6.869: Advances in Computer Vision

William T. Freeman, Antonio Torralba, 2017

Lecture 6

Learned feedforward visual processing Neural Networks, Deep learning, ConvNets

We need translation invariance

Lots of useful linear filters...

High order Gaussian derivatives

Gabor

And many more...

We need translation and scale invariance

Lots of image pyramids...

And many more: QMF, steerable, ...

We need ...

What is the best representation?

- All the previous representation are manually constructed.
- Could they be learnt from data?

A brief history of Neural Networks

Perceptrons, 1958

Psychological Review

Thyodore M. Nawcomb, Editar
Uniperity of Mickigan

This is the last fause of Volume 65 . Title page and index for the volame appear lercis.
http://www.ecse.rpi.edu/homepages/nagy/PDF chrono/2011 Na gy Pace FR.pdf. Photo by George Nagy
\qquad
CONTENTS
Hetbert Sidney Langield 1899-1958................ Cakzots C. Pantr 321 Psychological Strusture and Pigcholggical ActivityHyaxer Prak 325 Hexic Inswes in Perceptual Thecry W. M. O'Nell 345

A Conceps-Formation Appronch to Autitude Acquisition.

Ruvan J, Rumas 362
Sympties and Symptom Sulutitution.
Auaky J. Yatis 371
Tranifer of Training and Its Relation to Perceptcal
Learnirg and Recognition. Javes M. Vansazales 375
The Perceptron: A Prolatilisic Model for Information
Storage and Organizution in the Brain...................F. Roserabert $\$ 56$

PUBLIBERE BHMONTHLTMVTME

AMERICAN PSYCHOLOGICAL ASSOCIATION, INC,

Perceptrons, 1958

Minsky and Papert, Perceptrons, 1972

Expanded Edfition

Perceptrons

FOR BUYING OPTIONS, START HERE
Select Shipping Destination $\stackrel{4}{*}$

Paperback | \$ 35.00 Short | $\mathbf{£ 2 4 . 9 5 \text { | }}$ ISBN: 9780262631112|308 pp. | $6 \times$ 8.9 in | December 1987

Perceptrons, expanded edition

An Introduction to Computational Geometry
By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence, and it is required reading for anyone who wants to understand the connectionist counterrevolution that is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann computers, is swinging back to the idea that intelligence might emerge from the activity of networks of neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried far enough to show the exact limitations of a class of computing machines that could seriously be considered as models of the brain. Now the new developments in mathematical tools, the recent interest of physicists in the theory of disordered matter, the new insights into and psychological models of how the brain works, and the evolution of fast computers that can simulate networks of automata have given Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in which they discuss the current state of parallel computers, review developments since the appearance of the 1972 edition, and identify new research directions related to connectionism. They note a central theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how "objects" or "agents" with individuality can emerge in a network. Progress in this area would link connectionism with what the authors have called "society theories of mind."

Parallel Distributed Processing (PDP), 1986

XOR problem

Inputs

Output

0	0	0
1	0	1
0	1	1
1	1	0

PDP authors pointed to the backpropagation algorithm as a breakthrough, allowing multi-layer neural networks to be trained. Among the functions that a multi-layer network can represent but a single-layer network cannot: the XOR function.

LeCun conv nets, 1998

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Demos:

http://yann.lecun.com/exdb/lenet/index.html

Fig. 13. Examples of unusual, distorted, and noisy characters correctly recognized by LeNet-5. The grey-level of the output label represents the penalty (lighter for higher penalties).

Neural networks to recognize handwritten digits? yes

Neural networks for tougher problems? not really

NIPS 2000

- NIPS, Neural Information Processing Systems, is the premier conference on machine learning. Evolved from an interdisciplinary conference to a machine learning conference.
- For the NIPS 2000 conference:
- title words predictive of paper acceptance: "Belief Propagation" and "Gaussian".
- title words predictive of paper rejection: "Neural" and "Network".

Krizhevsky, Sutskever, and Hinton, NIPS 2012

ImageNet Classification 2012

- Krizhevsky et al. -- 16.4% error (top-5)
- Next best (non-convnet) - 26.2\% error

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Test
Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012

What comes next?

