratively
from top to bottom:

w.)

i-1°

aC ~ &’. F.(x,_ W,
&, o, &,

l l l

e Compute gradients and
update weights.

Linear Module

* Forward propagation: x =F(x, ,W)=Wx,

i EEENEE
B-EEEEN.......

B DR B o size
. |Xout|xlxin|

* Backprop to input:
& d Fx,W) &L &,
dcin) dCout dC) dCout dCin

mn

If we look at the j component of output x,,, with respect to the i component of the input, x;,:

out; _ a?(xin ,W)
kY W, — Y =W

e EEEE-EEE R
Ty EEEE
&, " &, EEEE -

Linear Module

* Forward propagation: x =F(x, ,W)=Wx,

in?

* Backprop to weights:
& ad Fx,W) ~ & &,
oV dc 5 /A & OV

If we look at how the parameter W;; changes the cost, only the i component of the output
will change, therefore:

a &

ac aC ac
- X, =X, =

. Tdc ol " &,
&,

=X; EEE EEEE
ll’lj

’ HEE -

And now we can update the weights (by summing over all the training examples):

k+1 m (sum over all
W Ve W + h .. training examples

d)V to get E) 82

Linear Module

ac ac
> =X.

o " &,

Weight updates

Wi e— wt +ht(%)

&i Pointwise function

out

* Forward propagation:
xouti = h('xini +bi)

h = an arbitrary function, b; is a bias term.

. X & & ac
* Backprop to input: _ Lo W' (x. +b
&, &, &, &, om0
. X a & ac
* Backprop to bias: = LM -h'(x. +b.
@i dCouti @i dcouti (xmi ! l)

We use this last expression to update the bias.

Some useful derivatives:

For hyperbolic tangent: tanh'(x) =1 - tanh”(x)

For ReLU: h(x) = max(0,x) h’(x) =1 [x>0]

Pointwise function

aC

@i) d‘:outi

' (x, +b,)

Weight updates

cE

bi*'<— b +h —

td?i

Fuclidean cost module

Back propagation example

node 1 node 3

input

Learning rate =-0.2 (because we used positive increments)

Euclidean loss

Training data: input desired output
node 1 node 2 node 5
1.0 0.1 0.5

Exercise: run oneiteration of back propagation

Back propagation example

node 1 node 3

input

After one iteration (rounding to two digits):

node 1 node 3

(} W13=1.02

input

node 2

