6.869: Advances in Computer Vision

Lecture 2 Image formation

bring:
gumby, big flash light, apertures, straw camera, one paper bag camera
lens, holder, laser pointer, corner camera pieces of paper, tape measure (for lens focal length).

Imaging

- Forming images with pinholes and edges
- Forming images with lenses
- More general imaging devices

Light striking a surface

- Bidirectional reflectance distribution function

- For a Lambertian surface:

$$
I_{\text {out }}=F_{L}\left(I_{\mathrm{in}}, \hat{n}, \hat{p}\right)=A I_{\mathrm{in}}(\lambda) \cos (\hat{n} \cdot \hat{p})
$$

The structure of ambient light

The structure of ambient light

左
All light rays

Why don't we generate an image when an object is in front of a white piece of paper?

Why is there no picture appearing on the paper?

Let's check, do we get an image?

Let's check, do we get an image? No

To make an image, we need to have only a subset of all the rays strike the sensor or surface

The camera obscura
The pinhole camera

image is inverted

Let's try putting different occluders in between

light on wall past pinhole

Light through hole A

grocery bag pinhole camera

grocery bag pinhole camera

grocery bag pinhole camera

view from outside the bag
http://www.youtube.com/watch?v=FZyCFxsyx8o
view from inside the bag
http://youtu.be/-rhZaAM3F44

Perspective projection

Perspective projection

Cartesian coordinates:
We have, by similar triangles, that

$$
(x, y, z)->\left(d x^{\prime} / z, d y^{\prime} / z, d\right)
$$

Ignore the third coordinate, and get

$$
(x, y, z) \rightarrow\left(d \frac{x^{\prime}}{z}, d \frac{y^{\prime}}{z}\right)
$$

Geometric properties of projection

- Points go to points
- Lines go to lines
- Planes go to whole image or half-planes.
- Polygons go to polygons
- Degenerate cases
- line through focal point to point
- plane through focal point to line

[^0]
Vanishing point

Line in 3-space
Perspective projection of that line

$$
x^{\prime}(t)=\frac{f x}{z}=\frac{f\left(x_{0}+a t\right)}{z_{0}+c t}
$$

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

In the limit as $\quad t \rightarrow \pm \infty$ we have (for $c \neq 0$):

$$
x^{\prime}(t) \longrightarrow \frac{f a}{c}
$$

This tells us that any set of parallel lines (same a, b, c parameters) project to the same point (called the vanishing point).

Vanishing points

- Each set of parallel lines (=direction) meets at a different point
- The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.

- The line is called the horizon for that plane

http://www.ider.herts.ac.uk/school/courseware/ graphics/two_point_perspective.html

What if you photograph a brick wall head-on?

Brick wall line in 3-space

$$
\begin{aligned}
& x(t)=x_{0}+a t \\
& y(t)=y_{0} \\
& z(t)=z_{0}
\end{aligned}
$$

Perspective projection of that line

$$
\begin{aligned}
& x^{\prime}(t)=\frac{f \cdot\left(x_{0}+a t\right)}{z_{0}} \\
& y^{\prime}(t)=\frac{f \cdot y_{0}}{z_{0}}
\end{aligned}
$$

All bricks have same z_{0}. Those in same row have same y_{0}
Thus, a brick wall, photographed head-on, gets rendered as set of parallel lines in the image plane.

Straw camera

(b)
(a)

Straw camera

Other projection models: Orthographic projection

Other projection models: Weak perspective

- Issue
- perspective effects, but not over the scale of individual objects
- collect points into a group at about the same depth, then divide each point by the depth of its group
- Adv: easy
- Disadv: only approximate

$$
(x, y, z) \rightarrow\left(\frac{f x}{z_{0}}, \frac{f y}{z_{0}}\right)
$$

Three camera projections

3-d point 2-d image position
$\begin{array}{ll}\text { (1) Perspective: } & (x, y, z) \rightarrow\left(\frac{f x}{z}, \frac{f y}{z}\right) \\ \text { eak perspective: } & (x, y, z) \rightarrow\left(\frac{f x}{z_{0}}, \frac{f y}{z_{0}}\right)\end{array}$
(3) Orthographic: $\quad(x, y, z) \rightarrow(x, y)$

which is perspective, which orthographic?