What comes next?

November 2016
http://www.deeplearningbook.org/
By Ian Goodfellow, Yoshua Bengio and Aaron Courville

Tutorials for Deep Learning Frameworks

TensorFlow Sessions:

- 5-6pm, Tue 10/3, 3-270, by Hunter
- 2-3pm, Thu 10/5, 3-270, by Jimmy

PyTorch Sessions:

- 4-5pm, Thu 10/5, 4-370, by Xiuming
- 6-7pm, Thu 10/5, 4-270, by Daniel

Neural networks

- Neural nets composed of layers of

An individual neuron (unit)

- Input: vector x (size $\mathrm{n} \times 1$)
- Unit parameters: vector w (size $\mathrm{n} \times 1$) bias b (scalar)
- Unit activation: $a=\sum_{i=1}^{n} x_{i} w_{i}+b$
- Output: $y=f(a)=f\left(\sum_{i=1}^{n} x_{i} w_{i}+b\right)$

$\mathrm{f}($.) is a point-wise non-linear function. E.g.:

$$
f(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}
$$

Can think of bias as weight w_{0}, connected to constant input 1: $\mathrm{y}=\mathrm{f}\left(\left[\mathrm{w}_{0}, \mathrm{w}\right]^{\mathrm{T}}[1 ; \mathrm{x}]\right)$.

Single layer network

- Input: column vector $\mathrm{x}($ size $\mathrm{n} \times 1)$
- Output: column vector y (size $m \times 1$)
- Layer parameters: weight matrix W (size $n \times m$) bias vector $\mathrm{b}(\mathrm{m} \times 1)$
- Units activation: $a=W x+b$

Single layer network

- Input: column vector $\mathrm{x}($ size $\mathrm{n} \times 1)$
- Output: column vector y (size $\mathrm{m} \times 1$)

Input layer	Output layer

- Layer parameters:
weight matrix W (size $n \times m$) bias vector $\mathrm{b}(\mathrm{m} \times 1)$
- Units activation: $\quad a=W x+b$ ex. 4 inputs, 3 outputs

- Output: $\quad y=f(a)=f(W x+b)$

Non-linearities: sigmoid

$$
f(a)=\operatorname{sigmoid}(a)=\frac{1}{1+e^{-a}}
$$

- Interpretation as firing rate of neuron
- Bounded between [0,1]
- Saturation for large + ve,--ve inputs
- Gradients go to zero
- Outputs centered at 0.5
(poor conditioning)
- Not used in practice

Non-linearities: tanh

$$
f(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}
$$

- Bounded between $[-1,+1]$
- Saturation for large + ve,--ve inputs

- Gradients go to zero
- Outputs centered at 0
- Preferable to sigmoid $\tanh (x)=2 \operatorname{sigmoid}(2 x)-1$

Non-linearities: rectified linear (ReLU)

- Unbounded output (on positive side)
$f(a)=\max (a, 0)$
- Efficient to implement:

$$
f^{\prime}(a)=\frac{d f}{d a}= \begin{cases}0 & a<0 \\ 1 & a \geq 0\end{cases}
$$

- Also seems to help convergence (see $6 x$ speedup vs tanh in [Krizhevsky et al.])
- Drawback: if strongly in negative region, unit is dead forever (no gradient).
- Default choice: widely used in current models.

Non-linearities: Leaky ReLU

$f(a)=\left\{\begin{array}{cc}\max (0, a) & a>0 \\ a \min (0, a) & a<0\end{array}\right.$

- where α is small (e.g. 0.02)
- Efficient to implement:

$$
f^{\prime}(a)=\frac{d f}{d a}=\left\{\begin{array}{cc}
-a & a<0 \\
1 & a>0
\end{array}\right.
$$

- Also known as probabilistic ReLU (PReLU)
- Has non-zero gradients everywhere (unlike ReLU)
- α can also be learned (see Kaiming He et al. 2015).

