6.869 Advances in Computer Vision

Bill Freeman, Antonio Torralba and Phillip Isola

MIT
Oct. 3, 2018

Sampling

Sampling

Sampling

Sampling

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sampling

Continuous image $f(x, y)$
We can sample it using a rectangular grid as

$$
f[n, m]=f\left(n T_{x}, m T_{y}\right)
$$

Aliasing

Let's start with this continuous image (it is not really continuous...)

Aliasing

103×128

Modeling the sampling process

Modeling the sampling process

$$
\hat{f}(t)=f(t) \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right)=f(t) \delta_{T_{s}}(t)
$$

The Fourier transform is a convolution...

Interesting property of the delta train: the Fourier transform of a delta train of period T is another delta train with period $2 \pi / \mathrm{T}$

Modeling the sampling process

$$
\delta T_{s}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s} \longleftrightarrow \Delta_{T_{s}}(w)=\frac{2 \pi}{T_{s}} \sum_{k=-\infty}^{\infty} \delta\left(w-k \frac{2 \pi}{T_{s}}\right)\right.
$$

Interesting property of the delta train: the Fourier transform of a delta train of period T is another delta train with period $2 \pi / \mathrm{T}$. Demo in the class notes.

Modeling the sampling process

What happens when the repetitions overlap?

Sampling theorem

The sampling theorem (also known as Nyquist theorem) states that for a signal to be perfectly reconstructed from it samples, the sampling period T_{s} has to be $T_{s}<T_{\min } / 2$ where $T_{\text {min }}$ is the period of the highest frequency present in the input signal.

52×64

26×32

Aliasing

Aliasing

Both waves fit the same samples. Aliasing consists in "perceiving" the red wave when the actual input was the blue wave.

aliasing

Antialising filtering

Before sampling, apply a low pass-filter to remove all the frequencies that will produce aliasing.

Without antialising filter.

With antialising filter.

Spatio-temporal sampling illusion

Evidence for filter-based analysis of motion in the human visual system shown via spatiotemporal visual illusion based on sampling

two potential theories for how humans compute our motion perceptions:
(a) We match the pattern in the image that we see at one moment and compare it with what we see at subsequent times.
(b) We use patio-temporal filters to measure spatio-temporal energy in order to measure local motion.

Square wave Fourier components

Using Fourier series we can write an ideal square wave as an infinite series of the form

$$
\begin{aligned}
x_{\text {square }}(t) & =\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) 2 \pi f t)}{(2 k-1)} \\
& =\frac{4}{\pi}\left(\sin (2 \pi f t)+\frac{1}{3} \sin (6 \pi f t)+\frac{1}{5} \sin (10 \pi f t)+\cdots\right) .
\end{aligned}
$$

spatial frequency
Visual signal

space

alpha: 1 squareFlag: 0 offset: 4
spatial frequency
Visual signal

space

spatial frequency

space

spatial frequency

temporal frequency

space
time

spatial frequency

temporal frequency

space
low-pass filtered less

blend over the two conditions

faster display speed

faster display speed

fast blended...
(

Image pyramids

Image information occurs at all spatial scales

Image pyramids

- Gaussian pyramid
- Laplacian pyramid
- Steerable pyramid

Image pyramids

- Gaussian pyramid
- Laplacian pyramid
- Steerable pyramid

E. H. Adelson | C. H. Anderson | J. R. Bergen | P. J. Burt | J. M. Ogden

Pyramid methods in image processing

The Gaussian pyramid

Smooth with gaussians, because a gaussian*gaussian=another gaussian

G.AUSSIAN PYRAMID

Fig 1. A one-dimensional graphic representation of the process which generates a Gaussian pyramid Each row of dots represents nodes within a level of the pyramid. The value of each node in the zero level is just the gray level of a corresponding image pixel. The value of each node in a high level is the weighted average of node values in the next lower level. Note that node spacing doubles from level to level, while the same weighting pattern or "generating kernel" is used to generate all levels.

Fig. 1. Two methods of searching for a target pattern over many scales. In the first approach, (a), copies of the target pattern are constructed at several expanded scales, and each is convolved with the original image. In the second approach, (b), a single copy of the target is convolved with
copies of the image reduced in scale. The target should be just large enough to resolve critical details The two approaches should give equivalent results, but the second is more efficient by the fourth power of the scale factor (image convolutions are represented by ' O ').

