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1 Color and color constancy

There are many benefits to sensing color. Color differences let us check whether fruit is
ripe, tell whether a child is sick by looking at small changes in the color of the skin, and
find objects in clutter.

We’ll first describe the physics of color, then our perception of it–both the physiology
and psychophysics. Finally, we’ll discuss what one can infer about surfaces in the world
from the color of reflected light.

1.1 Color physics

Isaac Newton revealed several intrinsic properties of light in experiments summarized by
his drawing in Fig 1.1. A pinhole of sunlight enters through the window shade, and a lens
focuses the light onto a prism. The prism then divides the white light into many different
colors. These colors are elemental: if one of the component colors is passed through a
second prism, it doesn’t split into further components.

Our understanding of light and color explains such experiments. Light is a mixture
of electromagnetic waves of different wavelengths. Sunlight has a broad distribution of
light of the visible wavelengths. At an air/glass interface, light bends in a wavelength-
dependent manner, so a prism disperses the different wavelength components of sunlight
into different angles, and we see different wavelengths of light as different colors. Our eyes
are sensitive to only the narrow band of that electromagnetic spectrum, the visible light,
from approximately 400 nm to 700 nm, from blue to deep red, respectively.

The bending of light at a material boundary is called refraction, and its wavelength de-
pendence lets the prism separate white light into its component colors. A second way to
separate light into its spectral components is through diffraction, where constructive inter-
ference of scattered light occurs in different directions for different wavelengths of light.
Fig. 1.2 (a) shows a simple spectrometer, an apparatus to reveal the spectrum of light, based
on diffraction from a compact disk (CD) (2004). Light passes through the slit at the right,
and strikes a CD (with a track pitch of about 1600 nm). Constructive interference from the
light waves striking the CD tracks will occur at a different angle for each wavelength of
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Figure 1.1
Isaac Newton’s illustration of experiments with light. White light enters from a hole in the window
shade at the right, where it is focused with a lens and then passes through the first prism. The prism
separates the white light into different colors by bending each color a different amount. The second
prism in the drawing demonstrates that those colors are elemental: as an individual color passes
through the second prism, the light doesn’t break into other colors. See also Wandell (1995)
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(a)

(b)
Figure 1.2
(a) A simple spectrograph. Slit at right accepts light from primarily one object in the world. Light
diffracted by the CD is viewed from the hole at the bottom left. The bending by diffraction is
wavelength dependent, and the light from a given direction is broken into its spectral components,
shown in (b).
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(a)

(b)

(c)
Figure 1.3
The light spectra from some everyday objects, analyzed by the spectometer of Fig. 1.2. (a) Green
leaf, with some yellowish elements, shows primarily green, with a little red (red and green make-
up yellow). (b) A red door (c) A fluorescent light (when turned on) shows the discrete spectral
wavelengths at which the gas fluoreses.
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the light, yielding a separation of the different wavelengths of light according to their angle
of diffraction. The diffracted light can be viewed or photographed through the hole at the
bottom left of the photograph. The spectrometer gives an immediate visual representation
of the spectral components of colors in the world. Some examples are shown in Fig. 1.3.

1.1.1 Light Power Spectra

Figure 1.4
Two sources of light, and their spectra.

The light intensity at each wavelength is called the power spectrum of the light. It is an
approximation, but a good one, to say that light’s power spectrum determines its perceived
color. Fig. 1.3 shows a spectrograph visualization of some light power spectra. Fig. 1.4
shows other light spectra, plotted as intensity as a function of wavelength. The spectrum
of blue sky is on the left, and the spectrum of a tungsten light bulb (which will appear
orangish) is on the right.

1.1.2 Light reflecting off surfaces
When light reflects off a surface, the power spectrum changes in ways that depend on the
characteristics and geometry of the surface. It is those changes to the light that let us see
objects and surfaces by observing how they influence the reflected light.

The interaction of light with a surface can very rich. Reflections can be specular or
diffuse, and the reflected power spectrum can depend on the relative orientations of the
incident light, the surface, and the observed reflected ray. The reflection of light from a
surface, in such full generality, is described by the “bi-directional reflectance distribution
function”, or BRDF, which is covered in most computer graphic textbooks. For this dis-
cussion of reflections, we will consider only diffuse surface reflections, where the power
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spectrum of the reflected light, r(λ), is proportional to the wavelength-by-wavelength prod-
uct of the power spectrum of the incident light, i(λ), times a reflectance spectrum, s(λ), of
the surface:

r(λ) = i(λ)s(λ) (1.1)

This diffuse reflection model describes most matte reflections. Such wavelength-by-wavelength
scaling is also a good model for the spectral changes to light caused by transmission
through an attenuating filter. The incident power spectrum is then multiplied at each wave-
length by the transmittance spectrum of an attenuating filter.

