

MIT CSAIL

6.869: Advances in Computer Vision

William T. Freeman, Antonio Torralba, 2017

Lecture 8

Learned feedforward visual processing Neural Networks, Deep learning, ConvNets

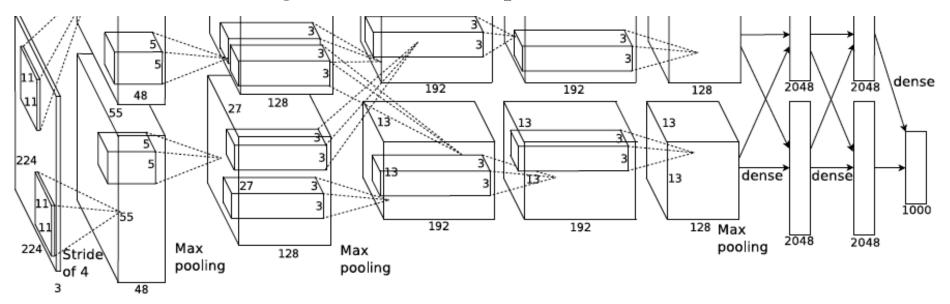
How convnets work

- Operations in each layer
- Architecture

- Training
- Results

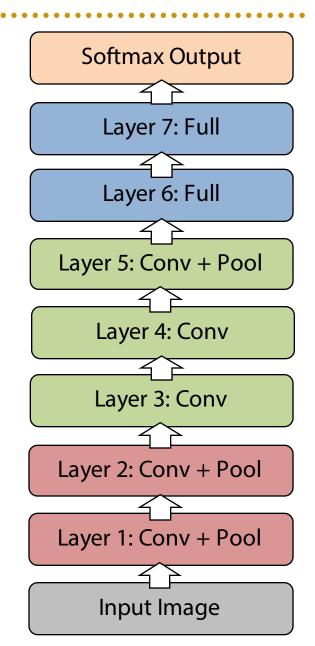
Krizhevsky et al. [NIPS2012]

- Same model as LeCun'98 but:
 - Bigger model (8 layers)
 - More data $(10^6 \text{ vs } 10^3 \text{ images})$
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)



- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week

• 8 layers total



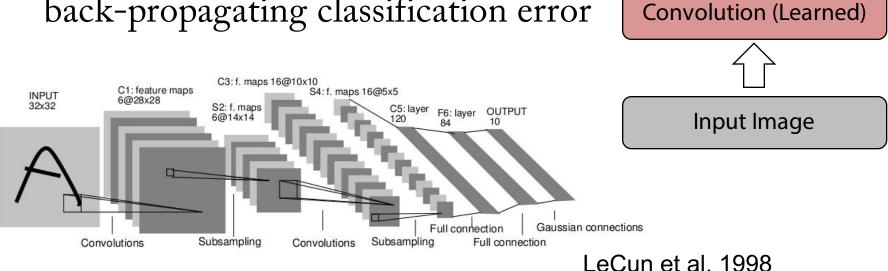
Overview of Convnets

Feature maps

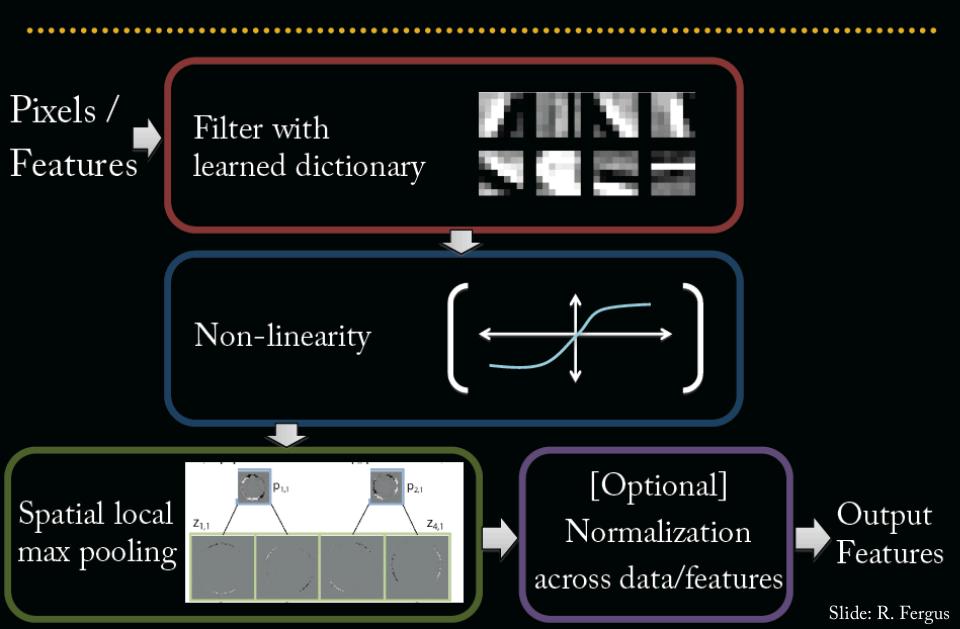
Pooling

Non-linearity

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error



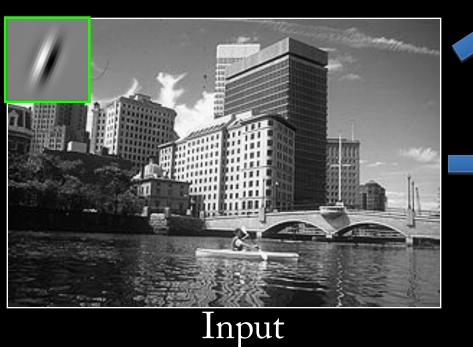
Components of Each Layer



Filtering

• Convolutional

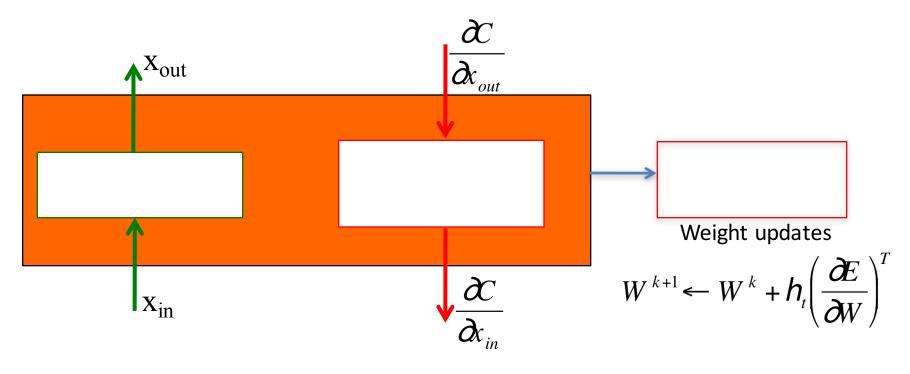
- Dependencies are local
- Translation invariance
- Tied filter weights (few params)



Slide: R. Fergus

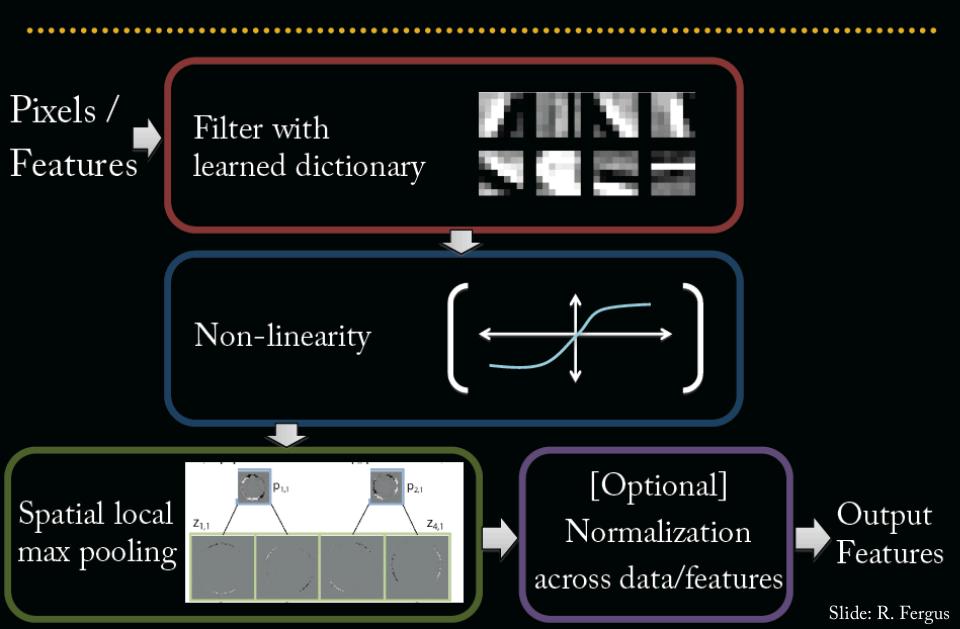
Pset: Convolution Module

Assume the input x_{in} and output x_{out} are 1D signals of the same length N. The convolution kernel is w_i , and has length M < N



Derive the equations that go inside each box. Discuss how you handle the boundaries.

