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The main points of this lecture

* We need to make assumptions about the
world in order to interpret it visually.

* What are some of those assumptions?



The visual system seems to be tuned to a set of images:

Demo inspired from D. Field



Remember these images



Did you see this image?




Remember these images

Test 2



Did you see this image?




The visual system is tuned to process structures
typically found in the world.



But why do we need to have an
internal model of images?



o



Separating images into components




Separating images into components







Separating images into components




to components
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Noise on the image
VS.
noise in the world

The noise in the world, it is called texture by its friends



Noise or texture?




Separating images into components







Separating images into components







Taking a picture...

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

What the camera give us...




Why does picture appear blurry?



Let’s take a photo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Blurry result

Slides R. Fergus



Even though you thought the camera was still,
in fact lots of things happened while the
shutter was open.



Slow-motion replay

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Slides R. Fergus



Slow-motion replay

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Motion of camera




Image formation process

Blurry image | Sharp image

Convolution
operator



Why 1s this hard?



Multiple possible solutions

/ Sharp image Blur kernel
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Even the simplest question might be harder
that one might think



How do you tell black from white?




There are multiple solutions:




Despite the challenge, our visual system will try to measure the actual reflectance
discounting illumination effects up to some degree...




Same gray level







Forming an Image

@ llluminate the surface to get:
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Surface (Height Map) Shading Image

The shading image is the interaction of the shape
of the surface and the illumination .

J
Slide: Marshal Tappen



@ Painting the Surface

»

Scene Image

Add a reflectance pattern to the surface.
Points inside the squares should reflect
less light s

Slide: Marshal Tappen
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SENSOR

RECOVERING INTRINSIC
SCENE CHARACTERISTICS
FROM IMAGES
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Press. New York, in press). Figure 10 Organization of a visual system




Intrinsic images
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{c} REFLECTANCE

(d} ORIENTATION (VECTOR)

(8) ILLUMINATION




Table 1

The Nature of Edges

Pegion Intrinaic Edges
Intensities Edze Type Reglon Types Intrinsic Values
LA L3 D N R I
Constant | Constant | Occluding A B shadowed EDGE EDGE EDGE
sense unknown RA RB | IA XB
Conatant | Yarying 1 Shadow A shadowed EDGE
B illuzinated NB.S RARB | IA IB
2 A occludes B | A ahadowed EDGE EDGE EDGE EDGE
B flluzinated DA D3 | NA RA IA
Varving | Varying Inconsistent
with dozmain
Constant | Tangency | B occludes A A shadowed EDGE EDCE EDGE EDCE
B flluminated DA D3 | NB RARB | IA IB
Yarying | Tangency | B occludes A A B fllu=inated | EDCE EDGE EOGE EDGE
DA D2 | KB RB I8 IA
Tangency | Tangeacy Kot seen fron
geacral position

Table 1 catalogs the possible appearances and
interpretations of an edge between two regions,
A and B.

In this table, "Constant"” means
constant intensity along the edge, "Tangency"”
means that the tangency condition is met, and

H.G.Bammow and J. M. Tenenbaum



Retinex ( “retina and cortex”)

E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971

Journal of the

OPTICAL SOCIETY
of AMERICA

VoLuME 61, NUMBER 1 JaNuary 1971

Lightness and Retinex Theory

Epwin H. Laxp* anp JounN J. McCann
Polaroid Corporation, Cambridge, Massachusetls 02139
(Received 8 September 1970)

The reflectance tends to be constant across space except for abrupt changes at the
transitions between objects or pigments. Thus a reflectance change shows itself as
step edge in an image, while illuminance changes gradually over space. By this
argument one can separate reflectance change from illuminance change by taking
spatial derivatives: High derivatives are due to reflectance and low ones are due to
illuminance.



Follows Retinex assumptions?




..

Follows Retinex assumptions?




Follows Retinex assumptions?




Retinex

Again, we are trying to solve an ill-posed problem:
24 = ?x7?

From M. Tappen, PhD



Retinex
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Reconstruction from derivatives

F=HG

1 -1
1 -1
1

If we have multiple filter outputs:
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|
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If the transformation H is not invertible, we can compute the pseudo-inverse:

G = (HTH)" HTF



Reconstruction




Editing the edge image







Retinex
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Retinex
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Retinex
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Same gray level










1(x,y) R(x,y)






Task: place the two squares touching, next to
each other, with the dark square on the right




Craik-O'Brien-Cornsweet effect

Luminance

Position






Knill and Kersten's illusion




This illusion highlights
the importance of
scene interpretation.

<— The effect is gone

< and it comes back when
the gradient is not explained
by the shape.




Rendering synthetic objects into legacy photographs
Karsch, K.; Hedau, V.; Forsyth, D.; Hoiem, D.
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 30(6), 2011



Rendering synthetic objects into legacy photographs
Karsch, K.; Hedau, V.; Forsyth, D.; Hoiem, D.
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 30(6), 2011



Prototypical vision problem

Observe some product of two numbers, say 1.0
What were those two numbers?
le, 1 =ab. Findaandb.

Compare this with the prototypical graphics
problem: here are two numbers; what is their
product?