Figure 1.5
Observed spectra of light reflecting off the surface. Source: Forsyth and Ponce.

Some reflectance spectra of real-world surfaces are plotted in Figure 1.5. A white flower
reflects spectral power almost equally over all visible wavelengths. A yellow flower reflects
in the green and red.

When the illumination is white light, with equal power in all spectral bands, the reflected
spectrum is proportional to the reflectance spectrum of the material itself. Under more gen-
eral conditions, when the illumination color is unknown, a visual system needs to estimate
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the surface reflectance spectrum, taking the context of other observed spectra into account
to estimate the overall illumination. We address that computational problem in Section 1.4.

1.2 Color Perception

Now we turn to our perception of color. We first describe the machinery of the eye, and
motivated by that understanding, describe methods to measure color appearance.

1.2.1 The machinery of the eye
Figure 1.6 a is a drawing of the photoreceptors, called the rod and cones, in the retina of the
eye. The tall receptors are the rods, used in low-light levels, and the short ones are the color-
selective cones. Interestingly, the light enters from the bottom of the drawing, passing
through the nerve fibers and blood vessels before reaching the photosensitive detectors at
the top of the image.

An instrument can measure the light power spectrum at hundreds of different wave-
lengths within the visible band, yielding hundreds of numbers to describe the light power
spectrum. But a useful description of the visual world can be obtained from a much lower
dimensional description of the light power spectrum. The human visual system analyzes
the incident light power spectrum with only three different classes photoreceptors, called
the L, M, and S cones because they sample at the long, medium, and short wavelengths.
This gives the human visual system a 3-dimensional description of light, with each pho-
toreceptor class taking a different weighted average of the incident light power spectrum.

Figure 1.6 b shows a colorized image of a live human retina. The black-and-white pho-
tograph of the retinal mosaic has been colored by the experimenters to indicate which cone
type is at which location in the subject’s eye Hofer et al. (2005). The L cones are colored
red, the M cones green, and the S cones are colored blue. Note the hexagonal packing of
the cones in the retina, and the stochastic assignment of L, M, and S cones over space.
Figure 1.6 c shows the spectral sensitivity curves for the L, M, and S cones.

If the matrix C consists of the spectral sensitivity curves of the L, M, and S cones in 3
rows, and the vector ~t is a column vector of the spectrum of light incident on the eye, then
the L, M, and S cone responses will be the product,

L
M
S

 = C~t (1.2)

The fact that our eyes have three different classes of photoreceptors has many conse-
quences for color science. It determines that there are three primary colors, three color
layers in photographic film, and three colors of dots needed to render color on a display
screen. In the next section, we describe the color matching experiments that led to much
of our understanding of human color vision.
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(a) (b)

(c)
Figure 1.6
(a) Drawing of the eye’s photoreceptors by ramon y cajal. (b) Lateral slice through an eye, with cone
receptor class identities indicated by red, green, or blue overlay, to signify the long, medium, and
short wavelength receptors. From Hofer et al. (2005). (c) Photoreceptor sensitivies as a function of
light wavelength (from Wandell (1995)).
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1.2.2 Color matching
Color science tells us how to analyze and reproduce color. We can build image displays
so that the output colors match those of some desired target, and manufacture items with
the same colors over time. Much industry revolves around the ability to repeatably control
colors. Colors can be trademarked (Kodak Yellow; IBM Blue, etc) and we have color
standards for foods. Figure 1.7 shows a USDA kit for evaluating food color, and a chart
showing french fry color standards.

Figure 1.7
The USDA color standards for French fried potatoes, one of many color standards.

One of the tasks of color science is to predict when a person will perceive that two colors
match. For example, we want to know how to adjust a display to match the color reflecting
off some colored surface. Even though the spectra may be very different, the colors can
often be made to match.

It is possible to infer human color matching capabilities by knowing the spectral sensi-
tivity curves of the receptors shown in Fig. 1.6 (c), taking into account coloration of the
cornea and lens. However, it was through measurements of human color matching judg-
ments that procedures for matching colors were originally derived.

We try to match a color with a combination of reference colors, typically called primary
colors. Through experimentation, it has been found that we can match the appearance
of any color through a linear combination of three primary colors. This stems from the
fact that we have three classes of photoreceptors in our eyes. It has been found that these
color matches are transitive–if color A matches some particular combination of primaries,
and color B matches the same combination of primaries, then color A will match color B.
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Thus the amount of each primary requred to match a color can serve as set of coordinates
indicating color.