G

Fig. 2a. The Gaussian pyramid. The original image, G_{1} is repeatedly fittered and subsampled to generate the sequence of reduced resolution image $G_{1} G_{2}$ etc. These comprise a set of lowpass-filtered copies of the original image in which the bandwidth decreases in one-octave steps.

G.

G_{3}
G_{3}

6,7
Fig. 2b. Levels of the Gaussian pyramid expanded to the size of the original image. The effects of lowpass fitering are now clearly apparent.

Convolution and subsampling as a matrix multiply (1-d case)

$$
x_{2}=G_{1} x_{1}
$$

$G_{1}=$

1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0

(Normalization constant of $1 / 16$ omitted for visual clarity.)

Next pyramid level

$$
x_{3}=G_{2} x_{2}
$$

$$
\begin{array}{rl}
G_{2}= \\
1 & 4 \\
6 & 4 \\
1 & 1
\end{array} 0
$$

The combined effect of the two pyramid levels

$$
x_{3}=G_{2} G_{1} x_{1}
$$

$G_{2} G_{1}=1$
1 4

1-d Gaussian pyramid matrix, for [14641] low-pass filter

Gaussian pyramids used for

- up- or down- sampling images.
- Multi-resolution image analysis
- Look for an object over various spatial scales
- Coarse-to-fine image processing: form blur estimate or the motion analysis on very lowresolution image, upsample and repeat. Often a successful strategy for avoiding local minima in complicated estimation tasks.

Image pyramids

- Gaussian pyramid
- Laplacian pyramid
- Steerable pyramid

Down-sampling

Original

Blurred

Downsampled

Down-sampling and Up-sampling

Original

Blurred

Blurred

Upsampled

偝 <_

Upsampling

$$
y_{2}=F_{3} x_{3}
$$

Insert zeros between pixels, then apply a low-pass filter, [1 464 1]

$$
F_{3}=\begin{array}{llllll}
6 & 1 & 0 & 0 & & \\
4 & 4 & 0 & 0 & & \\
1 & 6 & 1 & 0 & \\
0 & 4 & 4 & 0 & \\
0 & 1 & 6 & 1 & \\
0 & 0 & 4 & 4 & \\
0 & 0 & 1 & 6 & \\
0 & 0 & 0 & 4 & & \\
& & & & & \\
& & &
\end{array}
$$

The Laplacian Pyramid

- Synthesis
- Compute the difference between upsampled Gaussian pyramid level and Gaussian pyramid level.
- band pass filter - each level represents spatial frequencies (largely) unrepresented at other level.

Laplacian pyramid algorithm

Fig. 4a. The Laplacian pyramid. Each level of this bandpass pyramid represents the difference between successive levels of the Gaussian pyramid.

L_{1}

\mathbf{L}_{2}

L_{3}

$\mathbf{L}_{1.0}$

\mathbf{L}_{22}

Fig. 4b. Levels of the Laplacian pyramid expanded to the size of the original image. Note that edge and bar features are enhanced and segregated by size.

Laplacian pyramid reconstruction algorithm: recover x_{1} from $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and x_{4}

G\# is the blur-and-downsample operator at pyramid level \# $\mathrm{F} \#$ is the blur-and-upsample operator at pyramid level \#

First, form Gaussian pyramid:
$\mathrm{x} 2=\mathrm{G} 1 \mathrm{x} 1$
$\mathrm{x} 3=\mathrm{G} 2 \mathrm{x} 2$
$\mathrm{x} 4=\mathrm{G} 3 \mathrm{x} 3$
Then the Laplacian pyramid elements are:
$\mathrm{L} 1=(\mathrm{I}-\mathrm{F} 1 \mathrm{G} 1) \mathrm{x} 1$
$\mathrm{L} 2=(\mathrm{I}-\mathrm{F} 2 \mathrm{G} 2) \mathrm{x} 2$
$\mathrm{L} 3=(\mathrm{I}-\mathrm{F} 3 \mathrm{G} 3) \mathrm{x} 3$
Reconstruction of original image (x1) from Laplacian pyramid elements and the smallest level of the Gaussian pyramid, x 4 :
$\mathrm{x} 3=\mathrm{L} 3+\mathrm{F} 3 \mathrm{x} 4$
$\mathrm{x} 2=\mathrm{L} 2+\mathrm{F} 2 \mathrm{x} 3$
$\mathrm{x} 1=\mathrm{L} 1+\mathrm{F} 1 \mathrm{x} 2$

Laplacian pyramid reconstruction algorithm: recover x_{1} from $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ and g_{3}

1-d Laplacian pyramid matrix, for [14641] low-pass filter

Laplacian pyramid applications

- Texture synthesis
- Image compression
- Noise removal

Image blending

(a)

(b)

(a)

(d)

(g)

(j)

(b)

(e)

(h)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) (c) 1983 ACM. The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid (taken from levels 0,2 , and 4). The left and middle columns show the original apple and orange images weighted by the smooth interpolation functions, while the right column shows the averaged contributions.