Perspective projection

Parallel (orthographic) projection

Problem Set 2

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html

Example images from pinhole camera

Measuring distance

- Object size decreases with distance to the pinhole
- There, given a single projection, if we know the size of the object we can know how far it is.
- But for objects of unknown size, the 3D information seems to be lost.

Playing with pinholes

Two pinholes

Anaglyph pinhole camera

Anaglyph pinhole camera

Anaglyph pinhole camera

Problem set

- Build the device
- Take some pictures and put them in the report
- Take anaglyph images
- Work out the geometry
- Recover depth for some points in the image

A problem: pinhole camera images are dark, or require long exposures

Large aperture gives a brighter image, but at the price of sharpness

A lens allows a large aperture and a sharp image

Let's try putting different occluders in between the scene and the sensor plane

Influence of aperture size: with a small aperture, the image is sharp, but dim. A large aperture gives a bright, but blurry image.

=- A.

Light through hole B

Light through hole A

A lens can focus light from one point in the world to one point on the sensor plane.

Images through large aperture, with and without lens present

Images through large aperture, with and without lens present

(a)

(c)

(d)

Light at a material interface

Light at a material interface

Refraction: Snell's law

For small angles, $n_{1} \alpha_{1} \approx n_{2} \alpha_{2}$

Spherical lens

For a spherical lens surface, we can define the relevant angles, apply Snell's law, and find an expression telling how the lens focusses light

Forsyth and Ponce

That is easiest to do under the

 assumptions of "first order optics": small bending angles, and a thin lens$$
\sin (\theta) \approx \theta
$$

$$
\theta \approx \frac{D / 2}{f}
$$

Paraxial refraction equation

$$
\alpha_{1}=\gamma+\beta_{1} \approx h\left(\frac{1}{R}+\frac{1}{d_{1}}\right)
$$

Relates distance from sphere and sphere radius to bending angles of light ray, for lens with one spherical surface.

$$
n_{1} \alpha_{1} \approx n_{2} \alpha_{2}
$$

Deriving the lensmaker's formula

$$
\begin{array}{ll}
\alpha_{1}=h\left(\frac{1}{R}+\frac{1}{d_{1}}\right) & \text { small angle approx } \\
n_{1} \alpha_{1} \cong n_{2} \alpha_{2} & \text { swells law } \\
\alpha_{2}=2 \gamma-\alpha_{3} & \text { geometry } \\
n_{2} q_{3} \cong n_{1} \alpha_{4} & \text { swells law } \\
\alpha_{4}=h_{1}\left(\frac{1}{R}+\frac{d_{2}}{2}\right) & \text { small angle } \\
\gamma=\frac{h}{R} & \text { small angle }
\end{array}
$$

$$
n_{1} q_{1}=n_{2}\left(\frac{2 h}{R}-\frac{n_{1}}{n_{2}} \alpha_{4}\right)=h\left(\frac{1}{R}+\frac{1}{d_{1}}\right)
$$

$$
l e+n_{1}=1, n_{2}=n
$$

cancel h 's

$$
\begin{aligned}
n\left(\frac{2}{R}-\frac{1}{n}\left(\frac{1}{R}+\frac{1}{d_{2}}\right)\right) & =\frac{1}{R}+\frac{1}{d_{1}} \\
\frac{2 n}{R}-\frac{1}{R}-\frac{1}{d_{2}} & =\frac{1}{R}+\frac{1}{d_{1}}
\end{aligned}
$$

$\frac{2(n-1)}{R}=\frac{1}{d_{1}}+\frac{1}{d_{2}} \quad$ "Lens makers formula"

The thin lens, first order optics

The lensmaker's equation:

$$
\frac{1}{z^{\prime}}+\frac{1}{z}=\frac{1}{f} \quad f=\frac{R}{2(n-1)}
$$

How does the mapping from the 3-d world to the image plane compare for a lens and for a pinhole camera?

