
Lecture 8
Learned	feedforward	visual	processing
Neural	Networks,	Deep	learning,	ConvNets

William T. Freeman, Antonio Torralba, 2017

How convnets work

• Operations in each layer

• Architecture

• Training

• Results

Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model (8 layers)

- More data (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)

Architecture of Krizhevsky et al.

• 8 layers total

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

Overview of Convnets

• Feed-forward:
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps

Slide: R. Fergus

Filtering

• Convolutional
– Dependencies are local
– Translation invariance
– Tied filter weights (few params)

Input Feature Map

.

.

.

Slide: R. Fergus

Pset:	Convolution	Module

xout

xin

Weight	updates

Assume	the	input	xin and	output	 xout are	1D	signals	of	the	same	length	N.	
The	convolution	 kernel	is	wi,	and	has	length	M	<	N

Derive	the	equations	 that	go	inside	each	box.
Discuss	how	you	handle	 the	boundaries.

Slide: R. Fergus

Overview of Convnets

• Feed-forward:
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps

Slide: R. Fergus

Overview of Convnets

• Feed-forward:
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps

Slide: R. Fergus

Pooling

• Spatial Pooling
– Non-overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum

Slide: R. Fergus

Pooling

Feature
Map 1

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

• Pooling across feature groups
• Additional form of inter-feature competition
• MaxOut Networks [Goodfellow et al. ICML 2013]

Slide: R. Fergus

Role of Pooling

• Spatial pooling
– Invariance to small transformations
– Larger receptive fields

(see more of input)

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Visualization technique from
[Le et al. NIPS’10]:

Slide: R. Fergus

Pset:	max	pooling	Module	
(grad	course,	optional	for	undergrads)

xout

xin

Weight	updates

Assume	the	input	xin and	output	 xout are	1D	signals	of	different	lengths.	

Derive	the	equations	 that	go	inside	each	box.
Discuss	how	you	handle	 the	boundaries.

Slide: R. Fergus

Normalization

FiltersInput

• Contrast normalization
• See Divisive Normalization in Neuroscience

Slide: R. Fergus

• Contrast normalization (across feature maps)
– Local mean = 0, local std. = 1, “Local” à 7x7 Gaussian
– Equalizes the features maps

Normalization

Feature Maps
Feature Maps

After Contrast Normalization
Slide: R. Fergus

Role of Normalization

• Introduces local competition between features
– “Explaining away” in graphical models
– Just like top-down models
– But more local mechanism

• Also helps to scale activations at each layer better for learning
– Makes energy surface more isotropic
– So each gradient step makes more progress

• Empirically, seems to help a bit (1-2%) on ImageNet

• Recent models do not use normalization

Slide: R. Fergus

Architecture of Krizhevsky et al.

• 8 layers total

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

Softmax

If	we	have	N	classes

x1 xJ

Linear	layer

Softmax function

x2

z1 zMz2

o1 oNo2

Rest	of	the	network	above

…

…

zm =	Swm,j xjj=1

J

on =
exp (zm)

S exp (zm)m=1

M

S on=	1n=1

N
Note	that:

Cross-entropy loss

Synlog(on)
n

C	=	-

If	we	have	N	classes

x1 xJ

Linear	layer

Softmax function

x2

z1 zMz2

o1 oNo2

Rest	of	the	network	above

…

…

Ground	 truth	 label	for	a	training	example:	
y	=	[y1,	y2,	y3,	… yN]	=	[0,	0,	1,	0,	0,	… 0]	

E	=	sum	over	training	examples

Softmax layer

xout

xin

?Xouti =	
S
exp(xin)i

exp(xin)k

xout The	length	of	the	output	 is	the	number	of	classes

Cross-entropy	cost	module

C

x

y

Syklog(xk)
k

C	=	-

Output	
network

Label	vector

Syklog(xk)
k

C	=	- Sum	is	over	classes.	

