
Lecture 6
Learned	feedforward	visual	processing
Neural	Networks,	Deep	learning,	ConvNets

William T. Freeman, Antonio Torralba, 2017

Some slides modified from R. Fergus

We need translation invariance

Lots of useful linear filters…

And many more…

Gaussian
Gaussian derivative

Laplacian

Gabor

High order Gaussian derivatives

We need translation and scale invariance

Lots of image pyramids…

Gaussian Pyr Laplacian Pyr

And many more: QMF, steerable, …

We need …

What is the best representation?

• All the previous representation are manually
constructed.

• Could they be learnt from data?

A brief history of Neural Networks

time

enthusiasm

9

http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Na
gy_Pace_FR.pdf. Photo by George Nagy

http://www.manhattanrarebooks-science.com/rosenblatt.htm

Perceptrons, 1958

Rosenblatt

Perceptrons, 1958

10

Perceptrons,
1958

time

enthusiasm

12

Minsky and Papert, Perceptrons, 1972

Perceptrons,
1958

Minsky and Papert,
1972 time

enthusiasm

Parallel Distributed Processing (PDP), 1986

14

XOR problem

15

Inputs Output

0 0 0
1 0 1
0 1 1
1 1 0

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can
represent but a single-layer network cannot: the XOR function.

0 1

0

1

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

time

enthusiasm

LeCun conv nets, 1998

17
http://yann.lecun.com/exdb/lenet/index.html
Demos:

18

19http://pub.clement.farabet.net/ecvw09.pdf

Neural networks to
recognize handwritten
digits? yes

Neural networks for
tougher problems?
not really

NIPS 2000

• NIPS, Neural Information Processing
Systems, is the premier conference on
machine learning. Evolved from an
interdisciplinary conference to a machine
learning conference.

• For the NIPS 2000 conference:
– title words predictive of paper acceptance:

“Belief Propagation” and “Gaussian”.
– title words predictive of paper rejection:

“Neural” and “Network”.
20

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

22

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Slide from Rob Fergus, NYU

Krizhevsky, Sutskever, and Hinton, NIPS 2012

24

25

Test Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

time

enthusiasm

Geoff Hinton’s
citations

28 years 28 years

What comes next?

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

28 years 28 years

Krizhevsky,
Sutskever,
Hinton, 2012

2028 ?

What comes next?

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

28 years 28 years

Krizhevsky,
Sutskever,
Hinton, 2012

2028 ?

http://www.deeplearningbook.org/

By Ian Goodfellow, Yoshua Bengio
and Aaron Courville

November 2016

Tutorials for Deep Learning Frameworks

TensorFlow Sessions:
• 5-6pm, Tue 10/3, 3-270, by Hunter

• 2-3pm, Thu 10/5, 3-270, by Jimmy

PyTorch Sessions:

• 4-5pm, Thu 10/5, 4-370, by Xiuming
• 6-7pm, Thu 10/5, 4-270, by Daniel

Information available on the class website

Neural networks

• Neural nets composed of layers of
artificial neurons.
• Each layer computes some
function of layer beneath.
• Inputs mapped in feed-forward
fashion to output.
• Consider only feed-forward
neural models at the moment, i.e.
no cycles

An	individual	neuron	(unit)

+

w1

w2

w3

wn

a y=f(a)

• Input: vector x (size n×1)

• Unit parameters: vector w (size n×1)
bias b (scalar)

• Unit activation:

• Output:

f(.) is a point-wise non-linear function. E.g.:

Can think of bias as weight w0, connected
to constant input 1: y = f ([w0, w]T [1; x]).

…

b

x1

x2

x3

xn

1

Single	layer	network
• Input: column vector x (size n×1)

• Layer parameters:
weight matrix W (size n×m)
bias vector b (m×1)

• Units activation:

• Output: column vector y (size m×1)

w1,1w1,m

wn,m

Single	layer	network
• Input: column vector x (size n×1)

• Layer parameters:
weight matrix W (size n×m)
bias vector b (m×1)

• Units activation:

• Output:

• Output: column vector y (size m×1)

w1,1w1,m

wn,m
ex. 4 inputs, 3 outputs

= +w1,1

w4,3w3,1

y1

y3

x1

x4

b1

b4

y2 x2

x3

b2

b3

Non-linearities:	sigmoid
• Interpretation as firing rate of
neuron

• Bounded between [0,1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Outputs centered at 0.5
(poor conditioning)

• Not used in practice

Non-linearities:	tanh
• Bounded between [-1,+1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) −1

Non-linearities:	rectified	linear	(ReLU)
• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (see
6x speedup vs tanh in [Krizhevsky et
al.])