The perspective projection of a pinhole camera. But note that many more of the rays leaving from P arrive at P ,

Lens demonstration

- Verify:
- Focusing property
- Lens maker's equation ($\mathrm{f}=25$ inches)
- The relationship between distances in the world and distances in the sensor plane

more general cameras

general imagers
 (from imaging chapter of course notes)

$$
\begin{equation*}
\vec{y}=\boldsymbol{A} \vec{x} \tag{1.9}
\end{equation*}
$$

For the case of conventional cameras, where the observed intensities, \vec{y} are an image of the reflected intensities in the scene, \vec{x}, then \boldsymbol{A} is approximately an identity matrix.
For more general cameras, \boldsymbol{A} may be very different from an identity matrix, and we will need to estimate \vec{x} from \vec{y}. In the presence of noise, there may not be a solution \vec{x} that exactly satisfies Eq. (1.9), so we often seek to satisfy it in a least squares sense. In most cases, \boldsymbol{A} is either not invertable, or is poorly conditioned. It is often useful to introduce a regularizer, an additional term in the objective function to be minimized. If the regularization term favors small \vec{x}, then the objective term to minimize, E, could be

$$
\begin{equation*}
E=|\vec{y}-\boldsymbol{A} \vec{x}|^{2}+\lambda|\vec{x}|^{2} \tag{1.10}
\end{equation*}
$$

general imagers (from imaging chapter of course notes)

Setting the derivative of Eq. (1.10) with respect to the elements of the vector \vec{x} equal to zero, we have

$$
\begin{align*}
0 & =\nabla_{x}|\vec{y}-\boldsymbol{A} \vec{x}|^{2}+\nabla_{x} \lambda|\vec{x}|^{2} \tag{1.11}\\
& =\boldsymbol{A}^{T} \boldsymbol{A} \vec{x}-\boldsymbol{A}^{T} \vec{y}+\lambda \vec{x} \tag{1.12}
\end{align*}
$$

or

$$
\begin{equation*}
\vec{x}=\left(\boldsymbol{A}^{T} \boldsymbol{A}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{T} \vec{y} \tag{1.14}
\end{equation*}
$$

See, e.g.: https://en.wikipedia.org/wiki/Matrix_calculus

system matrix, A , for pinhole imager

Figure 1.8
(a) Schematic drawing of a small-hole 1-d pinhole camera.(b) Visualization of imaging matrices: The imaging matrix relating scene intensities to sensor readings; the inverse of that matrix; the regularized inverse. For the small-pinhole imager, all three matrices are approximately identity matrices.

system matrix, A, for large aperture pinhole imager

Figure 1.9
(a) Large-hole 1-d pinhole camera. (b) Visualization of imaging matrices: The imaging matrix relating scene intensities to sensor readings; the inverse of that matrix; the regularized inverse. For the small-pinhole imager, all three matrices are approximately identity matrices.

system matrix, A, for large aperture pinhole imager

Another occlusion-based camera: edge camera

show intensity demo with cards

Corner Camera 1-D Image Computation

Rectified Image

Images you multiply the rectified ground plane images by to recover the input image around the corner (projected to 1d), for each different angle.

Hidden scene

Video Frame

Trajectories of two people

Experiment Proof of Concept

Experimental Proof of Concept

Experimental Proof of Concept

Experimental Proof of Concept

Video Corresponding to 1-D Camera

1-D Corner Camera Output
angle

- How many people?
- Where slowed down, where moved quickly?

ㅌㅡㅡ

1-D Corner Camera Ouxtnut

- How many people?
- How fast is each person moving?

$\underset{\text { E }}{\underline{E}}$

More Corner Camera Videos

1 Person Walking in Circles

Additional Results

Paper ID: 1983

Summary

- Want to make images
- Pinhole camera models the geometry of perspective projection
- Lenses make it work in practice
- Models for lenses
- Thin lens, spherical surfaces, first order optics
- Cameras as linear systems to invert

[^0]: you can also draw the sensor plane here, for simpler visualization