In this section, we’re assuming that color appearance is determined by the spectrum of
the light arriving at the eye. In practise, color appearance can be influenced by many
other factors, such as the eye’s state of brightness adaptation, the ambient illumination,
and the surrounding colors. To control for those variables, care must be taken to view the
color comparisons under repeatable, controlled surrounding colors. We shine a controllable
combination of the primary lights on one half of a bipartite white screen, and the test light
on the other half. A grey surround field is placed around the viewing aperture, giving a
view to the subject that looks something like that of Fig. 1.8 (a), right hand side (from
Wandell (1995)). We assign a triplet of numbers to the color appearance of a surface: the
amount of each of the three primary colors that is required to match a given test color.

1.2.3 Box: Color matching experiments
Here is the procedure for matching an arbitrary color with an additive combination of
primary lights. We shine the test light on the left in Fig. 1.8 (a), and originally all the
primary lights are turned off, so the right hand side is black.

Now we light up some combination of the primaries and we adjust their amounts until
we get a color match. This gives a (reproducible) representation for the color at the left: if
you take these amounts of each of the selected primaries, you’ll match the input color.

What if no combination of the three selected primiaries matches the test color? Fig. 1.8 (b)
shows an example of that. We can exploit another property of color matching: if two col-
ors match, and we add the same amount of any other light spectrum to both colors, the
resulting modified colors will also match. In other words, if color A1 matches color B1,
and color A2 matches color B2, then the sum of spectra of colors A1 and A2 will match the
sum of the spectra of colors B1 and B2. This linearity follows from Eq. (1.2).

Exploiting that fact, we can always match any input test color if we allow “negative
light”, adding light from one or more of the primary lights to the test color in order to
match the modified test color to some combination of the remaining primary lights.

That tells us that if we represent a color by the amount of the 3 primaries needed to
make a match, or any number proportional to that, then we’ll be able to use a nice vector
space representation for color, where the observed linear combination laws will be obeyed,
Fig. 1.9.

1.2.4 Linear algebraic interpretation of color perception
From Eq. (1.2), the task of color measurement is simply the task of finding the projection
of any of the possible spectrum into the special 3-d subspace defined by the cone spectral
response curves. Any basis for that 3-d subspace will serve that task, so the three basis
functions do not need to be the color sensitivity curves of Eq. (1.6) themselves. They
can be any linear combination of them, as well. We seek to predict the cone responses
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(a)

(b)
Figure 1.8
Color matching method (a) Left: showing a controlled combination of primary colors shining on a
screen, for an observer to compare against a test light. Right: Example of what the observer sees
while making a “match” judgement . (b) Sometimes to create a match with a given test light, one
of the primary lights needs to be added to the test light. Mathematically, that can be modelled as
requiring a negative amount of the given primary to create a match.
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Figure 1.9
How to treat negative colors: 2-d illustration of color spectra space. With positive combinations of
the primary light basis functions, we can only directly match colors within the cone of the primary
light basis functions. The left hand side shows a spectrum, denoted by a point, being matched by
a sum of only positive amounts of the primaries ~P1 and ~P2. To represent a color spectrum (point)
outside the positive cone of vectors ~P1 and ~P2, we first add positive amounts of the vectors ~P1 or ~P2

to the out-of-cone color to bring it to the cone. In the right-hand figure, we say that the out-of-cone
color is represented as c ~P1 + d ~P2.

to any spectral signal, and projection of the spectral signal onto any 3 independent linear
combinations of the cone response curves will let us do that.

So we can define a color system by simply specifying its 3-d subspace basis vectors. And
we can translate between any two such color representations by simply applying a general
3x3 matrix transformation to change basis vectors. Note, the basis vectors do not need to
be orthogonal, and most color system basis vectors are not.

Long before scientists had measured the L, M, and S spectral sensitivity curves of the
human eye, others had measured equivalent bases through psychophysical experiments. It
is interesting to observe how such curves could be measured psychophysically.

We start with a set of any three linearly independent primary lights, ie, none of the three
spectra can be written as a linear combination of the other two. The idea is this: if we find
spectral curves which, when taking the projection of an input spectrum, give us the controls
for each primary to match the input color, then we have found a basis for the 3-dimensional
cone response space. This is because 3-d projection vectors that always lead to matched
colors must be basis vectors for that same 3-d space.

1.2.4.1 Color matching functions Here’s how we can find such basis vectors, called
“color matching functions”, for any give set of primary lights. We exploit the linearity
of color matching and find the primary light values contributing to a color match, one
wavelength at a time. So for every pure spectral color as a test light, we measure the
combination of these three primaries required to color match light of that wavelength.
For some wavelengths and choices of primaries, the matching will involve negative light
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values, and remember that just means those primary lights must be added to the test light
to achieve a color match.

