
Lecture 7
Intro	to	convolutional neural	networks	

Antonio Torralba, 2016



Computing	gradients
To	compute	the	gradients,	we	could	start	by	
wring	the	full	energy	E	as	a	function	of	the	
network	parameters.
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And then compute the partial 
derivatives… instead, we can use the 
chain rule to derive a compact 
algorithm:  back-propagation

θ



Computing	gradients
The	energy	E	is	the	sum	of	the	costs	associated	
to	each	training	example	xm,	ym
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Computing	gradients
The	energy	E	is	the	sum	of	the	costs	associated	
to	each	training	example	xm,	ym

Its	gradient	with	respect	to	each	of	the	networks	
parameters	θi is:
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is how much E varies when the parameter θi is varied.

θ

∂qi ∂qi

θ

θ



Computing	gradients

5

We could write the cost function to get the gradients:

If we compute the gradient with respect to the parameters of 
the last layer (output layer) wn, using the chain rule:

with

(how much the cost changes when we change wn: is the product between how much the cost 
changes when we change the output of the last layer and how much the output changes when we 
change the layer parameters.)

θ

θ



Computing	gradients:	cost	layer
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If we compute the gradient with respect to the parameters of 
the last layer (output layer) wn, using the chain rule:

For example, for an Euclidean loss:

The gradient is:

Will depend on the 
layer structure and
non-linearity.



Computing	gradients:	layer	i
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We could write the full cost function to get the gradients:

If we compute the gradient with respect to wi, using the chain rule:

And this can be
computed iteratively!

This is easy.

θ



Backpropagation

If we have the value of           we can compute the gradient at the 
layer bellow as: 

Gradient 
layer i

Gradient 
layer i-1



Hidden layer i Fi(xi-1, Wi) 

Fi+1

Fi-1

• For layer i, we need the derivatives:

• We compute the outputs

xi

• The weight update equation is:

Backpropagation
Goal:	to	update	parameters	of	layer	i

Forward
pass

Backward
pass

• Layer i has two inputs (during training)

xi-1

xi-1

(sum over all
training examples

to get E)
h



F1(x0, W1) 

F2(x1, W2) 

Fi(xi-1, Wi) 

Fn(xn-1, Wn) 

x0

x1

x2

xi-1

xi

xn-1…
…

xn(output)

(input)

E

C(Xn,Y)

y

Backpropagation:	summary
• Forward	pass:	for	each	

training	example.	Compute	
the	outputs	for	all	layers

• Backwards	pass:	compute	
cost	derivatives	iteratively	
from	top	to	bottom:

• Compute	gradients	and	
update	weights.	



Linear	Module
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F(xin, W) 

xout

xin

With	W	being	a	
matrix	of	size	
|xout|×|xin|

• Forward	propagation:	

• Backprop to	input:	

If	we	look	at	the	j component	of	output	xout,	with	respect	to	the	i component	of	the	input,	xin:

Therefore:



Linear	Module
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F(xin, W) 

xout

xin

• Forward	propagation:	
• Backprop to	input:	

Now	let’s	see	how	we	use	the	set	of	outputs	to	compute	the
weights	update	equation	(backprop to	the	weights).



Linear	Module
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• Backprop to	weights:	
F(xin, W) 

xout

xin

If	we	look	at	how	the	parameter	Wij changes	the	cost,	only	the	i component	of	the	output
will	change,	therefore:

• Forward	propagation:	

And	now	we	can	update	the	weights	(by	summing	over	all	the	training	examples):
(sum over all
training examples

to get E)
h



Linear	Module

xout

xin

Weight	updates

h

0

Sum	over	M	training	pairs



Pointwise function
F(xin, W) 

xout

xin

• Forward	propagation:	

h =	an	arbitrary	function,	bi is	a	bias	term.

• Backprop to	input:	

• Backprop to	bias:	

We	use	this	last	expression	to	update	the	bias.