Components of Each Layer



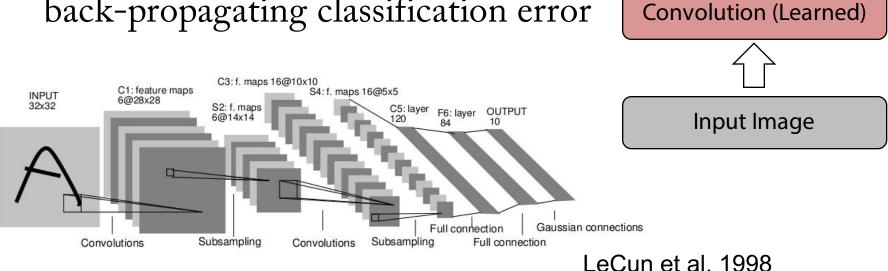
Overview of Convnets

Feature maps

Pooling

Non-linearity

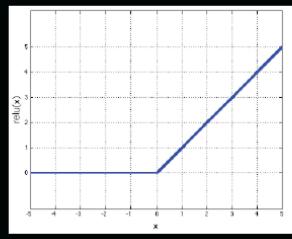
- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error



Non-Linearity

Rectified linear function
Applied per-pixel
output = max(0,input)

Input feature map

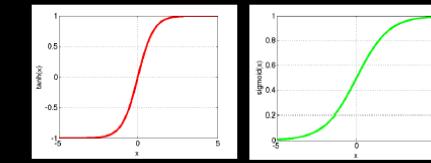


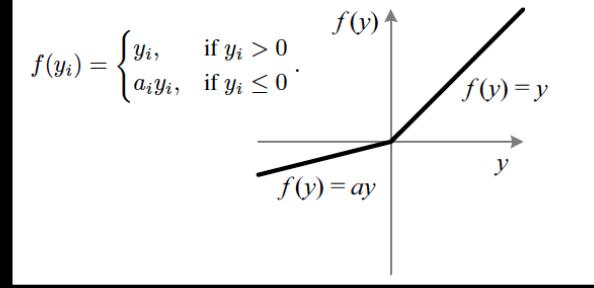
Output feature map

Non-Linearity

- Other choices:
 Tanh
 - Sigmoid: 1/(1+exp(-x))
 PReLU

[Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, Kaiming He et al. arXiv:1502.01852v1.pdf, Feb 2015]





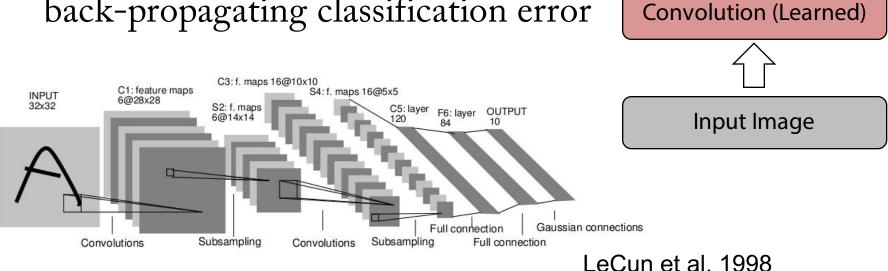
Overview of Convnets

Feature maps

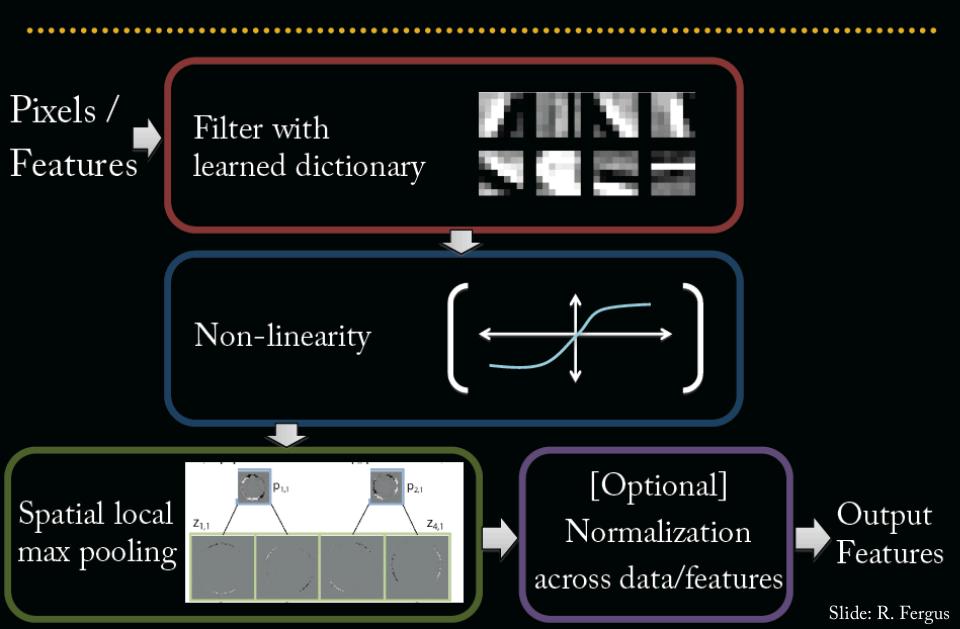
Pooling

Non-linearity

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error

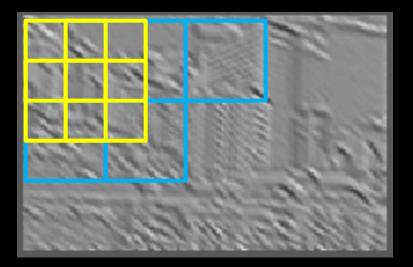


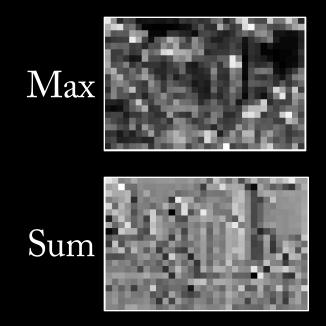
Components of Each Layer



Pooling

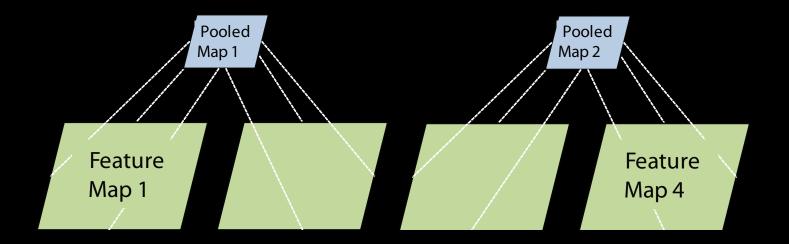
- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis





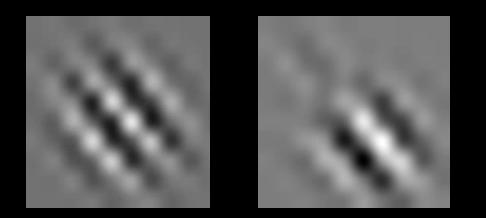
Pooling

- Pooling across feature groups
 - Additional form of inter-feature competition
 - MaxOut Networks [Goodfellow et al. ICML 2013]



Role of Pooling

- Spatial pooling
 - Invariance to small transformations
 - Larger receptive fields (see more of input)
 - Visualization technique from [Le et al. NIPS'10]:



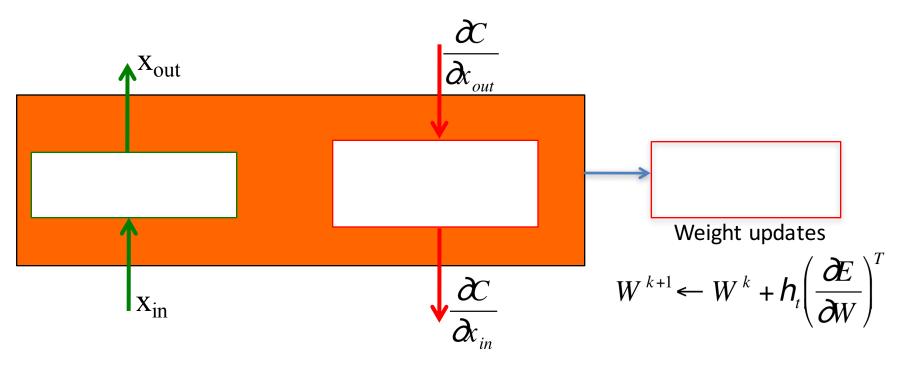
Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Slide: R. Fergus

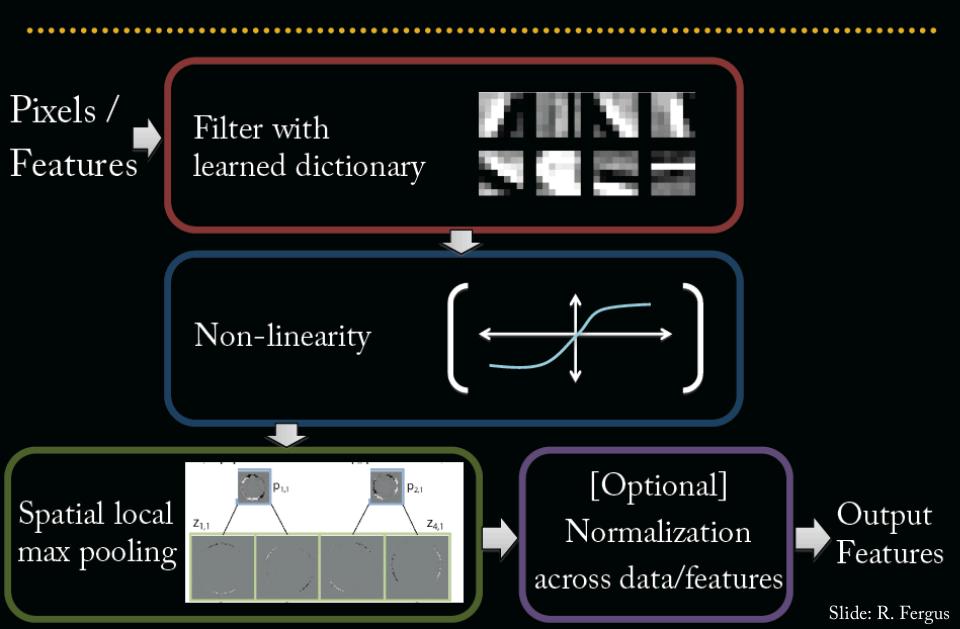
Pset: max pooling Module (grad course, optional for undergrads)

Assume the input x_{in} and output x_{out} are 1D signals of different lengths.



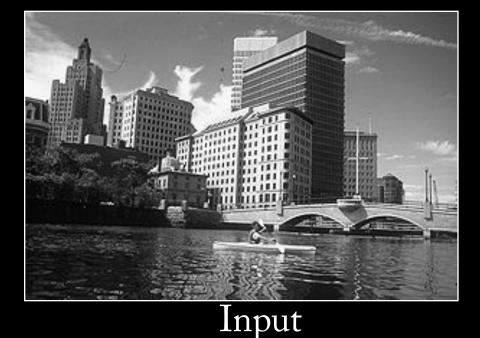
Derive the equations that go inside each box. Discuss how you handle the boundaries.

Components of Each Layer



Normalization

- Contrast normalization
 - See Divisive Normalization in Neuroscience



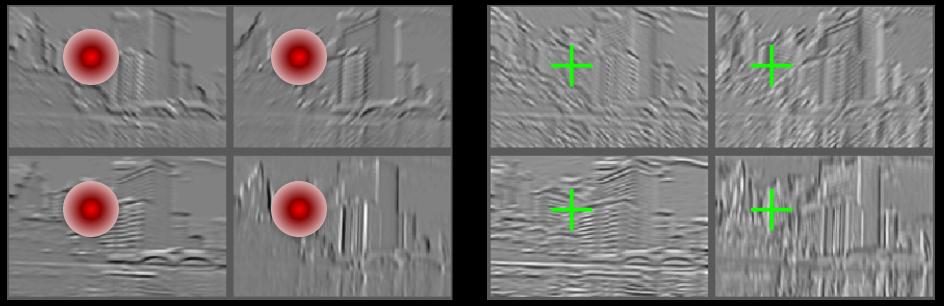
Filters

Slide: R. Fergus

Normalization

Contrast normalization (across feature maps)

 Local mean = 0, local std. = 1, "Local" → 7x7 Gaussian
 Equalizes the features maps



Feature Maps

Feature Maps After Contrast Normalization

Slide: R. Fergus

Role of Normalization

- Introduces local competition between features
 - "Explaining away" in graphical models
 - Just like top-down models
 - But more local mechanism
- Also helps to scale activations at each layer better for learning
 - Makes energy surface more isotropic
 - So each gradient step makes more progress

- Empirically, seems to help a bit (1-2%) on ImageNet
- Recent models do not use normalization

Normalization across Data

• Batch Normalization

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

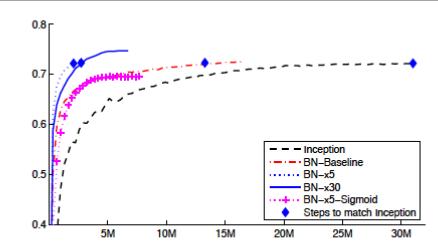
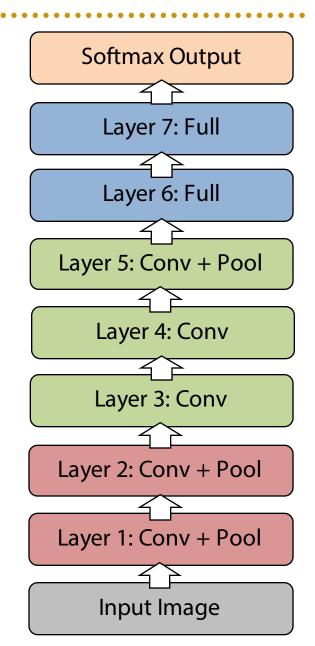
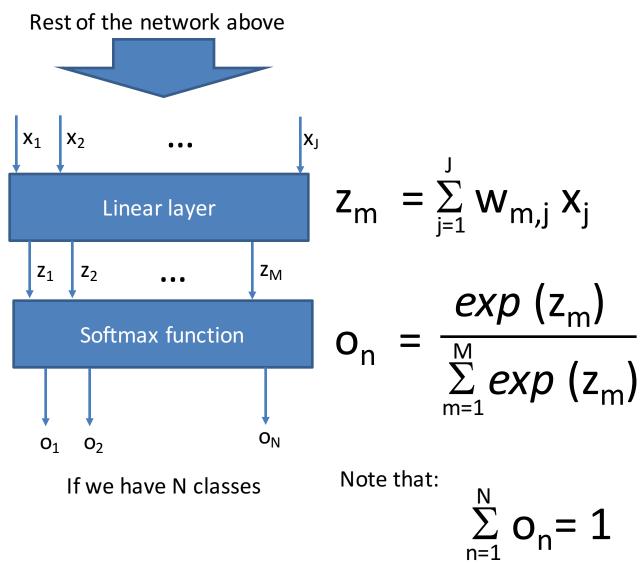


Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

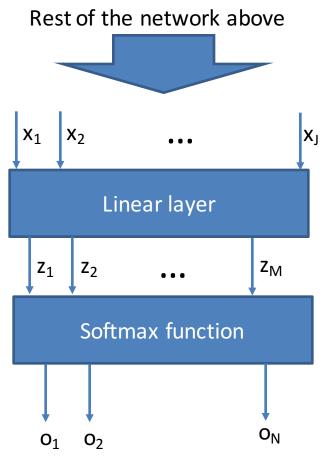
• 8 layers total



Softmax



Cross-entropy loss

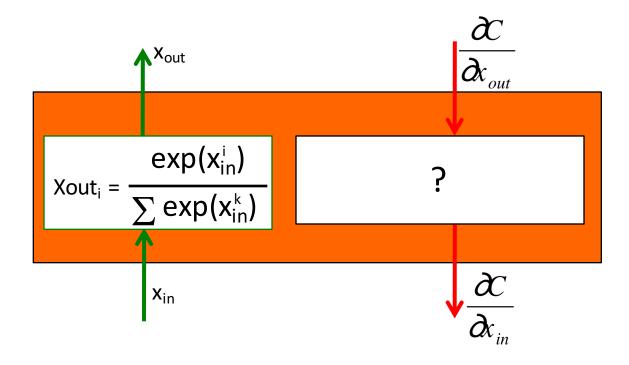


Ground truth label for a training example: $y = [y_1, y_2, y_3, ..., y_N] = [0, 0, 1, 0, 0, ..., 0]$

E = sum over training examples

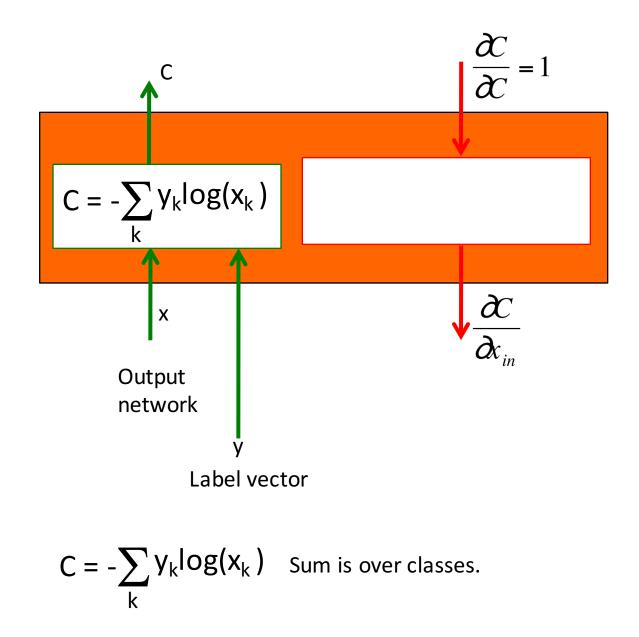
If we have N classes

Softmax layer



x_{out} The length of the output is the number of classes

Cross-entropy cost module



Architecture

- Big issue: how to select
 - Depth
 - Width
 - Parameter count
- Manual tuning of features has turn into manual tuning of Architectures

How we choose the architecture?

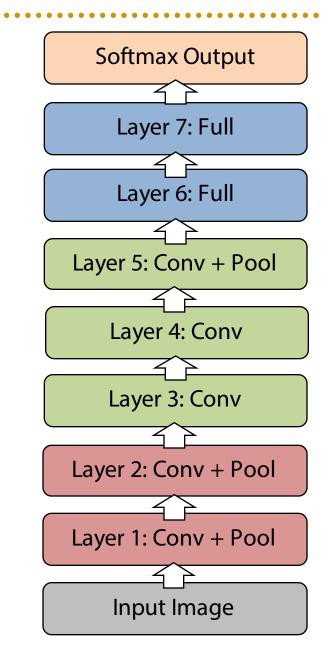
- Many hyper-parameters:
- – # layers, # feature maps
- Cross-validation
- Grid search (need lots of GPUs)
- Smarter strategies:
 - Random [Bergstra & Bengio JMLR 2012]
 - Gaussian processes [Hinton]

How important is Depth

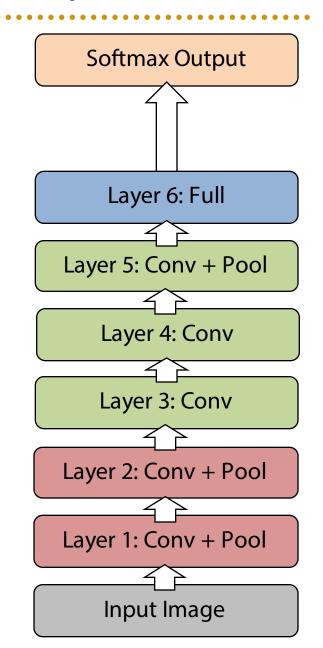
- "Deep" in Deep Learning
- Ablation study

• Tap off features

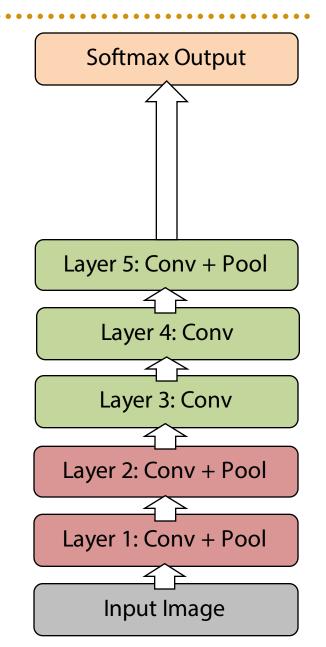
- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR'09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error



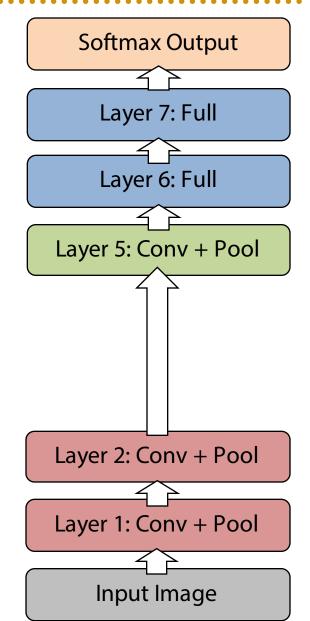
- Remove top fully connected layer
 Layer 7
- Drop 16 million parameters
- Only 1.1% drop in performance!



- Remove both fully connected layers
 - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance

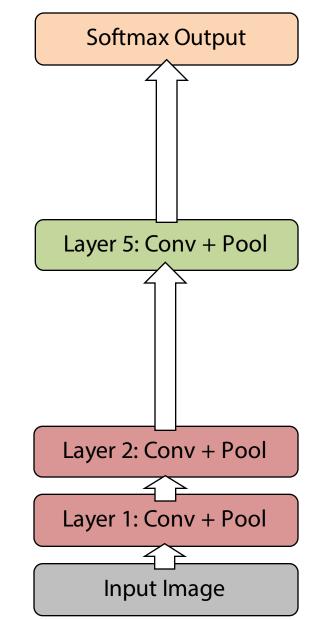


- Now try removing upper feature extractor layers:
 - Layers 3 & 4
- Drop ~1 million parameters
- 3.0% drop in performance

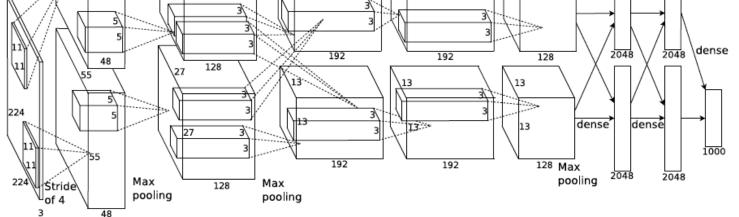


- Now try removing upper feature extractor layers & fully connected: – Layers 3, 4, 6,7
- Now only 4 layers
- 33.5% drop in performance

 \rightarrow Depth of network is key



Krizhevsky et al. [NIPS2012]