Figure 1.10
Psychophysically measured color matching functions. Figure from Wandell (1995).

Figure 1.10 is an example of such a measured color matching function, for a particular
choice of primaries, monochromatic laser lights of wavelengths 645.2, 525.3, and 444.4
nm. We can see these matches are behaving as we would expect: when the spectral test
light wavelength reaches that of one of the primary lights, then the color matching function
is 1 for that primary light, and 0 for the two others.

Because of the linearity properties of color matching, it’s easy to derive how to control
the primary lights in order to match any input spectral distribution, t(λ). Let the three
measured color matching functions be ci(λ), for i = 1, 2, 3. Let the matric b fC be the color
matching functions arranged in rows,

C =


c1(λ1) . . . c1(λN)
c2(λ1) . . . c2(λN)
c3(λ1) . . . c3(λN)

 (1.3)

Then, by linearity, the primary controls to yield a color match for any input spectrum

~t =


t(λ1)
...

t(λN)

 will be C~t.

If the model of Eq. (1.2) is correct, then measured curves of Fig. 1.10 (and analogous
ones, measured using different primary lights) must be a linear combination of the human
eye’s color sensitivity curves. Let the spectra of the primary lights be in the columns of the
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matrix P0, and let the corresponding measured color matching curves be in the rows of the
matrix C0. Then for any light spectrum column vector, ~t, the color matching experiments
assure us that the combination of primary lights given by the 3 by 1 vector C0~t will be a
perceptual match to the spectrum ~t, or

C~t = CP0C0~t (1.4)

This holds for all vectors ~t, so we can omit ~t from both sides of the above equation. Denot-
ing the 3x3 matrix, CP0 as R, we have

C = RC0, (1.5)

showing that the rows of the physically measured color matching functions, C0 must be a
linear combination of the human eye’s spectral sensitivity curves, C.

(a)
(b)

Figure 1.11
(a) CIE color matching functions. (b) The space of all colors (intensity normalized), as described in
the CIE coordinate system.

So there is an infinite space of color matching basis functions to pick, so it’s natural to
ask whether any one choice of bases is better than another. One natural choice might be
the cone spectral responses themselves, but those were only measured relatively recently,
and many other systems were tried, and standardized on, earlier.
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1.2.5 CIE color space
One color standard is the CIE XYZ color space. Again, a color space is simply a table
of 3 color matching functions, which must be a linear combination of all the other color
matching functions, because they all span the same 3-d subspace of all possible spectra.
The CIE color matching functions were designed to be all-positive at every wavelength.
They’re shown in Fig. 1.11.

An unfortunate property of the CIE color matching functions is that there is no all positive
set of color primaries associated with those color matching functions. But if the goal is to
simply specify a color from an input spectrum, then any basis can work, regardless of
whether there is a physically realizable set of primaries associated with the color matching
functions.

To find the CIE color coordinates, one projects the input spectrum onto the 3 color
matching functions, to find coordinates, called tristimulus values, labeled X, Y, and Z. Of-
ten, these values are normalized to remove overall intensity variations, and one calculates
x = X

X+Y+Z and y = Y
X+Y+Z .

1.2.6 Color metamerism
One final topic for the model where power spectral density determines color is metamerism,
when two different spectra necessarily look the same to our eye. There is a huge space of
metamers: any two vectors describing light power spectra which give the same projection
onto a set of color matching functions will look the same to our eyes.

There’s a sense that our eyes are missing much of the possible visual action. There’s a
high-dimensional space of colors out there, and we’re only viewing projections onto a 3-d
subspace of that.

But in practise, the projections we observe do a pretty good job of capturing much of
the interesting action in images. Given how much information is not captured by our eyes,
hyperspectral images (recorded at many different wavelengths of analysis) add some, but
not a lot, to the pictures formed by our eyes.

Let us summarize our discussion of color so far. Under certain viewing conditions, the
perceived color depends just on the spectral composition of light arriving at the eye (we
move to more general viewing conditions next). Under such conditions, there is a simple
way to describe the perceived color: project its power spectrum onto a set of 3 vectors
called color matching functions. These projections are the color coordinates. We standard-
ize on particular sets of color coordinates. One such set is the CIE XYZ system.