• Drawback: if strongly in negative
region, unit is dead forever (no
gradient).

• Default choice: widely used in
current models.

Non-linearities:	Leaky	ReLU
• where α is small (e.g. 0.02)

• Efficient to implement:

• Also known as probabilistic ReLU
(PReLU)

• Has non-zero gradients everywhere
(unlike ReLU)

• α can also be learned (see
Kaiming He et al. 2015).

Multiple	layers
• Neural networks are composed of
multiple layers of neurons.

• Acyclic structure. Basic model
assumes full connections between
layers.

• Layers between input and output are
called hidden.

• Various names used:
• Artificial Neural Nets (ANN)
• Multi-layer Perceptron (MLP)
• Fully-connected network

• Neurons typically called units.

Example:	3	layer	MLP

• By convention, number of layers
is hidden + output (i.e. does not
include input).

• So 3-layer model has 2 hidden
layers.

• Parameters:
weight matrices W1;W2;W3
bias vectors b1; b2; b3.

Multiple	layers

Input layer

Hidden layer 1

Hidden layer i

Output layer n

F1(x0, W1)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

xi-1

xi

xn-1…
…

xn

…
…

(output)

(input)

…

Architecture	selection

• Active	area	of	research

• For	fully	connected	models	2	or	3	layers	seems	
the	most	that	can	be	effectively	trained.

• Regarding	number	of	units/layer:
– Parameters	grows	with	(units/layer)2 .
– With	large	units/layer,	can	easily	overfit.

How to pick number of layers and units/layer?

Representational	power	of	two-layer	network

44In Out
1

2

3

4

5 bias

Representational	power
• 1	layer?	Linear	decision	surface.
• 2+	layers?	In	theory,	can	represent	any	
function.	Assuming	non-trivial	non-linearity.
– Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

– Bengio,	Courville,	Goodfellowbook
http://www.deeplearningbook.org/contents/mlp.html

– Simple	proof	by	M.	Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html

– D.	Mackay	book	
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

• But	issue	is	efficiency:	very	wide	two	layers	vs
narrow	deep	model?	In	practice,	more	layers	
helps.

Training	a	model:	overview
• Given	dataset	{x;	y},	pick	appropriate	cost	
function	C.

• Forward-pass	(f-prop)	training	examples	
through	the	model	to	get	network	output.

• Get	error	using	cost	function	C	to	compare	
output	to	targets	y

• Use	Stochastic	Gradient	Descent	(SGD)	to	
update	weights	adjusting	parameters	to	
minimize	loss/energy	E	(sum	of	the	costs	for	
each	training	example)

(

Object	detection

Discriminative	methods
Object detection and recognition is formulated as a classification problem.

Bag of image patches

… and a decision is taken at each window about if it contains a target object or not.

Decision
boundary

Computer screen

Background

In some feature space

Where are the screens?

The image is partitioned into a set of overlapping windows

• Formulation:	binary	classification

Formulation

+1-1

x1 x2 x3 xN

…

… xN+1 xN+2 xN+M

-1 -1 ? ? ?

…

Training data: each image patch is labeled
as containing the object or background

Test data

Features x =

Labels y =

Where belongs to some family of functions

• Classification function

• Minimize misclassification error
(Not that simple: we need some guarantees that there will be generalization)

Cost	functions

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4 Squared error

Exponential loss

yF(x) = margin

Misclassification error
Loss

Squared error
Exponential loss

MiniPlaces Challenge
• Goal:	identify	the	scene	category	depicted	in	a	photograph.

• Data
– 100,000	images	for	training,	10,000	for	validation	and	10,000	for	

testing	
– 100	scene	categories

• Task:	produce	up	to	5	categories	in	descending	order	of	
confidence

MiniPlaces Challenge
Steps:
• Students	have	to	sign	up	with	a	team	name	and	the	
team	members	to	receive	a	team	code	and	
instructions	for	submitting	to	the	leaderboard.	This	
can	be	done here.