Multiple layers

- Neural networks are composed of multiple layers of neurons.
- Acyclic structure. Basic model assumes full connections between layers.
- Layers between input and output are called hidden.
- Various names used:
- Artificial Neural Nets (ANN)
- Multi-layer Perceptron (MLP)

- Neurons typically called units.

Example: 3 layer MLP

- By convention, number of layers is hidden + output (i.e. does not include input).
- So 3-layer model has 2 hidden layers.
- Parameters:
weight matrices $\mathrm{W}_{1} ; \mathrm{W}_{2} ; \mathrm{W}_{3}$ bias vectors $\mathrm{b}_{1} ; \mathrm{b}_{2} ; \mathrm{b}_{3}$.

Multiple layers

	(output) $\uparrow \mathrm{x}_{\mathrm{n}}$	
Output layer n	$\mathrm{F}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{~W}_{\mathrm{n}}\right)$	
\vdots	$\uparrow \mathrm{x}_{\mathrm{n}-1}$	
Hidden layer i	$\mathrm{F}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{~W}_{\mathrm{i}}\right)$	
\vdots	$\uparrow \mathrm{x}_{\mathrm{i}-1}$	

Architecture selection

How to pick number of layers and units/layer?

- Active area of research
- For fully connected models 2 or 3 layers seems the most that can be effectively trained.
- Regarding number of units/layer:
- Parameters grows with (units/layer) ${ }^{2}$.
- With large units/layer, can easily overfit.

Representational power of two-layer network

Figure 5.3 Illustration of the capability of a multilayer perceptron to approximate four different functions comprising (a) $f(x)=x^{2}$, (b) $f(x)=\sin (x),(c), f(x)=|x|$, and (d) $f(x)=H(x)$ where $H(x)$ is the Heaviside step function. In each case, $N=50$ data points, shown as blue dots, have been sampled uniformly in x over the interval $(-1,1)$ and the corresponding values of $f(x)$ evaluated. These data points are then used to train a twolayer network having 3 hidden units with 'tanh' activation functions and linear output units. The resulting network functions are shown by the red curves, and the outputs of the three hidden units are shown by the three dashed curves.

(a)

(b)

(d)

$$
z_{5}=\sum_{i=2}^{i=4} w_{i 5} \tanh \left(w_{1 i} z_{1}+\stackrel{\substack{\text { bias } \\ \downarrow \\ w_{0 i}}}{ }\right)
$$

Representational power

- 1 layer? Linear decision surface.
- 2+ layers? In theory, can represent any function. Assuming non-trivial non-linearity.
- Bengio 2009, http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
- Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html
- Simple proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html
- D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf
- But issue is efficiency: very wide two layers vs narrow deep model? In practice, more layers helps.

Training a model: overview

- Given dataset $\{x ; y\}$, pick appropriate cost function C.
- Forward-pass (f-prop) training examples through the model to get network output.
- Get error using cost function C to compare output to targets y
- Use Stochastic Gradient Descent (SGD) to update weights adjusting parameters to minimize loss/energy E (sum of the costs for each training example)
(

Object detection

Discriminative methods

Object detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows
... and a decision is taken at each window about if it contains a target object or not.

Bag of image patches

Background

Computer screen
In some feature space

Formulation

- Formulation: binary classification

- Classification function

$$
\widehat{y}=F(x) \quad \text { Where } F(x) \text { belongs to some family of functions }
$$

- Minimize misclassification error
(Not that simple: we need some guarantees that there will be generalization)

Cost functions

MiniPlaces Challenge

- Goal: identify the scene category depicted in a photograph.
- Data
- 100,000 images for training, 10,000 for validation and 10,000 for testing
- 100 scene categories
- Task: produce up to 5 categories in descending order of confidence

MiniPlaces Challenge

Steps:

- Students have to sign up with a team name and the team members to receive a team code and instructions for submitting to the leaderboard. This can be done here.
- After sign-up, upload the prediction results here. Each team is allowed to upload a submission at most every 4 hours.
- The leaderboard is here.

MiniPlaces Challenge

Suggestions:

- Computation: Amazon's EC2
- Students can receive free $\$ 100$ credit through the AWS Educate program.
- Model: It is very helpful to go through the examples of training convolutional neural nets in Caffe, TensorFlow, or PyTorch.
- Algorithm: Use data augmentation, deeper layers, or object annotation etc, to boost the classification accuracy.