How do you translate from one set of color coordinates to another, say, for notation, from
the color coordinates in a unprimed system to those in a primed system? Place the spectra
of a set of primary lights into the columns of a matrix P. If we take the color coordinates,
~x, as a 3x1 column vector and multiply them by the matrix P, we get a spectrum which
is metameric with the input spectrum whose color coordinates were ~x. So to convert ~x to
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Figure 1.12
The two spectra in the figure above, from Wandell (1995), are colors that match perceptually: day-
light, and the spectrum a monitor adjusted to match daylight. The figure at right shows a graph-
ical rendition of the projection from the high-dimensional space of power spectra onto a lower-
dimensional subspace, representing the 3-d space of human color perception. The red and blue dots
in the higher-dimensional space are “metameric” in that they project to the same location in the
lower-dimensional subspace.
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its representation in a primed coordinate system, we just have to multiply this metameric
spectrum by the color matching functions for the primed color system:

~x′ = CP′~x (1.6)

The color translation matrix CP′ is a 3x3 matrix.
From the reflected or transmitted light, we seek to learn about what did the attenuating

or the reflection. Either for light coming directly from a source, or for light reflecting off a
surface, it’s very useful to characterize it’s spectrum in terms of the color appearance.

1.2.6.1 Simplified Color Spectra–include??? It is helpful to develop a feel for the
color appearance of different light spectra. Later, after we describe human color sensing,
we can make the intuitions precise as we will be able to compute the color appearance of a
given light power spectrum.

The visible spectrum lies roughly in the range between 400 and 700 nm, see Fig. 1.13.
We can divide the visible spectrum into three one-hundred nm bands, and study the ap-
pearance of light power spectra where power is present or absent from each of those three
bands, in all of the eight (23) possible combinations.

Light with spectral power distributed in just the 400 to 500 nm wavelength band will
look some shade of blue, the exact hue depending on the precise distribution. Light in the
500 - 600 nm band will appear greenish. Most distributions within the 600 - 700 nm band
will look red.

White light is a mixture of all spectral colors. A spectrum of light containing power
evenly distributed over 400 - 700 nm would appear white. Light with no power in any of
those three bands, that is, darkness, appears black.

There are three other spectral classes left in this simplified grouping of spectra: spectral
power present in two of the spectral bands, but missing in the third. Cyan is a combination
of both blue and green, or roughly spectral power between 400 and 600 nm. In printing
and color film applications, this is sometimes called “minus red”, since it is the spectrum
of white light, minus the spectrum of red light. The blue and red color blocks, or light in
the 400-500nm band, and in the 600-700nm band, is called magenta, or minus green. Red
and green together, with spectral power from 500-700 nm, make yellow, or minus blue.

Figure 1.13
The approximate color appearance of light over different spectral regions.
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Figure 1.14
Cartoon model for the reflectance spectra of observed colors

1.2.7 Color mixing
In art or photography, we often talk of ... (relate to color primaries).

Figure 1.15
The cyan of Windex and the yellow of Joy combine to give a green color.

Colors and color mixing are a delightful aspect of our visual experience. Fig. 1.15 shows
an everyday example of color mixing: yellow and cyan colors combining to give a green.

Physically, color mixing involes combining the spectra of the two colors to be mixed to
create the power spectrum of the mixed color. Various processes cause colors to mix, but
the results can be divided into two broad classes of mixing, called additive and subtractive.
Under additive color mixing, the power spectra add together to form the spectrum of the
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resulting color. This model of mixing covers the case of many small color elements for
which the appearance is fused, such as tiny elements of a display, or the case of several
light projectors pointing at the same screen. CRT color televisions, DLP projectors, and
colors viewed very closely in space or time all exhibit additive color mixing. The spectrum
of the mixed color is a weighted sum of the spectra of the individual components. In the
additive color mixing model, red and green combine to give yellow, as can be seen from
the cartoon models of Figs. 1.14 and 1.15.

A second way colors combine is called subtractive color mixing, but might better be
called multipliciative color mixing. Under this mixing model, the spectrum of the com-
bined color is proportional to the product of the mixed components. This color mixing
occurs when light of one color reflects diffusely off a surface of another color, or passes
through a sequence of attenuating spectral filters, such as with photographic film, paint,
optical filters, and crayons. Under the subtractive color mixing model, cyan and yellow
combine to give green, since the cyan filter attenuates the red components of white light,
and yellow filter would remove the remaining blue components, leaving only the green
spectral region of the original white light. Under subtractive color mixing, red and green
combine to give black.

Figure 1.16 shows examples of color mixing.
Because the spectrum depends on surfaces, it is very useful to measure the spectrum of

reflected light, and we discuss how the eye does that in the following section.