• After	sign-up,	upload	the	prediction	results	here.	
Each	team	is	allowed	to	upload	a	submission	at	most	
every	4	hours.

• The	leaderboard	is here.

MiniPlaces Challenge
Suggestions:
• Computation: Amazon's	EC2

– Students	can	receive	free	$100	credit	through	the AWS	
Educate	program.

• Model:	It	is	very	helpful	to	go	through	the	examples	
of	training	convolutional	neural	nets	in	Caffe,	
TensorFlow,	or	PyTorch.

• Algorithm:	Use	data	augmentation,	deeper	layers,	or	
object	annotation	etc,	to	boost	the	classification	
accuracy.

)

F1(x0, W1)

F2(x1, W2)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

x2

xi-1

xi

xn-1…
…

xn(output)

(input)

Cost	function

• Consider	model	with	N		layers.	
Layer	i has	vector	of	weights	Wi.

• Forward	pass:		takes	input	x and	
passes	it	through	each	layer	Fi:

xi =	Fi (xi-1,	Wi)
• Output	of	layer	i is	xi.	
• Network	output	(top	layer)	is	xn.

F1(x0, W1)

F2(x1, W2)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

x2

xi-1

xi

xn-1…
…

xn(output)

(input)

E

C(xn, y)

y

Cost	function

• Consider	model	with	N		layers.	
Layer	i has	vector	of	weights	Wi.

• Forward	pass:		takes	input	x and	
passes	it	through	each	layer	Fi:

xi =	Fi (xi-1,	Wi)
• Output	of	layer	i is	xi.	
• Network	output	(top	layer)	is	xn.
• Cost	function	C	compares	xn to	y
• Overall	energy	is	the	sum	of	the	

cost	over	all	training	examples:

Stochastic	gradient	descend
• Want	to	minimize	overall	loss	function	E.	Loss	is	sum	of	individual	

losses	over	each	example.
• In	gradient	descent,	we	start	with	some	initial	set	of	parameters	θ
• Update	parameters:

k is	iteration	index,	η is	learning	rate	(scalar;	set	semi-manually).
• Gradients																								computed	by	b-prop.
• In	Stochastic	gradient	descent,	compute	gradient	on	sub-set	

(batch)	of	data.
If	batchsize=1	then	θ is	updated	after	each	example.
If	batchsize=N	(full	set)	then	this	is	standard	gradient	descent.

• Gradient	direction	is	noisy,	relative	to	average	over	all	examples	
(standard	gradient	descent). 62

Stochastic	gradient	descend

• We	need	to	compute	gradients	of	the	cost	with	respect	
to	model	parameters	wi

• Back-propagation	is	essentially	chain	rule	of	derivatives	
back	through	the	model.

• By	dessign,	each	layer	is	differentiable	with	respect	to	
parameters	and	input.

63

Computing	gradients
• Training	will	be	an	iterative	procedure,	and	at	
each	iteration	we	will	update	the	network	
parameters

• We	want	to	compute	the	gradients

Where			

64

…

Computing	gradients
To	compute	the	gradients,	we	could	start	by	
wring	the	full	energy	E	as	a	function	of	the	
network	parameters.

65

And then compute the partial
derivatives… instead, we can use the
chain rule to derive a compact
algorithm: back-propagation

(

Matrix calculus

• We now define a function on vector x: y = F(x)
• If y is a scalar, then

• If y is a vector [m×1], then (Jacobian formulation):

The derivative of y is a row vector of size [1×n]

• x column vector of size [n×1]

The derivative of y is a matrix of size [m×n]
(m rows and n columns)

Matrix calculus

• If y is a scalar and X is a matrix of size [n×m], then

The output is a matrix of size [m×n]

Matrix calculus
• Chain rule:

For the function: z = h(x) = f (g(x))

and writing z=f(u), and u=g(x):

h’(x) = f’ (g(x)) g’(x)Its derivative is:

with p = length vector u = |u|, m = |z|, and n = |x|
[m×n] [m×p] [p×n]

Example, if |z|=1, |u| = 2, |x|=4

=h’(x) =

Matrix calculus
• Chain rule:

For the function: h(x) = fn(fn-1(…(f1(x))))

With u1= f1(x)
ui = fi(ui-1)
z = un= fn(un-1)

The derivative becomes a product of matrices:

(exercise: check that all the matrix dimensions work fine)

)

Computing	gradients
To	compute	the	gradients,	we	could	start	by	
wring	the	full	energy	E	as	a	function	of	the	
network	parameters.