Everything Images
Maps
Videos
News
Shopping More

Any time Past 24 hours Past week Custom range.

All results

By subject
Personal

Any size Large Medium Icon Larger than... Exactly...

Related searches: bedroom designs master bedroom modern bedroom simple bedroom small bedroom

Google

Everything
Images
Maps
Videos
News
Shopping
More

Any time
Past 24 hours
Past week Custom range...

All results By subject
Personal

Any size

Large

Medium
Icon
Larger than...
Exactly..

Any color
Full color

www.bigstock.com - 7067629

Cost function

- Consider model with N layers. Layer i has vector of weights Wi.
- Forward pass: takes input x and passes it through each layer F_{i} :

$$
x_{i}=F_{i}\left(x_{i-1}, W_{i}\right)
$$

- Output of layer i is x_{i}.
- Network output (top layer) is x_{n}.

Cost function

Stochastic gradient descend

- Want to minimize overall loss function \mathbf{E}. Loss is sum of individual losses over each example.
- In gradient descent, we start with some initial set of parameters θ
- Update parameters: $\theta^{k+1} \leftarrow \theta^{k}+\eta \nabla \theta$
k is iteration index, η is learning rate (scalar; set semi-manually).
- Gradients $\nabla \theta=\frac{\partial E}{\partial \theta} \quad$ computed by b-prop.
- In Stochastic gradient descent, compute gradient on sub-set (batch) of data.

If batchsize $=1$ then θ is updated after each example.
If batchsize= N (full set) then this is standard gradient descent.

- Gradient direction is noisy, relative to average over all examples (standard gradient descent).

Stochastic gradient descend

- We need to compute gradients of the cost with respect to model parameters w_{i}
- Back-propagation is essentially chain rule of derivatives back through the model.
- By dessign, each layer is differentiable with respect to parameters and input.

Computing gradients

- Training will be an iterative procedure, and at each iteration we will update the network parameters $\theta^{k+1} \leftarrow \theta^{k}+\eta \nabla \theta$
- We want to compute the gradients

$$
\nabla \theta=\frac{\partial E}{\partial \theta}
$$

Where $\quad q=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$

Computing gradients

To compute the gradients, we could start by wring the full energy E as a function of the network parameters.
$E(q)=\sum_{m=1}^{M} C\left(F_{n}\left(F_{n-1}\left(F_{2}\left(F_{1}\left(x_{0}^{m}, w_{1}\right), w_{2}\right), w_{n-1}\right), w_{n}\right), y^{m}\right)$

And then compute the partial derivatives... instead, we can use the chain rule to derive a compact algorithm: back-propagation

(

Matrix calculus

- x column vector of size $[\mathrm{n} \times 1]\left[\begin{array}{l}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
- We now define a function on vector $\mathrm{x}: \mathrm{y}=\mathrm{F}(\mathrm{x})$
- If y is a scalar, then

$$
\partial / / \partial x=\left[\begin{array}{llll}
\partial / / \partial x_{1} & \partial y / \partial x_{2} & \cdots & \partial y / \partial x_{n}
\end{array}\right]
$$

The derivative of y is a row vector of size $[1 \times \mathrm{n}]$

- If y is a vector $[\mathrm{m} \times 1]$, then (Jacobian formulation):

$$
\partial J / \partial x=\left[\begin{array}{cccc}
\partial y_{1} / \partial x_{1} & \partial y_{1} / \partial x_{2} & \cdots & \partial_{1} / \partial x_{n} \\
\vdots & \vdots & & \vdots \\
\partial_{m} / \partial x_{1} & \partial y_{m} / \partial x_{2} & \cdots & \partial_{m} / \partial x_{n}
\end{array}\right]
$$

The derivative of y is a matrix of size $[\mathrm{m} \times \mathrm{n}]$
(m rows and n columns)