1.3 Spatial Resolution and Color
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(a)
(b)

Figure 1.16
Examples of color mixing, in the world of cartoon color spectra. (a) Additive, (b) subtractive. The
spectra and the resulting colors.
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(a) Original

(b) R, G, B components
(c) blurred R, G, B components

Figure 1.17
(a) Original image. (b) RGB components (c) RGB components, each blurred.
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(a) R component blurred (b) G component blurred (c) B component blurred
Figure 1.18
(a) R component blurred, G and B components sharp. (b) (c)
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Figure 1.19
Human spatial frequency sensitivity in R, G, B and L, a, b color representations
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(a) Original

(b) L, a, b components (c) blurred L, a, b components
Figure 1.20
(a) Original image. (b) Lab components (c) Lab components, each blurred.
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(a) L component blurred (b) a component blurred (c) b component blurred
Figure 1.21
(a) L component blurred, a and b components sharp. (b) (c)
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1.3.1 Low-dimensional models for spectra
Before we turn to color perception, let’s introduce a mathematical model for light spectra
that makes them much easier to work with. In general, when modeling the world, we
want to keep everything as simple as possible, and that usually means working with as
few degrees of freedom as possible. Color spectra seem like relatively high-dimensional
objects, since we can pick any combination of numbers, from 400 to 700 nm, as we’d like.
Even sampling at every 10 nm of wavelength, that gives us 31 numbers for each spectrum.

It turns out that for many real-world spectra, those 31 numbers are not independent and
in practise spectra have far fewer degrees of freedom. It is common to use low-dimensional
linear models to approximate real-world reflectance and illumination spectra. Any given
spectrum, say S (λ), is approximated as some linear combination of “basis spectra”, u(λ).
For example, a 3-dimensional linear model of S (λ) would be

...

S (λ)
...

 ≈


...
...

...

u1(λ) u2(λ) u3(λ)
...

...
...



ω1

ω2

ω3

 (1.7)

The basis spectra can be found from a collection of training spectra. If we write the
training spectra as columns of a matrix, D, then performing a singular value decomposition
on D yields

D = U ∗ Λ ∗ V ′ (1.8)

where U is a set of orthonormal spectral basis vectors, Λ is a diagonal matrix of singular
values, and V ′ is a set of coefficients. The first n columns of U are the n basis spectra that
can best approximate the spectra in the training set, in a least squares sense.

Here’s a demonstration, with a particular collection of surface reflectance spectra, ui(λ)
that this works quite well. The “Macbeth Color Checker”, a tool of color scientists and
engineers, is a standard set of 24 color tiles, made the same way year after year. (So
iconic that this woman, a dedicated color scientist, I presume, has tatooed a Macbeth color
checker on her arm! Alas, I’m sure the tatoo colors are only an approximation to the real
Macbeth colors).

The reflectance spectra of each Macbeth color chip has been measured. All those spectra
are pretty well approximated by a 3-dimensional linear model, as you can see from these
plots.
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Figure 1.22
Macbeth color checker. iconic status. spectra. bottom two figures from Foundations of Vision, by
Brian Wandell, Sinauer Assoc., 1995
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1.4 Color Constancy

Color perception depends strongly on the power spectrum of the light arriving at the eye,
but it does not depend only on that. Now we address the assumption that a given spectral
power distribution always leads to the same color percept.

In the color constancy demo of Fig. 1.23, we’ll show an example where the identical
spectral distribution arriving at your eye leads to a very different color percept. What’s
going on? The visual system needs to perceive the color of surfaces, but the data it gets is
the wavelength-by-wavelength product of the surface color and the illuminant color. So our
visual system needs to “discount the illuminant” and present a percept of the underlying
colors of the surfaces being viewed, rather than simply summarizing the spectrum arriving
at the eye.

Figure 1.23
color constancy demo

The ability to perceive or estimate the surface colors of the objects being viewed, and to
not be fooled by the illumination color, is called “color constancy”–you perceive a constant
color, regardless of the illumination. People have some degree of color constancy, although
not perfect color constancy.

For the case where there is just one illumination color in the image, if we know either
the illuminant or all the surface colors, we can estimate the other from the data. So, from
a computational point of view, you can also think of the color constancy task as that of
estimating the illuminant spectrum from an image.