FULL CONNECT

FULL 4096/ReLU FULL 4096/ReLU

MAX POOLING

CONV 3x3/ReLU 256fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 384fm

MAX POOLING 2x2sub

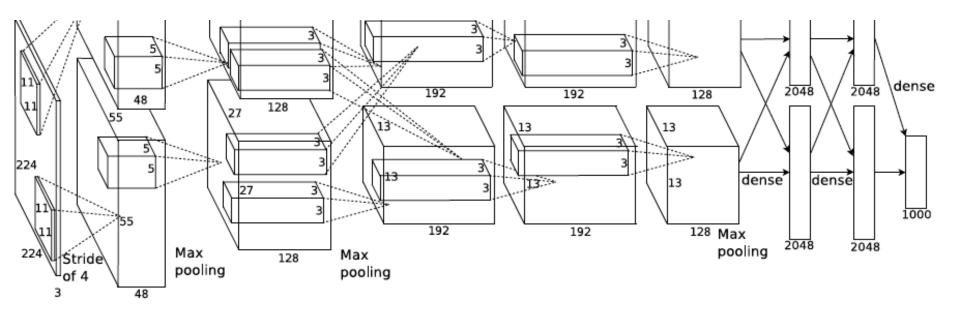
LOCAL CONTRAST NORM

CONV 11x11/ReLU 256fm

MAX POOL 2x2sub LOCAL CONTRAST NORM CONV 11x11/ReLU 96fm AlexNet architecture:

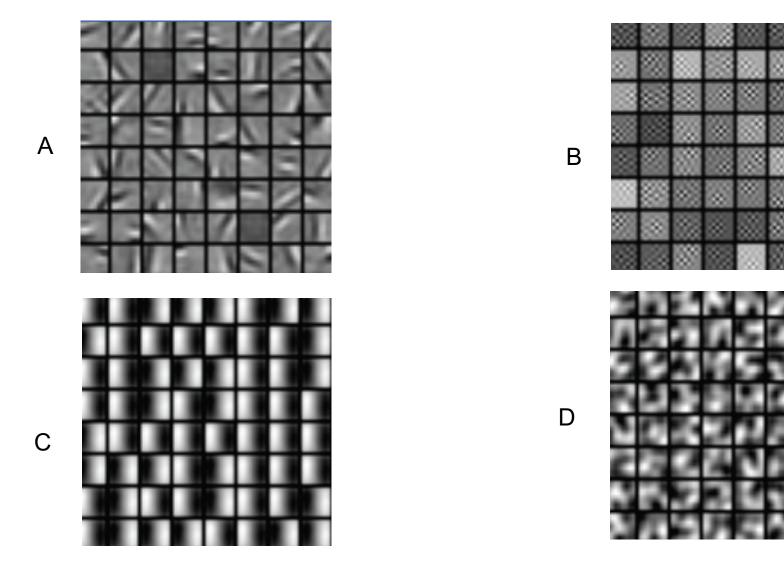
[227x227x3] INPUT

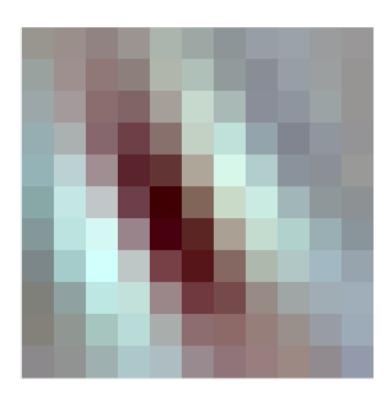
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x26] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

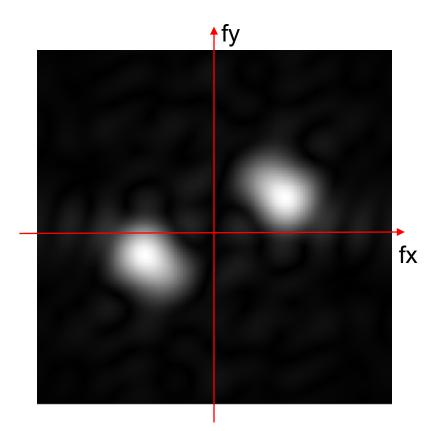


What filters are learned?

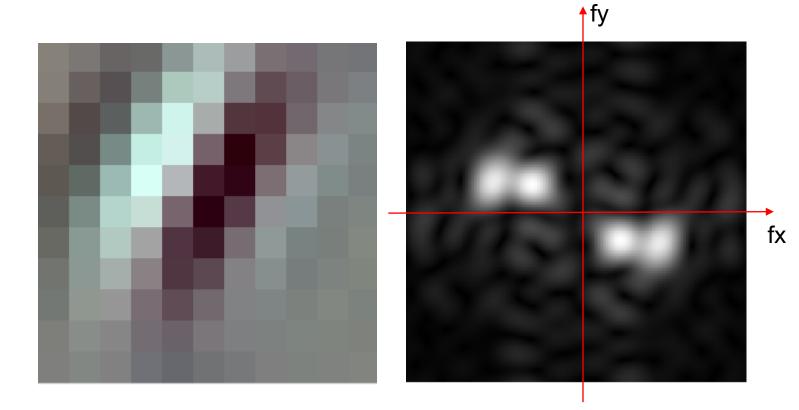
What filters are learned?

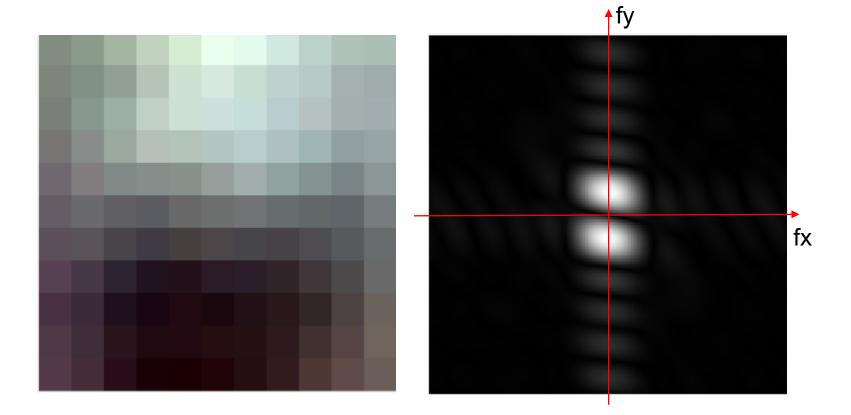


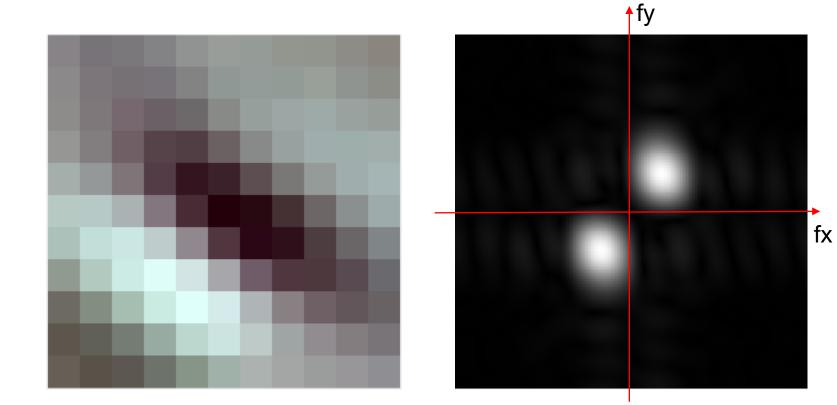


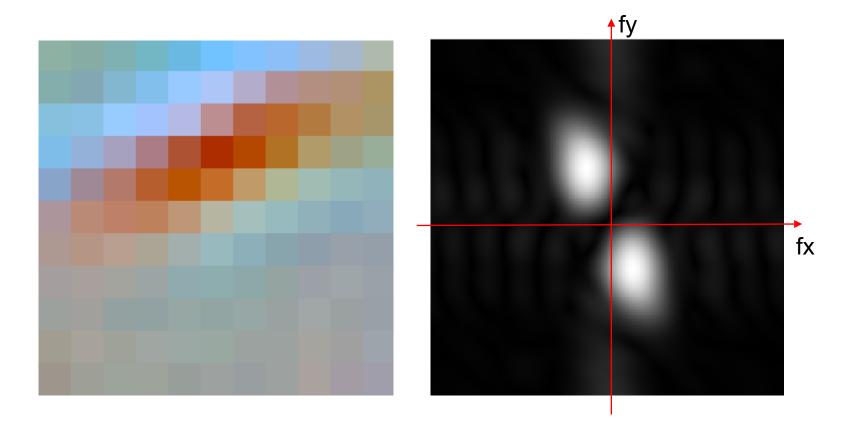


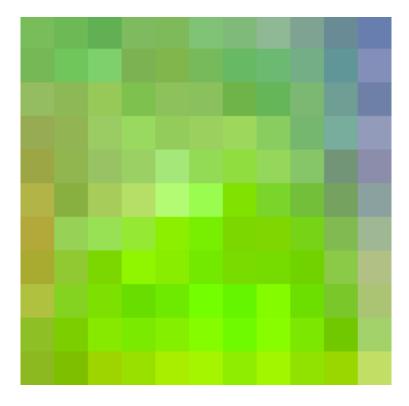
11x11 convolution kernel (3 color channels)