For	hyperbolic	tangent:

For	ReLU:		h(x)		=	max(0,x)				h’(x)	=	1	[x>0]

Some	useful	derivatives:



Pointwise function

xout

xin

Weight	updates

h



Euclidean	cost	module

C

xin

y



Back	propagation	example
node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

Training data:

input

desired output

1.0     0.1                           0.5
node 1 node 2 node 5

input

output

tanh

tanh

linear

Learning	rate	h =	-0.2	(because	we	used	positive	increments)

Euclidean	loss

Exercise:	run	one	iteration	of	back	propagation



• How	many	boxes?	1,	2,	3,	4,	5?
• Let’s	compute	the	forward	pass
• Let’s	compute	the	backwards	pass
• Let’s	update	the	weights!



Back	propagation	example

node 1

node 2

node 3

node 4

node 5

w13=1.02

0.17

-3

1

1.02

-0.99

input output

tanh

tanh

linear

node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

input output

tanh

tanh

linear

After	one	iteration	(rounding	to	two	digits):



Dealing	with	images



Neocognitron
Fukushima (1980). Hierarchical multilayered neural network 

S-cells work as feature-extracting cells. They resemble simple cells of the 
primary visual cortex in their response. 

C-cells, which resembles complex cells in the visual cortex, are inserted in the 
network to allow for positional errors in the features of the stimulus. The input 
connections of C-cells, which come from S-cells of the preceding layer, are fixed 
and invariable. Each C-cell receives excitatory input connections from a group 
of S-cells that extract the same feature, but from slightly different positions. The 
C-cell responds if at least one of these S-cells yield an output. 



Neocognitron

Learning is done greedily for each layer 



Multistage Hubel-Wiesel Architecture 

Slide: Y. LeCun

• Stack multiple stages of simple cells / complex cells layers
• Higher stages compute more global, more invariant features
• Classification layer on top

History:
• Neocognitron [Fukushima 1971-1982]
• Convolutional Nets [LeCun 1988-2007] 
• HMAX [Poggio 2002-2006]
• Many others….



Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with specialized 
connectivity structure



Overview of Convnets

• Feed-forward: 
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by 

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps



Convnet Successes

• Handwritten text/digits
– MNIST    (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese   [Ciresan et al. 2012]

• Simpler  recognition benchmarks
– CIFAR-10 (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

• But less good at more complex datasets
– E.g. Caltech-101/256 (few training examples) 



Application to ImageNet

[NIPS 2012]

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk 



Goal

  

Validation classification

[Krizhevsky et al. NIPS 2012]

• Image Recognition
– Pixels à Class Label



Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model  (8 layers)

- More data    (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)



How convnets work

• Operations in each layer

• Architecture

• Training

• Results



Slide: R. Fergus



Filtering

• Convolutional
– Dependencies are local 
– Translation invariance
– Tied filter weights (few params)

Input Feature Map

.

.

.

Slide: R. Fergus





Slide: R. Fergus





Slide: R. Fergus



Slide: R. Fergus



Pooling

• Spatial Pooling
– Non-overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum

Slide: R. Fergus



Pooling 

Feature
Map 1 

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

• Pooling across feature groups
• Additional form of inter-feature competition
• MaxOut Networks [Goodfellow et al. ICML 2013]

Slide: R. Fergus



Role of Pooling 

• Spatial pooling
– Invariance to small transformations
– Larger receptive fields 

(see more of input)

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Visualization technique from
[Le et al. NIPS’10]:

Slide: R. Fergus



Slide: R. Fergus



Normalization

FiltersInput

• Contrast normalization
• See Divisive Normalization in Neuroscience 

Slide: R. Fergus



• Contrast normalization (across feature maps)
– Local mean = 0, local std. = 1, “Local” à 7x7 

Gaussian 
– Equalizes the features maps

Normalization

Feature Maps
Feature Maps

After Contrast Normalization
Slide: R. Fergus



Role of Normalization 

• Introduces local competition between features
– “Explaining away” in graphical models
– Just like top-down models
– But more local mechanism