1.4.0.1 The rendering equation Let’s examine the computation required to achieve
color constancy. Here’s the rendering equation, showing, in our model, how the L, M, and
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S cone responses for the jth patch are generated:
L j

M j

S j

 = ET (A~xs
j. ∗ B~xi) (1.9)

Figure 1.24 shows a graphical diagram showing the vector and matrix sizes that I hope
makes things a little clearer. We have some unknown illuminant, described by, say, a 3-
dimensional vector of coefficients for the illumination spectrum basis functions. For this
jth color patch, we have a set of surface reflectance spectrum basis coefficients, let’s say
also 3-dimensional. The term-by-term product of the resulting spectra (the quantity in
parenthesis in the top equation) is our model of the spectrum of the light reaching our eye.
That spectrum then gets projected onto spectral responsivity curves of each of the three
cone classes in the eye, resulting in the L, M, and S response for this jth color patch. (An
equation for the RGB pixel color values would be the same, with just a different matrix
E). If we make N distinct color measurements of the image, then we’ll have N different

versions of this equation, with a different vector ~xs
j and different observations


L j

M j

S j

 for

each equation.
Like various other problems in vision, this is a bilinear problem. If we knew one of the

two sets of variables, we could find the other trivially by solving a linear equation (using
either a least squares or an exact solution). It’s a very natural generalization of the a b = 1
problem that Antonio talked about last week.

Let’s notice the degrees of freedom. We get 3 numbers for every new color patch we
look at, but we also add 3 unknowns we have to estimate (the spectrum coefficients ~xs

j),
as well as the additional three unknowns for the whole image, the illumination spectrum
coefficients ~xi. If only surface color spectra had only two degrees of freedom, we’d catch
up and potentially have an over-determined problem if we just looked at enough colors in
the scene. Unfortunately, 2-dimensional surface reflectance models just don’t work well in
practice.

1.4.1 Some color constancy algorithms
So how will we solve this? Let’s look at two well-known simple algorithms, and then we’ll
look at a Bayesian approach.

Bright equals white If we knew the true color of even a single color patch, we’d have the
information we needed to estimate the 3-d illumination spectrum. One simple algorithm for
estimating or balancing the illuminant is to assume that the color of the brightest patch of an
image is white. (If you’re working with a photograph, you’ll always have to worry about
clipped intensity values, in addition to all the non-linearities of the camera’s processing
chain). If that is the kth patch, and ~xW are the known spectral basis coefficients for white,
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Figure 1.24
Graphical depiction of Eq. 1.9.
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then we have

~yk =


Lk

Mk

S k

 = ET (A~xW . ∗ B~xi) (1.10)

which we can solve for the unknown illuminant, ~xi.
How well does it work? It works sometimes, but not always. On the left is a picture for

which the bright equals white algorithm would probably work (although I haven’t checked
it. On the right is one where I don’t think it would work.

The bright equals white algorithm estimates the illuminant based on the color of a single
patch, and we might expect to get a more robust illuminant estimate if we use many color
patches in the estimate. A second heuristic that’s often used is called the grey world
assumption: the average value of every color in the image is assumed to be grey.

Figure 1.25
An image that violates the grey world assumption.

Taking the sum over all samples j on both sides of the rendering equation, and letting ~xG

be the spectral basis coefficients for grey, gives

1
N

∑
j


L j

M j

S j

 = ET (A
1
N

∑
j

~xs
j . ∗ B~xi) (1.11)

= ET (A~xG . ∗ B~xi) (1.12)

(1.13)

Then, again, we just have a linear equation to solve for ~xi.
This assumption can work quite well, although, of course, we can find images for which

it would completely mess up, such as this forest scene here.
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Using just part of the data (the brightest color, or the average color) gives sub-optimal
results. Why not use all the data, make a richer set of assumptions about the illuminants
and surfaces in the world, and treat this as a Bayesian estimation problem? That’s what
we’ll do now, and what you’ll continue in your homework assignment.

To remind you, in a Bayesian approach, we seek to find the posterior probability of the
state we want to estimate, given the observations we see. We use Bayes rule to write
that probability as a (normalized) product of two terms we know how to deal with: the
likelihood term and the prior term. Letting ~x be the quantities to estimate, and ~y be the
observations, we have

P(~x|~y) = kP(~y|~x)P(~x) (1.14)

where k is a normalization factor that forces that the integral of P(~x|~y) over all ~x is one.
The likelihood term tells us, given the model, how probable the observations are. If we

assume additive, mean zero Gaussian noise, the probability that the jth color observation
differs from the rendered parameters follows a mean zero Gaussian distribution. Remem-
bering that the observations ~y j are the the L, M, and S cone responses,

~y j =


L j

M j

S j

 (1.15)

we have

P(~y j|~xi, ~xs
j) =

1
√

2πσ2
exp
−|~y j − ~f (~xi, ~xs

j)|
2

2σ2 , (1.16)

