
Lecture 9
Statistical	Image	Models



The	main	points	of	this	lecture
• We	need	to	make	assumptions	about	the	
world	in	order	to	interpret	it	visually.

• What	are	some	of	those	assumptions?



The visual system seems to be tuned to a set of images:

Demo inspired from D. Field



Remember these images



Did you see this image?



Test 2

Remember these images



Did you see this image?



The	visual	system	is	tuned	to	process	structures	
typically	found	in	the	world.	



But	why	do	we	need	to	have	an	
internal	model	of	images?
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Separating	images	into	components



Separating	images	into	components



X



Separating	images	into	components



Separating	images	into	components

+



Noise	on	the	image	
vs.

noise	in	the	world

The noise in the world, it is called texture by its friends 



Noise	or	texture?



Separating	images	into	components



-



Separating	images	into	components



+



Taking a picture…

What the camera give us…



Why does picture appear blurry?



Let’s take a photo

Blurry result

Slides R. Fergus



Even though you thought the camera was still, 
in fact lots of things happened while the 
shutter was open.



Slow-motion replay

Slides R. Fergus



Slow-motion replay

Motion of camera



Image formation process

= ⊗

Blurry image Sharp image

Blur 
kernel

Convolution
operator



Why is this hard?



Multiple possible solutions

= ⊗

Blurry image

Sharp image Blur kernel
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Even the simplest question might be harder 
that one might think



How	do	you	tell	black	from	white?
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There are multiple solutions:



Despite the challenge, our visual system will try to measure the actual reflectance
discounting illumination effects up to some degree… 



Same gray level
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Forming	an	Image

Surface (Height Map)

Illuminate the surface to get:

The shading image is the interaction of the shape
of the surface and the illumination

Shading Image

Slide: Marshal Tappen
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Painting	the	Surface

Scene
Add a reflectance pattern to the surface. 
Points inside the squares should reflect 
less light

Image

Slide: Marshal Tappen
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Goal

Image Shading Image Reflectance 
Image

Slide: Marshal Tappen





Intrinsic	images





Retinex (	“retina	and	cortex”)
E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971

The reflectance tends to be constant across space except for abrupt changes at the 
transitions between objects or pigments. Thus a reflectance change shows itself as 
step edge in an image, while illuminance changes gradually over space. By this 
argument one can separate reflectance change from illuminance change by taking 
spatial derivatives: High derivatives are due to reflectance and low ones are due to 
illuminance.



Follows	Retinex assumptions?



Follows	Retinex assumptions?



Follows	Retinex assumptions?



Retinex

= x

24 =  ? x ?

From M. Tappen, PhD

Again, we are trying to solve an ill-posed problem:



Retinex

log [1 -1] = 

Assumption:
• Large derivatives correspond to changes in reflectance
• Small derivatives correspond to changes in illumination
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Back	to	the	image

?



Reconstruction	from	derivatives
F = H G

c = c
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If the transformation H is not invertible, we can compute the pseudo-inverse:

G = (HTH)-1 HT F^

[-1 1]

[-1 1]T

c

c

=c

If we have multiple filter outputs:



Reconstruction
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[1 -1]T



Editing	the	edge	image

[1 -1]

[1 -1]T



Thresholding	edges



Retinex

log [1 -1] = 

Assumption:
• Large derivatives correspond to changes in reflectance
• Small derivatives correspond to changes in illumination

log 

[1 -1]

[1 -1]T

?



Retinex

log [1 -1] = 

Assumption:
• Large derivatives correspond to changes in reflectance
• Small derivatives correspond to changes in illumination

log 

[1 -1]

[1 -1]T

?



Retinex

log 

[1 -1]

[1 -1]T

From M. Tappen, PhD

From M. Tappen, PhD



Same gray level
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Task:		place	the	two	squares touching,	next	to	
each	other,	with	the	dark	square	on	the	right



Craik-O'Brien-Cornsweet effect





Knill and Kersten's illusion



Knill and Kersten's illusion

The effect is gone

This illusion highlights
the importance of
scene interpretation.

and it comes back when
the gradient is not explained
by the shape.



Rendering synthetic objects into legacy photographs
Karsch, K.; Hedau, V.; Forsyth, D.; Hoiem, D.
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 30(6), 2011



Rendering synthetic objects into legacy photographs
Karsch, K.; Hedau, V.; Forsyth, D.; Hoiem, D.
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 30(6), 2011
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Prototypical	vision	problem

• Observe	some	product	of	two	numbers,	say	1.0
• What	were	those	two	numbers?
• Ie,	1	=	ab.		Find	a	and	b.

