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1 Introduction

In this chapter, we discuss probabilistic models for vision. Let the image or video we observe be ~y. Let the
underlying explanation, the scene, be called ~x. We seek to estimate ~x, given ~y.

Oftentimes, the underlying scene explanation is not completely determined by the observation. Here are some
examples:

• Necker cube

• moon crater illusion

• size ambiguity

• illumination strength ambiguity.

Note that our brains are good at hiding any uncertainty from us. We never see the Necker cube as some linear
combination of the two possible explantions; it’s always either one interpretation or the other.

Because of the ambiguities of the explanations of the data, we can use a probabilistic framework to describe and
solve the problems. In particular, we can describe the task of perception through Bayesian Decision Theory [1].

Let’s take one of these ambiguous perception problems and work through it as a running example in this chapter.
We can simulate the illumination estimation problem as the following.

• Show distribution of surfaces and illuminant.

To make a demonstration using these stimuli, we need 10 volunteers, 9 to draw reflectance values and one to
sample the illumination strength. We do that, and then record the simulated observation brightnesses.

• Show reflectance patch values

• Show illumination values

• Show observed brightnesses.

The brightnesses could be, for example:

4, 30, 16, 23, 5, 45, 49, 46, 8

2 The computation

Let’s start by finding P (~x|~y). Finding this probability will not be the full story–we’ll still need to make a decision–
but finding P (~x|~y) is an important first step.

Typically, we know how an image is formed, and so we know the conditional probability distribution, but in the
other direction: the probability of the observations, given the scene, P (~y|~x).
Why is this forward model written as a probability? Because, in general, there will be noise in the observations.
Suppose the computer graphic rendering of our scene is ~f(~x). Then, to derive P (~y|~x), we can start from

~y = ~f(~x) + ~n (1)



where ~n is an additive noise vector. For the case when that is zero-mean Gaussian noise of variance σ, we have
~n˜N(0, σ). Then we have

P (~y|~x) = N(~y − ~f(~x), σ2) (2)

=
1√
2πσ2

exp(−|~y −
~f(~x)|2

2σ2
) (3)

How do we go from P (y|x) to P (x|y)? (omitting vector symbols for brevity now). We use Bayes rule. Because,
by fundamental theorems of probability,

P (y|x) = P (x|y)P (y) (4)
= P (y|x)P (x) (5)

Thus, we have Bayes Rule:

P (x|y) = P (y|x)P (x)
P (y)

(6)

The first term, P (y|x) is called the likelihood. It is the likelihood of the data you obseved, given some under-
lying scene. P (x) is called the prior probability. It is what you believe the world is like before you make your
measurement of it. P (y) is a normalizing constant that doesn’t depend on the scene and is called the evidence.

As a warm-up, let’s first consider a very toy estimation problem: given just one observation, y1, the brightness
of one of the nine patches of grey, estimate both the brightness of the underlying patch, x1, and the illumination
strength, xL.

Since the rendering function is f(x) = x1xL, then the likelihood function is

P (y1|x1, xL) =
1√
2πσ2

exp(−|~y1 − x1xL|
2

2σ2
) (7)

• Show the likelihood ridge.

2.1 Shape of likelihood ridge for illumination estimation problem

3 Ways to break ties
• priors
• choose the loss function appropriately for the task.
• marginalize over nuisance variables

4 Priors

For many vision problems, priors can be very helpful. Here are some situations where the prior saves the day and
allows for almost always the correct interpretation.

• Show moon craters
• Show clinton/gore
• show hollow mask illusion

For our problem of estimating the illumination strength and patch brightnesses, our priors are given as follows: For
the illumination strength, xL:

P (xL) = { 0.01 1 ≤ xL ≤ 100
0 otherwise (8)

For the reflectance of the ith patch, xi:

P (xi) = { 0.1 0 < xL ≤ 1
0 otherwise (9)



5 The posterior

Given the priors and the likelihood function, we can write the posterior probability. It is named posterior because
it is the probability of the x parameters after the measurements have been made. Combining Eqs. (8), (9), (7), we
have the posterior, P (x|y). If the observation noise for each grey patch is assumed to be independent of that of
each other, then their joint probability is the product of their individual probabilities. Thus, the likelihoods for each
patch just multiply together to give their joint likelihood, giving:

P (x1 . . . xN , xL|~y) =
∏
i

1√
2πσ2

exp(−|yi − xixL|
2

2σ2
)P (xi)P (xL) (10)

6 Loss functions

To make a decision, we need to specify the cost of guessing wrong, L(x, x′), where x is what we guessed, and x’
is what the scene really was. To make a decision, we can minimize the expected loss, selecting x̂:

x̂ = argminx

∫
dx′P (x′|y)L(x, x′) (11)

• MAP: The name of the “Maximum A Posteriori” (MAP) estimate is a description of the decision rule
used to find it: you select the scene parameters, x, which yield the maximum of the posterior probability.
In the Bayesian decision theory framework, this is equivalent to using a “delta function loss”.

• MMSE stands for “Minimum Mean Squared Estimate” and corresponds to a squared error loss function
in the Bayesian decision theory framework.

• MLM: This is a non-standard estimator, proposed in [2]. This selects the scene parameters x which
maximize the integral of the probability density in some local region.

7 Marginalization over nuisance variables

Intuitively, we want integrate over the likelihood ridge in order to be sensitive to the differing thicknesses of the
likelihood ridge.

So let’s use the joint posterior over the patch reflectances and the lighting strength to find the marginal probability
for just the lighting strength. We have

P (xL|~y) =

∫
P (x1 . . . xN , xL|~y)dx1 . . . dxN (12)

= P (xL)

∫ ∏
i

1√
2πσ2

exp(−|yi − x1xL|
2

2σ2
)P (xi)dx1 . . . dxN (13)

(14)

The integrals over dx1...N are all independent of each other, so let’s consider the integral over dxi.

P (xL|~y) = P (xL)

∫ ∏
i

1√
2πσ2

exp(−|yi − xixL|
2

2σ2
)P (xi)dxi (15)

= P (xL)
1√
2πσ2

∏
i

∫ 1

0

exp(−|yi − xixL|
2

2σ2
)dxi (16)

(17)

We can assume that the observation noise, σ, is very small compared with the interval 0 < xi < 1. Then all that
matters is whether the interval 0 < xi < 1 contains a feasible value for xi, given the observation yi. Ie, is there
a feasible value for xL for which yi − xixL = 0 within the interval 0 < xi < 1? If yes, then, for small σ, the



integral
∫ 1

0
of the Gaussian will approximately equal the integral

∫∞
−∞ of the Gaussian. And if no, the integral will

approximately equal zero.

Using
∫∞
−∞ exp(−a(x+ b)2)dx =

√
π
a , we have

P (xL|~y) = P (xL)
1√
2πσ2

∏
i

{

1
xL

0 < xi < 1
or

0 < yi
xL
≤ 1

or
yi < xLfor all yi

0 otherwise

(18)

=
0.01√

2πσ2(xL)N
{ 1 xL > maxiyi

0 otherwise (19)

where the last line follows from the previous by considering for which values of xL will yi
xL

be ≤ 1.

If the largest observed intensity was 49, as in the examples earlier in this chapter, then the marginal posterior
probability for the illuminant, xL, will be proportional to 1

x9
L

over the domain 49 to 100, as shown in the figure:

Figure 1: Posterior marginal probability of xL for the maximum value of y, yi = 49 .
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