For an entire collection of N surfaces, we have

P(~x|~y) = P(~xi)
∏

j

P(~y j|~xi, ~xs
j)P(~xs

j) (1.17)

reminder: Here’s what’s inside the rendering function, ~f (~xi, ~xs
j). We assume diffuse

reflection from each colored surface. Given basis function coefficients for the illuminant,
~xi, and a matrix B with the illumination basis functions as its columns, then the spectral
illumination as a function of wavelength is the column vector B~xi. We also need to com-
pute jth surface’s diffuse reflectance spectral attenuation function, the product of its basis
coefficients times the surface spectral basis functions: A~xs

j In our diffuse rendering model,
the reflected power is the term-by-term product (we borrow Matlab notation for that, .*) of
those two. The observation of the jth color is the projection of that spectral power onto the
eye’s photoreceptor response curves. If those photoreceptor responses are in the columns
of the matrix, E, then the forward model for the three photoreceptor responses at the jth
color is:

~f (~xi, ~xs
j) = ET (A~xs

j . ∗ B~xi). (1.18)
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1.4.1.1 Eq. (1.18), in component form We can find the linear solution of Eq. (1.18),
for a given illuminant vector, ~xi, and assuming no noise in the observations. Let’s write
everything out in component form, in order to do the calculation carefully. Let’s assume
we’re only fitting the xs

k j to the jth color patch observation, and therefore omit all subscripts
j, for simplicity. So xs

k will mean the kth reflectance basis component (of the jth patch). w
indexes wavelength values.

yn =
∑

w

Enw

∑
k

Awk xs
k

∑
m

Bwmxi
m (1.19)

=
∑

k

xs
k

∑
w

EnwAwk

∑
m

Bwmxi
m (1.20)

(1.21)

If we define the n, k components of a matrix D to be

Dnk =
∑

w

EnwAwk

∑
m

Bwmxi
m, (1.22)

then we have
~y = D~xs (1.23)

If D is invertible, then we have
~xs = D−1~y (1.24)

Figure 1.26
y = ab problem

I want to remind us about the similarities between the 1 = ab problem, and our color
constancy problem. While we can’t draw out the high-dimensional likelihood function for
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the color constancy problem, conceptually it’s very similar to that of this 1=ab problem
(and various other vision problems share these same characteristics). Many different set-
tings of the parameters can explain our data, giving what we call a “likelihood ridge”. For
the 1=ab problem, that gives a 1-d ridge of parameter settings that explain the same data.
For the color constancy problem, with 3-d data, surface parameterizations and illuminant
parameterization, the likelihood ridge is 3-dimensional.

How do we pick from the many feasible solutions on the ridge, all with the same likeli-
hood value? The priors will let us distinguish different values on the likelihood ridge.

In the problem set, you’ll fit Gaussians to model the observed prior distribution of surface
and illuminant basis function coefficients.

Another difference for different positions along the likelihood ridge is the “width” of the
ridge. At some positions, only a very precise specification of all the parameter values will
explain the observations. At other positions, we have more slop in the parameters, and
many different nearby parameter settings also explain the data. In a Bayesian framework,
this is most naturally quantified with the loss function, which specifies the penalty for
guessing wrong. Let ~̂x be your estimate of the parameters, ~x. Then L(~̂x, ~x) is the loss
incurred by guessing ~̂x when the true value was ~x. With the posterior probability, we can
calculate the expected loss, L̄(~̂x, ~x)

L̄(~̂x, ~x) =

∫
~x

L(~̂x, ~x)P(~x|~y) (1.25)

We often use a loss function which is only a function of ~̂x − ~x.
Bayes rule lets us find a posterior probability for ~x, given the observations ~y. The final

stage of Bayesian estimation is to go from that function, P(~x|~y), to a single best guess value,
~̂x, a point estimate.

The two most commonly used point estimates are called the MAP and MMSE estimates,
and in your homework for this material, you’ll use either one of those for this color con-
stancy problem.

The MAP estimate stands for “maximum a posteriori”, Latin for “just take the max of
the posterior distribution”. While quite a natural thing to do, it can suffer from various
problems, since it only depends on the single maximum valued point of the posterior prob-
ability. The loss function implied by the MAP estimate assigns a constant penalty for all
guesses, except for a precisely correct guess, which receives high reward. This penalty
structure doesn’t make sense for perceptual tasks, for which nearly the right answer is
often just as good as precisely the right answer.

Another very common estimate is MMSE, “minimum mean squared error”. This is the
mean of the posterior probability, which, as the name implies results in an estimate which
minimizes the expected squared error in the estimated parameter. The homework assign-
ment, excerpted on these slides, gives details of how to find each of those estimates for
this problem. Again, for perceptual problems, this loss function often doesn’t make sense,
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although in practice an MMSE estimate is often very good. (Although for the 1 = ab prob-
lem, limited to 0 < a, b < 4, the MMSE estimate is relatively far away from any feasible
solution to the problem).
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