Architecture

• Big issue: how to select
– Depth
– Width
– Parameter count

• Manual tuning of features has turn into
manual tuning of Architectures

How we choose the architecture?

• Many hyper-parameters:
• – # layers, # feature maps
• Cross-validation
• Grid search (need lots of GPUs)
• Smarter strategies:

– Random [Bergstra & Bengio JMLR 2012]
– Gaussian processes [Hinton]

How important is Depth

• “Deep” in Deep Learning

• Ablation study

• Tap off features

Architecture of Krizhevsky et al.

• 8 layers total

• Trained on Imagenet
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error

• Our reimplementation:
18.1% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

Architecture of Krizhevsky et al.

• Remove top fully
connected layer
– Layer 7

• Drop 16 million
parameters

• Only 1.1% drop in
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al.

• Remove both fully connected
layers
– Layer 6 & 7

• Drop ~50 million parameters

• 5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al.

• Now try removing upper feature
extractor layers:
– Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full

Architecture of Krizhevsky et al.

• Now try removing upper feature
extractor layers & fully connected:
– Layers 3, 4, 6 ,7

• Now only 4 layers

• 33.5% drop in performance

àDepth of network is key
Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Krizhevsky et al. [NIPS2012]

AlexNet architecture:

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

What filters are learned?

What filters are learned?

A B

C
D

Get to know your units

fx

fy

11x11 convolution kernel
(3 color channels)

Get to know your units

fx

fy

Get to know your units

fx

fy

Get to know your units

fx

fy

Get to know your units

fx

fy

Get to know your units

fx

fy

Get to know your units

fx

fy

Get to know your units

96 Units in conv1

Gabor	wavelets

u0=0 U0=0.1 U0=0.2

Fourier	transform	of	a	Gabor	wavelet

U0=0.1

wy

wx

wy

wx
-u0 +u0

Comparing	Human	and	Machine	Perception

52 52

Jo
hn

 D
au

gm
an

, 1
98

8

53

2012:	AlexNet
5	conv.	layers

Error:	15.3%

2014:	VGG
16	conv.	layers

Small	convolutional	kernels:	3x3
ReLu non-linearities
>100	million	parameters.

https://arxiv.org/pdf/1409.1556.pdf

Softmax

Error:	8.5%

Chaining	convolutions

55

3x3

25	coefficients,	but	only
18	degrees	of	freedom

3x3

=

5x5

=

9	coefficients,	but	only
6	degrees	of	 freedom.
Only	separable	filters… would	 this	be	enough?

56https://arxiv.org/pdf/1511.07122.pdf

a 0 b 0 c

0 0 0 0 0

d 0 e 0 f

0 0 0 0 0

g 0 h 0 i

=

3x3
5x5 7x7

49	coefficients
18	degrees	of	freedom

What	is	lost?

25	coefficients
9 degrees	of	 freedom

Dilated	convolutions

57https://arxiv.org/pdf/1511.07122.pdf

58

2016:	ResNet
>100	conv.	layers

Error:	4.4%

https://arxiv.org/pdf/1512.03385.pdf

59

W	x

If	output	has	a	different	 size:If	output	has	same	size	as	input:

60

2015:	GoogLeNet
22	conv.	layers

Error:	7.8%

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf

Inception	GoogLeNet

Slide Rob Fergus

Batch normalization
X= features

samples

B

Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167

minibatch

• Training: take into account the normalization in backdrop
Derivative wrt xi depends on the partial derivative of the mean and

stddev
Must also update g and β

• Test time: use the global mean stddev at test time
Removes the stochasticity of the mean and stddev
Requires a final phase where, from the first to the last hidden layer

1. propagate all training data to that layer
2. compute and store the global mean and stddev of each unit

Batch normalization

Slide Rob Fergus

https://arxiv.org/pdf/1312.6199.pdf

OstrichBus

+ =

https://arxiv.org/pdf/1412.6572.pdf
https://en.wikipedia.org/wiki/Gibbon