• Also helps to scale activations at each layer better for learning
– Makes energy surface more isotropic
– So each gradient step makes more progress

• Empirically, seems to help a bit (1-2%) on ImageNet

• Recent models do not use normalization



Slide: R. Fergus



Overview of Convnets

• Feed-forward: 
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by 

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps



Pset:	Convolution	Module

xout

xin

Weight	updates

Assume	the	input	xin and	output	xout are	1D	signals	of	the	same	length	N.	
The	convolution	kernel	is	wi,	and	has	length	M	<	N

Derive	the	equations	that	go	inside	each	box.
Discuss	how	you	handle	the	boundaries.



Pset:	max	pooling	Module	
(grad	course,	optional	for	undergrads)

xout

xin

Weight	updates

Assume	the	input	xin and	output	xout are	1D	signals	of	different	lengths.	

Derive	the	equations	that	go	inside	each	box.
Discuss	how	you	handle	the	boundaries.



Architecture

• Big issue: how to select
– Depth
– Width
– Parameter count

• Manual tuning of features has turn into manual 
tuning of Architectures



How we choose the architecture?

• Many hyper-parameters:
• – # layers, # feature maps
• Cross-validation
• Grid search (need lots of GPUs)
• Smarter strategies:

– Random [Bergstra & Bengio JMLR 2012]
– Gaussian processes [Hinton]



How important is Depth

• “Deep” in Deep Learning

• Ablation study

• Tap off features



Architecture of Krizhevsky et al. 

• 8 layers total

• Trained on Imagenet
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error 

• Our reimplementation:
18.1% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full



Architecture of Krizhevsky et al. 

• Remove top fully 
connected layer 
– Layer 7

• Drop 16 million 
parameters

• Only 1.1% drop in 
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool



Architecture of Krizhevsky et al. 

• Remove both fully connected 
layers 
– Layer 6 & 7

• Drop ~50 million parameters

• 5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool



Architecture of Krizhevsky et al. 

• Now try removing upper feature 
extractor layers:
– Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full



Architecture of Krizhevsky et al. 

• Now try removing upper feature 
extractor layers & fully connected:
– Layers 3, 4, 6 ,7

• Now only 4 layers

• 33.5% drop in performance

àDepth of network is key
Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool



Krizhevsky et al. [NIPS2012]

AlexNet architecture:

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



What filters are learned?



What filters are learned?

A B

C
D



Get to know your units

fx

fy

11x11 convolution kernel
(3 color channels)



Get to know your units

fx

fy



Get to know your units

fx

fy



Get to know your units

fx

fy



Get to know your units

fx

fy



Get to know your units

fx

fy



Get to know your units

fx

fy



Get to know your units

96 Units in conv1



Gabor	wavelets

u0=0 U0=0.1 U0=0.2



Fourier	transform	of	a	Gabor	wavelet

U0=0.1

wy

wx

wy

wx
-u0 +u0





Comparing	Human	and	Machine	Perception
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Deep	Neural	Networks	for	Visual	Recognition

2012:	AlexNet
5	conv.	layers

Error:	15.3%

2014:	VGG
16	conv.	layers

Error:	8.5%

2015:	GoogLeNet
22	conv.	layers

Error:	7.8%

2016:	ResNet
>100	conv.	layers

Error:	4.4%

What	have	been	learned	inside?
How	to	compare	the	internal	representations?



Slide Rob Fergus



Batch normalization
X= features

samples

B

Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167

minibatch



• Training: take into account the normalization in backdrop
Derivative wrt xi depends on the partial derivative of the mean and 

stddev
Must also update g and β

• Test time: use the global mean stddev at test time
Removes the stochasticity of the mean and stddev
Requires a final phase where, from the first to the last hidden layer

1. propagate all training data to that layer
2. compute and store the global mean and stddev of each unit

Batch normalization



Slide Rob Fergus