N W A

1=ab

hyperbola of feasible solution:




Bayesian approach

Want to calculate: max P(a,b|y=1)

Bayes rule

UseP(a,b | y=1) £ kP(y=1]|a, b) P(a, b)

/ \

Posterior probability Likelihood function Prior probability



Bayesian approach
UseP(a,b | y=1)=kP(y=1]|a, b) P(a, b)

Likelihood function

_(-ab)®>

P(y=1lab)=ke 2’

Prior probability

_(a=b)’*
P(a,b) =lke 2°° ifa>0,b>0

0 otherwise |

74



Thus:

e Statistical modeling of images is important for
image interpretation, image denoising, image
synthesis, etc.

* Now, let’s look at some image models



Statistical modelmg of i |mages
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Visual Worlds



Visual Worlds




Visual Worlds




Visual Worlds




Visual Worlds




Visual Worlds




Visual Worlds




Visual Worlds

AARERNIRELS .;“]H””“.] l-il- !




Visual Worlds




To appear in:

Handbook of Video and Image Processing, 2nd edition

ed.

Alan Bovik, (©Academic Press, 2005.

4.7 Statistical Modeling of Photographic Images

Eero P. Simoncelli

New York University
January 18, 2005




Statistical modeling of images




Statistical modeling of images

p() = | | p(X(z,y))

Assumptions:
* Independence: All pixels are independent.
« Stationarity: The distribution of pixel intensities does not depend on image location.




PO =109 Eitting the model

0 100 200
Pixel intensity



Sampling new images

p(D) = ][ p(1(z,y))

x1O4

p(I(z,y))

o - N w N (63}

0 100 200




Sampling new images

p(@) =] | p(X(z,y))

p(I(z,y))

100 200

Sample



The importance of distribution of
Intensities

p(I(z,y)) L\ p(I(z,)) N

0 20

Intensity, I 0 Intensity,I 4



Statistical modeling of images




Statistical modeling of images

C(Ax, Ay) = p[I(x + Az, y + Ay), I(z,y)]




y+ Ay), I(z,y)]

Y

C(Az,Ay) = p[I(x + Az
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Dead leaves models

Introduced in the 60’s by Matheron (67) and popularized by Ruderman (97)

From Lee, Mumford and Huang 2001



A remarkable property of natural images

Low spatial frequencies

awf F l Power spectra

Spectra
fall off as

1

0k C I(v)‘ T ’v‘a
B N
High
. spatial
\ frequencies

Log,,amplitude
g
>

Vertical

Vy

, Horizontal

" t;fo 4 1.0 2.0 Vx \High SF

Log,,spatial frequency (cycles/picture)

Fig. 8. Amplitude spectra for the six images A-F, averaged across

all orientations. The spectra have been shifted up for clarity. On LOW S F
these log-log coordinates the spectra fall off by a factor of roughly
1/f (a slope of -1). Therefore the power spectra fall off as 1/f2

D. J. Field, "Relations between the statistics of natural images and
the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987)



A remarkable property of natural images

Spectra

Field (87)

Natural scenes
(6000 images)

Man-made scenes
(6000 images)

Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neurd Systems 14 (2003) 391-412.



Contrast sensitivity

Contrast Sensitivity Function
Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles / degree of visual angle

0.1 1 10
Low Spatial frequency (cycles/degree)

High

100



Laplacian

a b

An illusion by Vasarely, left, and a bandpass filtered version, right.

http://web.mit.edu/persci/people/adelson/publications/gazzan.dir/vasarely.html



Gaussian model

We want a distribution that captures the correlation structure typical of natural images.

Let C be the covariance matrix of the imag o c1 co NP
Cn—1 €0 c1 €2
1 I'c—1 Cor_1 C C-
])(I) — €XP (—51 C I) f= n—1 €0 1
\_/ : h T C2
c1
L G T Crn—1 co

Stationarity assumption: Symmetrical circulant matrix

Diagonalization of circulant matrices: C = EDET

The eigenvectors are the Fourier basis
The eigenvalues are the squared magnitude of the Fourier coefficients

>- N i (o) ﬁ




Sampling new images

_ Lr e
p(I) = exp ( i'c I)

Sample



Sampling new images

Note: The average of many hair images will not give a distribution for hair images.
| believe we will get clouds again...
This representation does not encode other correlations like:

“all hairs should follow a similar orientation”



Randomizing the phase (fit the Gaussian image model
to each of the images in the top row, then draw
another random sample, you get the bottom row)




Denoising

Decomposition of a noisy image

i ,: ’ .";-"- ;j




Denoising

Decomposition of a noisy image

n(

White Gaussian noise: N(0, 0,2)

Natural image

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

m?xp(I\In)

— INax
I

p(I,|T)

likelihood

X




Denoising

Decomposition of a noisy image

White Gaussian noise: N(0, 0,2)

Natural image

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

mIapr(I\In) = mIaX

p(I,|T)

likelihood

— INax

exp(— L, 1| /o)

I

X




Denoising

mIaXp(I\In) — mIaX

p<In‘I)

likelihood

p(I)

prior

— INaX

exp(— |1, — 1| /o7,)

I

The solution is:

1
exp (—§ITC_II

)

I =C (C + 0;31[) -1 I,, (note this is a linear operation)

This can also be written in the Fourier domain, with C = EDET:

T A/

i) =

L,
ope+ oz )




Decomposition of a noisy image
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The truth:




And we got all this from just modeling the
correlation between pairs of pixels!



Statistical modeling of images
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Observation: Sparse filter response
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