Matrix calculus

- If y is a scalar and X is a matrix of size $[n \times m]$, then

$$
\partial y / \partial X=\left[\begin{array}{cccc}
\partial / / \partial x_{11} & \partial y / \partial x_{21} & \cdots & \partial J / \partial x_{n 1} \\
\vdots & \vdots & & \vdots \\
\partial J / \partial x_{1 m} & \partial y / \partial x_{12} & \cdots & \partial J / \partial x_{n m}
\end{array}\right]
$$

The output is a matrix of size $[\mathrm{m} \times \mathrm{n}]$

Matrix calculus

- Chain rule:

For the function: $\mathrm{z}=\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
Its derivative is: $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$
and writing $\mathrm{z}=\mathrm{f}(\mathrm{u})$, and $\mathrm{u}=\mathrm{g}(\mathrm{x})$:

$$
\text { with } \mathrm{p}=\text { length vector } \mathrm{u}=|\mathrm{u}|, \mathrm{m}=|\mathrm{z}| \text {, and } \mathrm{n}=|\mathrm{x}|
$$

Example, if $|\mathrm{z}|=1,|\mathrm{u}|=2,|\mathrm{x}|=4$

$$
\mathrm{h}^{\prime}(\mathrm{x})=\square \quad \square \quad=\square \square \quad \square
$$

$$
\begin{aligned}
& \left.\frac{d z}{d x}\right|_{x=a}=\left.\left.\frac{d z}{d u}\right|_{u=g(a)} \cdot \frac{d u}{d x}\right|_{x=a} \\
& {[\mathrm{~m} \times \mathrm{n}] \quad[\mathrm{m} \times \mathrm{p}] \quad[\mathrm{p} \times \mathrm{n}]}
\end{aligned}
$$

Matrix calculus

- Chain rule:

For the function: $h(x)=f_{n}\left(f_{n-1}\left(\ldots\left(f_{1}(x)\right)\right)\right)$

$$
\text { With } \begin{aligned}
\mathrm{u}_{1} & =\mathrm{f}_{1}(\mathrm{x}) \\
& \mathrm{u}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}}\left(\mathrm{u}_{\mathrm{i}-1}\right) \\
\mathrm{z} & =\mathrm{u}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\mathrm{u}_{\mathrm{n}-1}\right)
\end{aligned}
$$

The derivative becomes a product of matrices:

$$
\left.\frac{d z}{d x}\right|_{x=a}=\left.\left.\left.\left.\frac{d z}{d u_{n-1}}\right|_{u_{n-1}=f_{n-1}\left(u_{n-2}\right)} \cdot \frac{d u_{n-1}}{d u_{n-2}}\right|_{u_{n_{n-2}=f_{n-2}\left(u_{n-3}\right)}} \cdot \ldots \cdot \frac{d u_{2}}{d u_{1}}\right|_{u_{1}=f_{1}(a)} \cdot \frac{d u_{1}}{d x}\right|_{x=a}
$$

(exercise: check that all the matrix dimensions work fine)

Computing gradients

To compute the gradients, we could start by wring the full energy E as a function of the network parameters.
$E(q)=\sum_{m=1}^{M} C\left(F_{n}\left(F_{n-1}\left(F_{2}\left(F_{1}\left(x_{0}^{m}, w_{1}\right), w_{2}\right), w_{n-1}\right), w_{n}\right), y^{m}\right)$

And then compute the partial derivatives... instead, we can use the chain rule to derive a compact algorithm: back-propagation

Computing gradients

The energy E is the sum of the costs associated to each training example x^{m}, y^{m}

$$
E(\theta)=\sum_{m=1}^{M} C\left(x_{n}^{m}, y^{m} ; \theta\right)
$$

Computing gradients

The energy E is the sum of the costs associated to each training example x^{m}, y^{m}

$$
E(\theta)=\sum_{m=1}^{M} C\left(x_{n}^{m}, y^{m} ; \theta\right)
$$

Its gradient with respect to the networks parameters θ is:

$$
\frac{\partial E}{\partial \theta_{\mathrm{i}}}=\sum_{m=1}^{M} \frac{C\left(x_{n}^{m}, y^{m} ; \theta\right)}{\partial \theta_{\mathrm{i}}}
$$

is how much E varies when the parameter θ_{i} is varied.