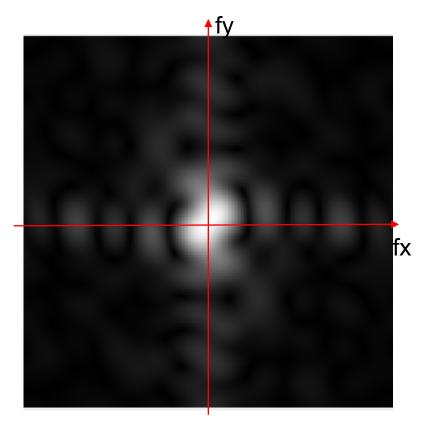


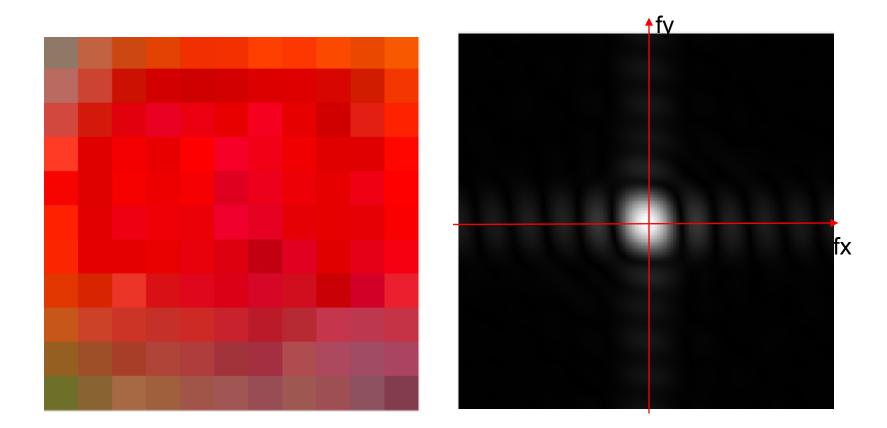


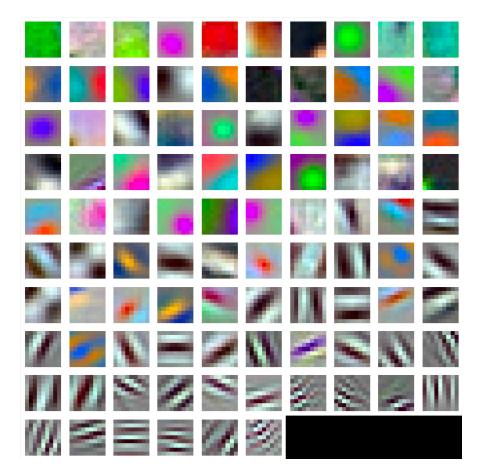












	- Aler		•				•		
					<u>ар:</u>	(iii)			- 130
Ō	100			1	u initia	100			
			un in			0			-
	-194-					N.			un du
					4	100 000		0	•
			•	••	•			•	
	0	••	•••	(A)	•			•	*
	AT AV		•.	•••			· .		• •
• •	· .	1	10 M		1. A				

96 Units in conv1

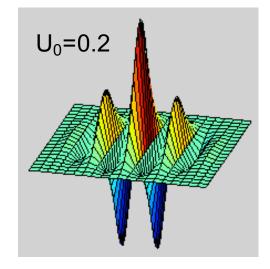
Gabor wavelets

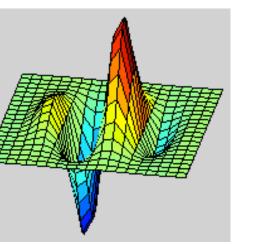
$$\psi_{c}(x,y) = e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}} \cos(2\pi u_{0}x)$$

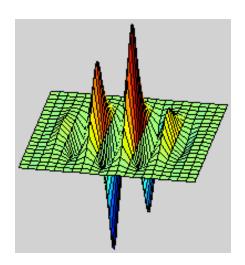
$$U_{0}=0.1$$

$$U_{0}=0.1$$

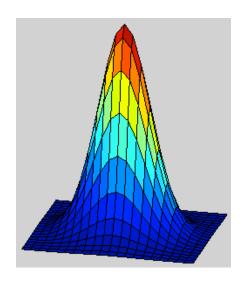
$$\psi_{s}(x,y) = e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}} \sin(2\pi u_{0}x)$$





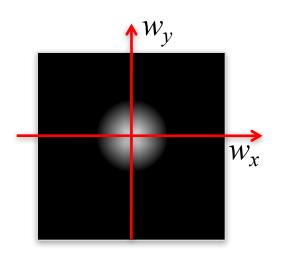


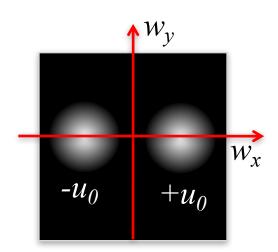
Fourier transform of a Gabor wavelet



$$\psi_{c}(x,y) = e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}} \cos(2\pi u_{0}x)$$







	V V V V V V V V V V V V V V V V V V V
b)	u Ju

W	11	*	÷		*	W	10
111	11	#	-	<i></i>	*		000
///	11	1	=	#	#	<i>(W)</i>	(0)
///	"	=	Ξ	#	#	=	111
$^{\prime\prime}$	U		=			-	Ш

Comparing Human and Machine Perception

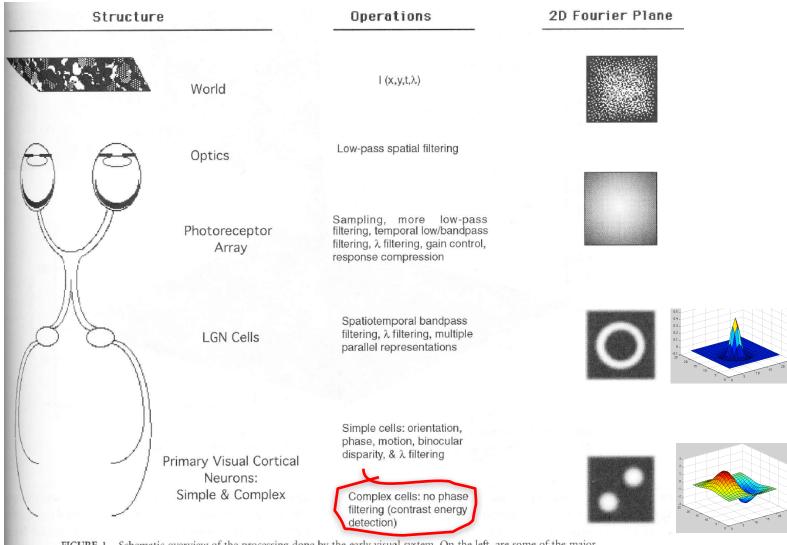


FIGURE 1 Schematic overview of the processing done by the early visual system. On the left, are some of the major structures to be discussed; in the middle, are some of the major operations done at the associated structure; in the right, are the 2-D Fourier representations of the world, retinal image, and sensitivities typical of a ganglion and cortical cell.