Image blending

- Build Laplacian pyramid for both images: LA, LB
- Build Gaussian pyramid for mask: G
- Build a combined Laplacian pyramid: $L(j)=G(j) L A(j)+(1-G(j)) L B(j)$
- Collapse L to obtain the blended image

Image pyramids

- Gaussian pyramid
- Laplacian pyramid
- Steerable pyramid

Steerable Pyramid

Low pass
residual
2 Level decomposition of white circle example:

Steerable Pyramid

Decomposition

Reconstruction

-

Steerable Pyramid

Decomposition

Reconstruction

Filter Kernels

Reprinted from "Shiftable MultiScale Transforms," by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE

But we need to get rid of the corner regions before starting the recursive circular filtering

Figure 1. Idealized illustration of the spectral decomposition performed by a steerable pyramid with $k=4$. Frequency axes range from $-\pi$ to π. The basis functions are related by translations, dilations and rotations (except for the initial highpass subband and the final lowpass subband). For example, the shaded region corresponds to the spectral support of a single (vertically-oriented) subband.

Steerable pyramids

- Good:
- Oriented subbands
- Non-aliased subbands
- Steerable filters
- Used for: noise removal, texture analysis and synthesis, super-resolution, shading/paint discrimination.
- Bad:
- Overcomplete
- Have one high frequency residual subband, required in order to form a circular region of analysis in frequency from a square region of support in frequency.

Phase-based Pipeline (SIGGRAPH'13)

Vibration Modes of PVC pipe

Source (20000 FPS)
Sequences courtesy of Justin Chen, Civil Engineering, MIT
"Piping Vibration Analysis"

Image pyramids

Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

- Gaussian

Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction \& coding.

- Steerable pyramid

Shows components at each

- Laplacian

scale and orientation separately. Non-aliased subbands. Good for texture and feature analysis. But overcomplete and with HF residual.

Schematic pictures of each matrix transform

Shown for 1-d images
The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships.
transformed image
$\vec{F}=\underbrace{U}_{\substack{\text { Fourier transform, or } \\ \text { Wavelet transform, or } \\ \text { Steerable pyramid transform }}} \overrightarrow{f 0}$ Vectorized image

Fourier transform

color key

Fourier
transform

Fourier bases are global: each
transform
coefficient
depends on all pixel
pixel domain image

Gaussian pyramid

Laplacian pyramid

Steerable pyramid

Matlab resources for pyramids (with tutorial) http://www.cns.nyu.edu/~eero/software.html

Eero P. Simoncelli

Associate Investigator, Howard Hughes Madical Institute

Associate Professor, Neural Science and Mathematics, New York University

Matlab resources for pyramids (with tutorial)

 http://www.cns.nyu.edu/~eero/software.html

Laboratory for Computational Vision

Publicly Available Software Packages

- Texture Analysis/Bynthesis - Matlab code is available for analyzing and synthesizing visual textures. REA.DME | Contents | ChangeLog | Gource code (UNIXJPC, grip'ed tar file)
- EPUNIC-Embedded Progressive Wavelet Image Coder. Ci source code available.
4 matlabPyrToals - Matlab source code for multi-scale image processing. Includes taols far building and manipulating Laplacian pyrarnids, QMFNWavelets, and steerable pyramids. Data structures are compalible with the Meatlab wevelet toolbox but the convolution code (in C) is faster and has many boundary-handling options. READ/WE. Contents. Modification list UNIXJPC: source or Macintosh source.
- Tha Steerabla Pyramid, an (approximatalyit translatian and ratation-invariant multi-scale image decomposition. MatLab (see abave) and C implementations are available.
- Computational Models of cortical neurons. Wacintosh program available.
- EPIC - Efficient Pyramid (Vavelet) Image Coder. C source code available.
- OBVIUS [Object-Based Vision \& Image Understanding System]: README (ChangeLog (Doc (225k)/Sourte Code (2.25M).
- CL-SHELL [Gnu Emacs $\approx=$ Common Lisp Intarfaca]: REA.DME / Change Loq'Source Code [119k].

Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features
- Image priors can be specified naturally in terms of wavelet pyramids.