• Compare	this	with	the	prototypical	graphics	
problem:	here	are	two	numbers;		what	is	their	
product?
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1     2     3     4

4

3

2

1

hyperbola of feasible solutions

a

b
1 = a b
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Bayesian	approach

Use	P(a,	b	|	y	=	1)	=	k	P(y=1|a,	b)	P(a,	b)

Likelihood function Prior probabilityPosterior probability

Want	to	calculate:	 max	P(a,	b	|	y	=	1)

Bayes rule

a,b
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Bayesian	approach
Use	P(a,	b	|	y	=	1)	=	k	P(y=1|a,	b)	P(a,	b)

Likelihood function

a
b

a
b

P(a, b | y = 1) 

a
b

a=b=1

Prior probability

If a>0, b>0

0  otherwise



Thus:

• Statistical	modeling	of	images	is	important	for	
image	interpretation,	image	denoising,	image	
synthesis,	etc.

• Now,	let’s	look	at	some	image	models



Statistical	modeling	of	images



Visual	Worlds



Visual	Worlds



Visual	Worlds



Visual	Worlds



Visual	Worlds



Visual	Worlds



Visual	Worlds



Visual	Worlds



Visual	Worlds





Statistical	modeling	of	images

The pixel



Statistical	modeling	of	images

Assumptions:
• Independence: All pixels are independent.
• Stationarity: The distribution of pixel intensities does not depend on image location.



Fitting	the	model

Pixel intensity

C
ou

nt
s



Sampling	new	images

Sample



Sampling	new	images

Sample



The	importance	of	distribution	of	
intensities



Statistical	modeling	of	images

The pixel



Statistical	modeling	of	images

The pixel

Another pixel



Δ = 1 Δ = 2

Δ = 10 Δ = 40C

Δ

horizontal

vertical



Dead	leaves	models
Introduced in the 60’s by Matheron (67) and popularized by Ruderman (97)

From Lee, Mumford and Huang 2001



A	remarkable	property	of	natural	images

D. J. Field, "Relations between the statistics of natural images and 
the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987) 

Spectra

1/va

Low spatial frequencies

High SF
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Vertical

Low SF

High 
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frequencies

Power spectra
fall off as
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Spectra
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Field (87)
vyvx

vyvx

Natural scenes
(6000 images)

Man-made scenes
(6000 images)
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Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412.

A remarkable property of natural images



Contrast	Sensitivity	Function
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Spatial	frequency	(cycles/degree)
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visible

Blackmore	&	Campbell	(1969)

Maximum	sensitivity
~	6 cycles	/	degree	of	visual	angle

Low High



Laplacian

An	illusion	by	Vasarely,	left,	and	a	bandpass	filtered	version,	right.

http://web.mit.edu/persci/people/adelson/publications/gazzan.dir/vasarely.html



Gaussian	model
We want a distribution that captures the correlation structure typical of natural images.

Let C be the covariance matrix of the image:

Diagonalization of circulant matrices: C = EDET

Stationarity assumption: Symmetrical circulant matrix

The eigenvectors are the Fourier basis
The eigenvalues are the squared magnitude of the Fourier coefficients

D=
…

2

2



Sampling	new	images

Sample



Sampling	new	images

Note: The average of many hair images will not give a distribution for hair images.
I believe we will get clouds again…
This representation does not encode other correlations like: 

“all hairs should follow a similar orientation”



Randomizing	the	phase		(fit	the	Gaussian	image	model	
to	each	of	the	images	in	the	top	row,	then	draw	
another	random	sample,	you	get	the	bottom	row)



Denoising

= +

Decomposition of a noisy image 



Denoising

= +

Decomposition of a noisy image 

Natural imageWhite Gaussian noise:N(0, σn2)

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP): 

x

likelihood prior



Denoising

= +

Decomposition of a noisy image 

Natural imageWhite Gaussian noise:N(0, σn2)

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP): 

x

likelihood prior

x



Denoising

x

likelihood prior

x

This can also be written in the Fourier domain, with C = EDET:

The solution is:

(note this is a linear operation)



= +

Decomposition of a noisy image 





x =







=x
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The truth:

The estimated decomposition:



And	we	got	all	this	from	just	modeling	the	
correlation	between	pairs	of	pixels!



Statistical	modeling	of	images

A small neighborhood



Edges
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Observation:	Sparse	filter	response