J۷

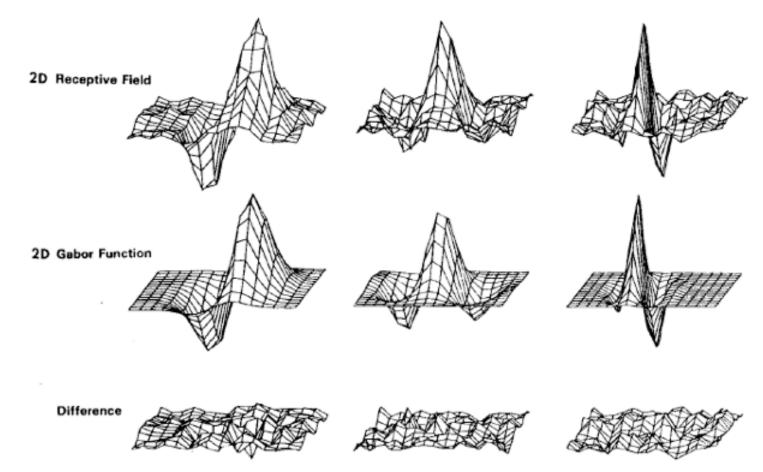
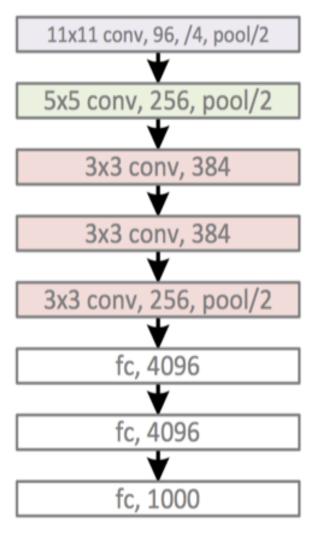
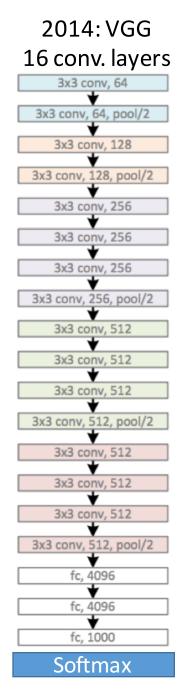


Fig. 5. Top row: illustrations of empirical 2-D receptive field profiles measured by J. P. Jones and L. A. Palmer (personal communication) in simple cells of the cat visual cortex. Middle row: best-fitting 2-D Gabor elementary function for each neuron, described by (10). Bottom row: residual error of the fit, indistinguishable from random error in the Chisquared sense for 97 percent of the cells studied.

2012: AlexNet 5 conv. layers



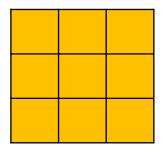
Error: 15.3%

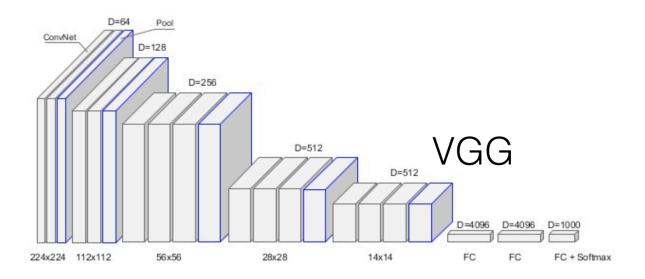


VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

https://arxiv.org/pdf/1409.1556.pdf

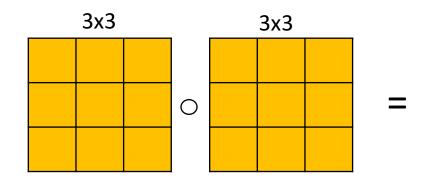
Small convolutional kernels: 3x3 ReLu non-linearities >100 million parameters.

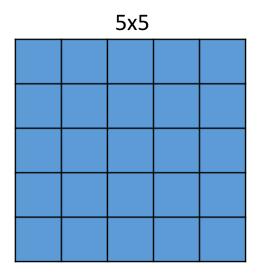




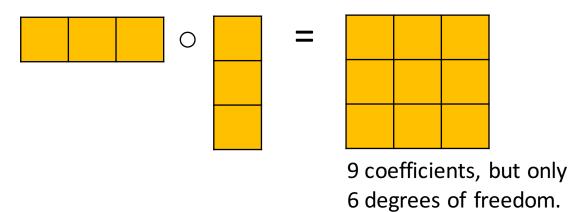
Error: 8.5%

Chaining convolutions





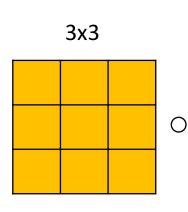
25 coefficients, but only 18 degrees of freedom



Only separable filters... would this be enough?

55

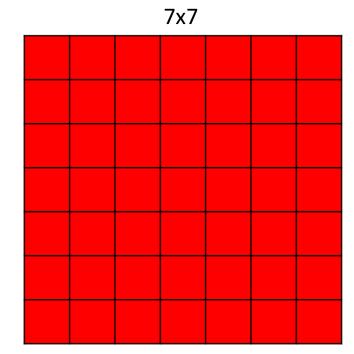
Dilated convolutions



5x5						
а	0	b	0	С		
0	0	0	0	0		
d	0	е	0	f		
0	0	0	0	0		
g	0	h	0	i		

=

25 coefficients9 degrees of freedom



49 coefficients18 degrees of freedom

What is lost?

https://arxiv.org/pdf/1511.07122.pdf

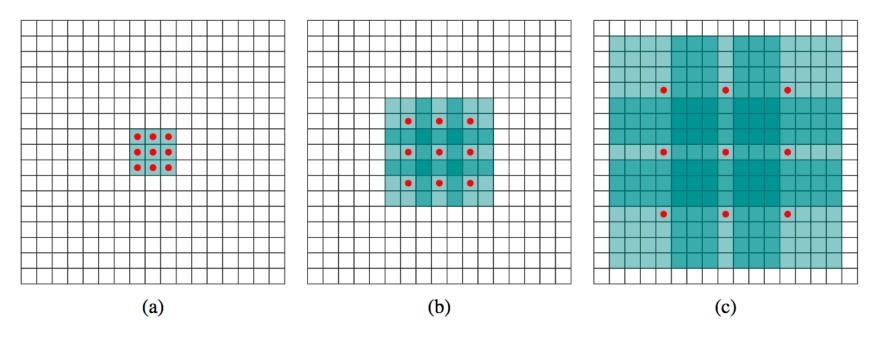
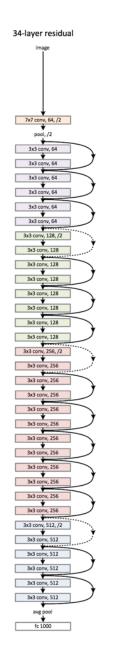


Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

2016: ResNet >100 conv. layers

Error: 4.4%



Deep Residual Learning for Image Recognition

https://arxiv.org/pdf/1512.03385.pdf

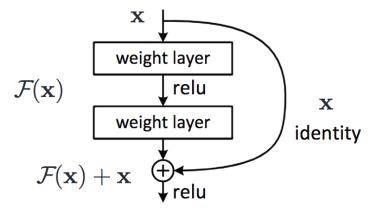
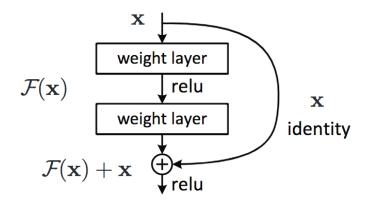
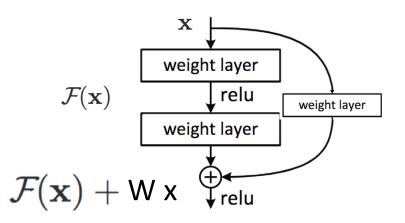


Figure 2. Residual learning: a building block.