Computing gradients

We could write the cost function to get the gradients:

$$
\begin{gathered}
C\left(x_{n}, y ; \theta\right)=C\left(F_{n}\left(x_{n-1}, w_{n}\right), y\right) \\
\text { with } \quad \theta=\left[w_{1}, w_{2}, \cdots, w_{n}\right]
\end{gathered}
$$

If we compute the gradient with respect to the parameters of the last layer (output layer) w_{n}, using the chain rule:

$$
\frac{\partial C}{\partial v_{n}}=\frac{\partial C}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial v_{n}}=\frac{\partial C}{\partial x_{n}} \cdot \frac{\partial F_{n}\left(x_{n-1}, w_{n}\right)}{\partial v_{n}}
$$

(how much the cost changes when we change w_{n} : is the product between how much the cost changes when we change the output of the last layer and how much the output changes when we change the layer parameters.)

Computing gradients: cost layer

If we compute the gradient with respect to the parameters of the last layer (output layer) w_{n}, using the chain rule:

$$
\frac{\partial C}{\partial v_{n}}=\frac{\partial C}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial v_{n}}=\frac{\partial C}{\partial x_{n}} \cdot \frac{\partial F_{n}\left(x_{n-1}, w_{n}\right)}{\partial v_{n}}
$$

Will depend on the
For example, for an Euclidean loss:

$$
C\left(x_{n}, y\right)=\frac{1}{2}\left\|x_{n}-y\right\|^{2}
$$

layer structure and non-linearity.

The gradient is:

$$
\frac{\partial C}{\partial x_{n}}=x_{n}-y
$$

Computing gradients: layer i

We could write the full cost function to get the gradients:

$$
C\left(x_{n}, y ; \theta\right)=C\left(F_{n}\left(F_{n-1}\left(F_{2}\left(F_{1}\left(x_{0}, w_{1}\right), w_{2}\right), w_{n-1}\right), w_{n}\right), y\right)
$$

If we compute the gradient with respect to w_{i}, using the chain rule:

$$
\frac{\partial C}{\partial v_{i}}=\underbrace{\frac{\partial x_{i}}{\partial v_{i}}}_{\frac{\partial C}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial x_{n-1}} \cdot \frac{\partial x_{n-1}}{\partial x_{n-2}} \cdot \ldots \cdot \frac{\partial x_{i+1}}{\partial x_{i}}}
$$

Backpropagation

$$
\frac{\partial C}{\partial v_{i}}=\underbrace{\frac{\partial x_{i}}{\partial v_{i}}}_{\frac{\partial C}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial x_{n-1}} \cdot \frac{\partial x_{n-1}}{\partial x_{n-2}} \cdot \ldots \cdot \frac{\partial x_{i+1}}{\partial x_{i}}}
$$

If we have the value of $\frac{\partial C}{\partial x_{i}}$ we can compute the gradient at the
layer bellow as:

Backpropagation: layer i

- Layer i has two inputs (during training)

Hidden layer i

Forward Backward pass pass

$$
\begin{aligned}
& \frac{\partial c}{\partial w_{i}}=\frac{\partial c}{\partial x_{i}} \cdot \frac{\partial F_{i}\left(x_{i-1}, w_{i}\right)}{\partial w_{i}} \\
& w_{i}^{k+1} \leftarrow w_{i}^{k}+h_{t} \frac{\partial E}{\partial w_{i}} \quad \begin{array}{l}
\text { (sum over all } \\
\text { training examples } \\
\text { to get E) }
\end{array}
\end{aligned}
$$

Backpropagation: summary E

- Forward pass: for each training example. Compute the outputs for all layers

$$
x_{i}=F_{i}\left(x_{i-1}, w_{i}\right)
$$

- Backwards pass: compute cost derivatives iteratively from top to bottom:

$$
\frac{\partial C}{\partial x_{i-1}}=\frac{\partial C}{\partial x_{i}} \cdot \frac{\partial F_{i}\left(x_{i-1}, w_{i}\right)}{\partial x_{i-1}}
$$

- Compute gradients and update weights.