72

And then compute the partial
derivatives… instead, we can use the
chain rule to derive a compact
algorithm: back-propagation

Computing	gradients
The	energy	E	is	the	sum	of	the	costs	associated	
to	each	training	example	xm,	ym

73

θθ

Computing	gradients
The	energy	E	is	the	sum	of	the	costs	associated	
to	each	training	example	xm,	ym

Its	gradient	with	respect	to	the	networks	
parameters	θ is:

74

is how much E varies when the parameter θi is varied.

θ

∂θi ∂θi

θ

θ

Computing	gradients

75

We could write the cost function to get the gradients:

If we compute the gradient with respect to the parameters of
the last layer (output layer) wn, using the chain rule:

with

(how much the cost changes when we change wn: is the product between how much the cost
changes when we change the output of the last layer and how much the output changes when we
change the layer parameters.)

θ

θ

Computing	gradients:	cost	layer

76

If we compute the gradient with respect to the parameters of
the last layer (output layer) wn, using the chain rule:

For example, for an Euclidean loss:

The gradient is:

Will depend on the
layer structure and
non-linearity.

Computing	gradients:	layer	i

77

We could write the full cost function to get the gradients:

If we compute the gradient with respect to wi, using the chain rule:

And this can be
computed iteratively!

This is easy.

θ

Backpropagation

If we have the value of we can compute the gradient at the
layer bellow as:

Gradient
layer i

Gradient
layer i-1

Hidden layer i Fi(xi-1, Wi)

Fi+1

Fi-1

• For layer i, we need the derivatives:

• We compute the outputs

xi

• The weight update equation is:

Backpropagation:	layer	i

(sum over all
training examples
to get E)

Forward
pass

Backward
pass

• Layer i has two inputs (during training)

xi-1

xi-1

F1(x0, W1)

F2(x1, W2)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

x2

xi-1

xi

xn-1…
…

xn(output)

(input)

E

C(Xn,Y)

y

Backpropagation:	summary
• Forward	pass:	for	each	

training	example.	Compute	
the	outputs	for	all	layers

• Backwards	pass:	compute	
cost	derivatives	iteratively	
from	top	to	bottom:

• Compute	gradients	and	
update	weights.	

Linear	Module

81

F(xin, W)

xout

xin

With	W	being	a	
matrix	of	size	
|xout|×|xin|

• Forward	propagation:	

• Backprop to	input:	

If	we	look	at	the	j component	of	output	 xout,	with	respect	to	the	i component	 of	the	input,	 xin:

Therefore:

Linear	Module

82

• Backprop to	weights:	
F(xin, W)

xout

xin

If	we	look	at	how	the	parameter	Wij changes	the	cost,	only	 the	i component	 of	the	output
will	change,	 therefore:

• Forward	propagation:	

(sum over all
training examples
to get E)

And	now	we	can	update	the	weights	(by	summing	over	all	the	training	examples):

Linear	Module

xout

xin

Weight	updates

Pointwise function
F(xin, W)

xout

xin

• Forward	propagation:	

h =	an	arbitrary	function,	bi is	a	bias	term.

• Backprop to	input:	

• Backprop to	bias:	

We	use	this	last	expression	to	update	the	bias.

For	hyperbolic	 tangent:

For	ReLU:		h(x)		=	max(0,x)				h’(x)	=	1	[x>0]

Some	useful	derivatives:

Pointwise function

xout

xin

Weight	updates

Euclidean	cost	module

C

xin

y

Back	propagation	example
node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

Training data:

input

desired output

1.0 0.1 0.5
node 1 node 2 node 5

input

output

tanh

tanh

linear

Learning	rate	=	-0.2	(because	we	used	positive	increments)

Euclidean	loss

Exercise:	run	one	iteration	of	back	propagation

Back	propagation	example

node 1

node 2

node 3

node 4

node 5

w13=1.02

0.17

-3

1

1.02

-0.99

input output

tanh

tanh

linear

node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

input output

tanh

tanh

linear

After	one	iteration	(rounding	 to	two	digits):