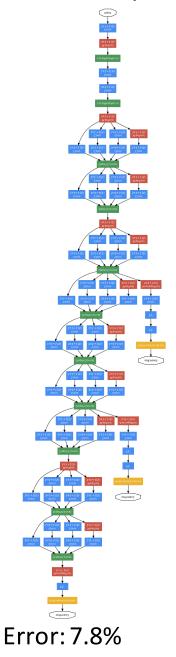
If output has same size as input:



If output has a different size:

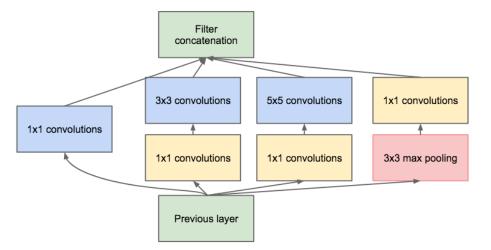


2015: GoogLeNet 22 conv. layers



Inception GoogLeNet

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf

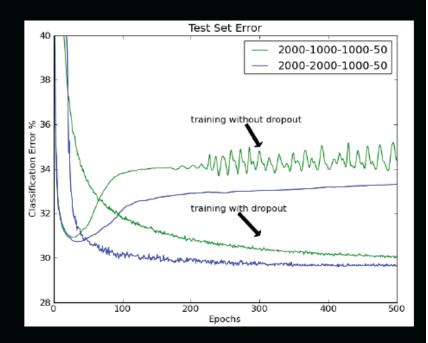


(b) Inception module with dimensionality reduction

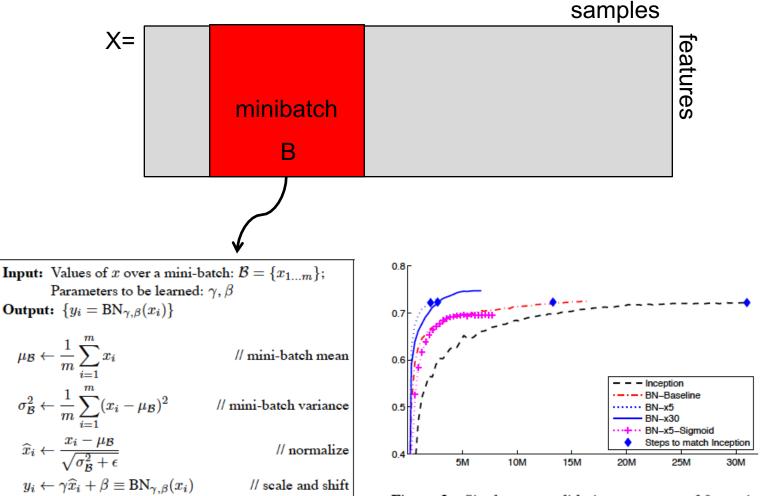
Figure 2: Inception module

DropOut

- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov, *Improving neural networks by preventing co-adaptation of feature detectors*, arXiv:1207.0580 2012
- Fully connected layers only
- Randomly set activations in layer to zero
- Gives ensemble of models
- Similar to bagging [Breiman'94], but differs in that parameters are shared.



Batch normalization



Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey loffe, Christian Szegedy, arXiv:1502.03167

Batch normalization

 Training: take into account the normalization in backdrop Derivative wrt x_i depends on the partial derivative of the mean and stddev

Must also update γ and β

- Test time: use the global mean stddev at test time Removes the stochasticity of the mean and stddev Requires a final phase where, from the first to the last hidden layer
 - 1. propagate all training data to that layer
 - 2. compute and store the global mean and stddev of each unit

Fooling Convnets

 Search for images that are misclassified by the network

- Intriguing properties of neural networks, Christian Szegedy et al. arXiv 1312.6199, 2013
- Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, Anh Nguyen, Jason Yosinski, Jeff Clune, arXiv 1412.1897.
- Problem common to any discriminative method

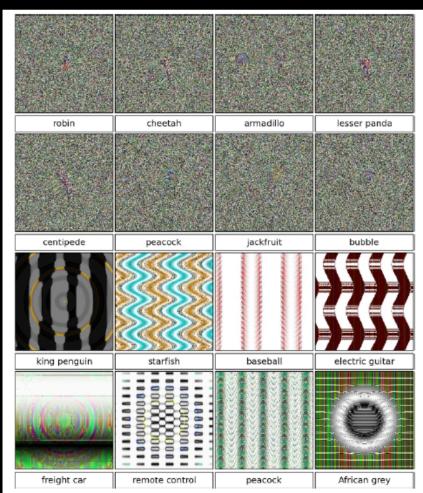
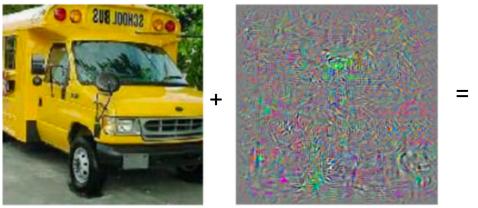


Figure 1. Evolved images that are unrecognizable to humans, but that state-of-the-art DNNs trained on ImageNet believe with $\geq 99.6\%$ certainty to be a familiar object. This result highlights differences between how DNNs and humans recognize objects.

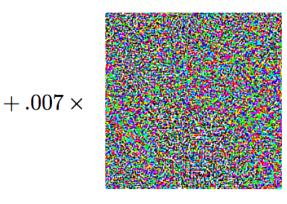
Slide Rob Fergus

Intriguing properties of neural networks

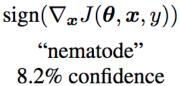
https://arxiv.org/pdf/1312.6199.pdf



Bus



x "panda" 57.7% confidence



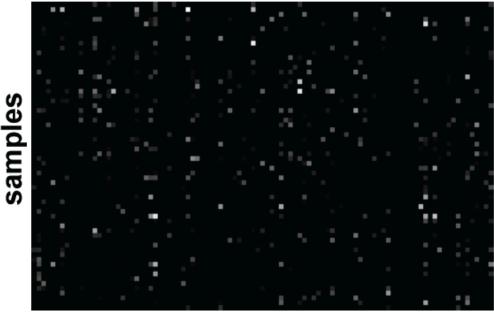
 $m{x} + \epsilon \operatorname{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y))$ "gibbon" 99.3 % confidence

https://en.wikipedia.org/wiki/Gibbon

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES https://arxiv.org/pdf/1412.6572.pdf

Check gradients numerically by finite differences

Visualize features (feature maps need to be uncorrelated) and have high variance.

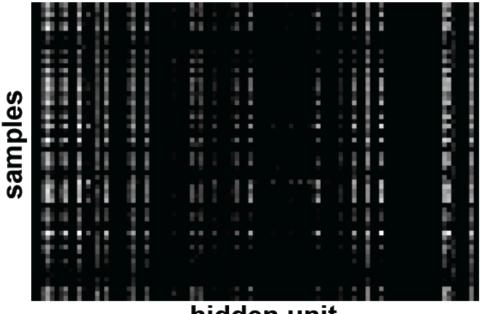


hidden unit

Good training: hidden units are sparse across samples and across features.

Check gradients numerically by finite differences

Visualize features (feature maps need to be uncorrelated) and have high variance.



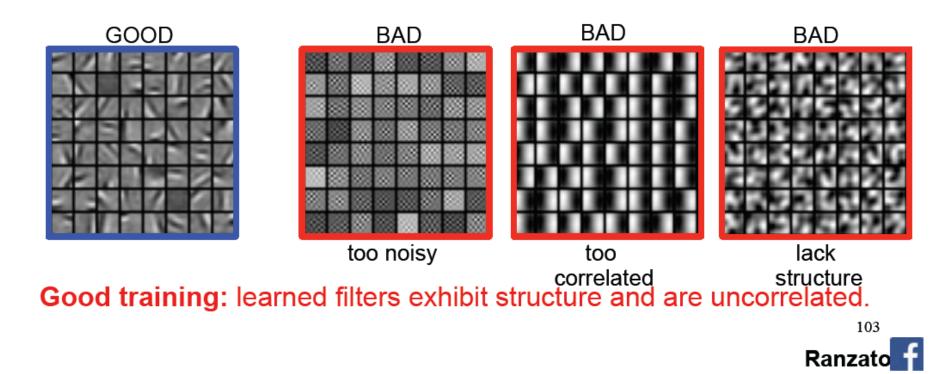
hidden unit

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Check gradients numerically by finite differences

Visualize features (feature maps need to be uncorrelated) and have high variance.

Visualize parameters



Check gradients numerically by finite differences

Visualize features (feature maps need to be uncorrelated) and have high variance.

- Visualize parameters
- Measure error on both training and validation set.

Test on a small subset of the data and check the error \rightarrow 0.