If we look at the j component of output $x_{\text {out }}$, with respect to the i component of the input, $x_{i n}$:

$$
\frac{\partial x_{\text {out }_{i}}}{\partial x_{i n_{j}}}=W_{i j} \quad \longrightarrow \quad \frac{\partial F\left(x_{i n}, W\right)}{\partial x_{i n}}=W
$$

Therefore:

$$
\frac{\partial C}{\partial x_{\text {in }}}=\frac{\partial C}{\partial x_{\text {out }}} \cdot W
$$

$\uparrow_{\mathrm{x}_{\text {out }}} \quad \sqrt{\frac{\partial C}{\partial x_{\text {out }}}}$
$F\left(x_{i n}, W\right)$
${ }^{\mu} \mathrm{x}_{\text {in }} \quad \sqrt{ } \quad \frac{\partial C}{\partial x_{\text {in }}}$

Linear Module

- Forward propagation: $x_{\text {out }}=F\left(x_{i n}, W\right)=W x_{\text {in }}$
- Backprop to weights:

$$
\frac{\partial C}{\partial W}=\frac{\partial C}{\partial x_{\text {out }}} \cdot \frac{\partial F\left(x_{\text {in }}, W\right)}{\partial W}=\frac{\partial C}{\partial{x_{\text {out }}}^{\partial W} \cdot \frac{\partial x_{\text {out }}}{\partial W} . \text {. }}
$$

If we look at how the parameter W_{ij} changes the cost, only the i component of the output will change, therefore:

$$
\begin{array}{ll}
\frac{\partial C}{\partial W_{i j}}=\frac{\partial C}{\partial x_{o u t_{i}}} \cdot \frac{x_{o u t_{i}}}{\partial W_{i j}}=\frac{\partial C}{\partial x_{o u t_{i}}} \cdot x_{i n_{j}} & \frac{\partial C}{\partial W}=x_{\text {in }} \cdot \frac{\partial C}{\partial x_{o u t}} \\
\frac{\partial x_{o u t_{i}}}{\partial W_{i j}}=x_{i n_{j}} & =\square
\end{array}
$$

And now we can update the weights (by summing over all the training examples):

$$
W_{i j}^{k+1} \leftarrow W_{i j}^{k}+h_{t} \frac{\partial E}{\partial W_{i j}} \quad \begin{aligned}
& \text { (sum over all } \\
& \text { training examples } \\
& \text { to get E) }
\end{aligned}
$$

Linear Module

$\uparrow_{\mathrm{x}_{\text {out }}} \left\lvert\, \frac{\partial}{\alpha_{\text {out }}}\right.$ Pointwise function
$\mathrm{F}\left(\mathrm{x}_{\mathrm{in}}, \mathrm{W}\right)$

- Forward propagation:
$\uparrow \mathrm{x}_{\text {in }} \quad \frac{\partial C}{\partial x_{i n}}$

$$
x_{\text {out }_{i}}=h\left(x_{i n_{i}}+b_{i}\right)
$$

$$
h=\text { an arbitrary function, } b_{i} \text { is a bias term. }
$$

- Backprop to input: $\frac{\partial C}{\partial x_{i n_{i}}}=\frac{\partial C}{\partial x_{o u t_{i}}} \cdot \frac{\partial x_{\text {out }_{i}}}{\partial x_{i n_{i}}}=\frac{\partial C}{\partial x_{o u t_{i}}} \cdot h^{\prime}\left(x_{i n_{i}}+b_{i}\right)$

We use this last expression to update the bias.

Some useful derivatives:
For hyperbolic tangent: $\tanh ^{\prime}(x)=1-\tanh ^{2}(x)$
For ReLU: $h(x)=\max (0, x) \quad h^{\prime}(x)=1[x>0]$

Pointwise function

Euclidean cost module

Back propagation example

input

Learning rate $=-0.2$ (because we used positive increments)
Euclidean loss

Training data: input
node 1 node 2
$1.0 \quad 0.1$
desired output node 5
0.5

Exercise: run one iteration of back propagation

Back propagation example

After one iteration (rounding to two digits):

output

