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1 Signals, images and sequences

In the previous chapter, we made a simple computer vision system. We broke the image
into edges and labeled them to make progress in interpreting the 3d shape of a scene. But
we had to work in a very constrained world so that our brittle processing steps would give
useful information about edges and their labels.

Of course we want to build a vision system that operates in the real world. One such
system is the human visual system. Although much remains to be understood about how
our visual system processes images, we have a fairly good idea of what happens at the
initial stages of visual processing, and it will turn out to be similar to some of the filtering
we discuss in this chapter. While we’re inspired by the biology, here we describe some
mathematically simple processing that will help us to parse an image into useful tokens,
low-level features that will be useful later to construct visual interpretations.

We’d like for our processing to enhance image structures of use for subsequent interpre-
tation, and to remove variability within the image that makes more difficult comparisons
with previously learned visual signals. Let’s proceed by invoking the simplest mathemati-
cal processing we can think of, and see how far it takes us toward these goals.

Linear filters are one of the main tools to perform computations in images. Linear filters
as computing structures for vision have received a lot of attention because of their surpris-
ing success in modeling some aspect of the processing carried our by early visual areas
such as the retina, the lateral geniculate nucleus (LGN) and primary visual cortex (V1).
Neurons are modeled by a linear first stage that takes a weighted linear combination of the
input image and a second stage which performs a non-linearity. This model is certainly a
simplification but it is remarkably successful at explaining a large number of observations
in the primate visual system.

Many of the filters that we will review in this chapter and the next one have become
popular because of their functionality as image processing tools and/or because of their fit
to observations in the early visual system.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 19, 2018 9:31pm

2 Chapter 1 Signals, images and sequences
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Figure 1.1
Generic image processing module.
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Figure 1.2
a) A continuous signal, and b) a discrete signal.

1.1 Signals and systems

In this chapter we will introduce some basic tools to characterize images and simple image
processing systems. We will describe tools from signal and image processing. For a deeper
understanding there are many books [] devoted to signal processing, providing essential
tools for any computer vision scientist. We will present signal processing tools from a
computer vision perspective. Our goal will be to extract from images information useful to
build meaningful representations of the image in order to understand its content.

The kind of systems that we will study here are of the kind shown in figure 1.7 that take
an image as input, perform some filtering operation, and output another image. In general
a filter will be used to remove some image components or enhance others.

The tools we will review here allow representing signals (1D sequences, images or
movies) and the filters used to process them.

1.2 Signals, images and sequences

1.2.1 Continuous and discrete signals
If we consider the brightness captured by one photo sensor, we could write it as a one
dimensional function of time: f (t), where f (t) denotes the measured brightness value at
time t, and t is a continuous variable that can take on any real value.
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Although most of the signals that exist in nature are continuous signals, when we intro-
duce them into a computer they are sampled and transformed into discrete signals.

The function f (t) can be sampled in time (as is done in a video) where the values are only
captured at discrete times (e.g., 30 times per second). In that case, the function f will be
defined only on discrete time instants and we will write the sequence of measured values
as: f [n], where n can only take on discrete values. The relationship between the discrete
values and the continuous function is given by the sampling:

f [n] = f (n ∆T ) (1.1)

where ∆ T is the sampling period. For instance, ∆T = 1/30 secs in the case of sampling
the signal 30 times per second.

As is common in signal processing, we will use parenthesis to indicate continuous vari-
ables and brackets to denote discrete variables. For instance, if we sample the signal shown
in figure 1.2.a once every second (∆T = 1 secs) we get the discrete signal shown in figure
1.2.b.

The signal in figure 1.2.b is a function that takes on the values f [0] = 3, f [1] = 2,
f [2] = 1 and f [3] = 4 and all other values of f [n] = 0. In most of the book we will
work with discrete signals. In many cases it will be convenient to write discrete signals
as vectors. Using vector notation we will write the previous signal as a column vector
f = [3, 2, 1, 4]T , where T denotes transpose.

Images and sequences are also discrete signals. Gray scale images are two dimensional
signals that can be encoded as arrays of pixels: I [n,m]. Sequences are three dimensional
and we will write them as I [n,m, t]. Figure 1.3 shows an image of size 18 × 18 pixels
plotted as a 2D signal. Can you guess the object that appears in this image?
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Figure 1.3
A discrete 2D signal.
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Similarly to 1D signals, we can write this 2D signal as a matrix:

I =



160 175 171 168 168 172 164 158 167 173 167 163 162 164 160 159 163 162
149 164 172 175 178 179 176 118 97 168 175 171 169 175 176 177 165 152
161 166 182 171 170 177 175 116 109 169 177 173 168 175 175 159 153 123
171 174 177 175 167 161 157 138 103 112 157 164 159 160 165 169 148 144
163 163 162 165 167 164 178 167 77 55 134 170 167 162 164 175 168 160
173 164 158 165 180 180 150 89 61 34 137 186 186 182 175 165 160 164
152 155 146 147 169 180 163 51 24 32 119 163 175 182 181 162 148 153
134 135 147 149 150 147 148 62 36 46 114 157 163 167 169 163 146 147
135 132 131 125 115 129 132 74 54 41 104 156 152 156 164 156 141 144
151 155 151 145 144 149 143 71 31 29 129 164 157 155 159 158 156 148
172 174 178 177 177 181 174 54 21 29 136 190 180 179 176 184 187 182
177 178 176 173 174 180 150 27 101 94 74 189 188 186 183 186 188 187
160 160 163 163 161 167 100 45 169 166 59 136 184 176 175 177 185 186
147 150 153 155 160 155 56 111 182 180 104 84 168 172 171 164 168 167
184 182 178 175 179 133 86 191 201 204 191 79 172 220 217 205 209 200
184 187 192 182 124 32 109 168 171 167 163 51 105 203 209 203 210 205
191 198 203 197 175 149 169 189 190 173 160 145 156 202 199 201 205 202
153 149 153 155 173 182 179 177 182 177 182 185 179 177 167 176 182 180


This matrix represents the same image of 18 × 18 pixels as in figure 1.15. Again, it is

hard to grasp the content of the image by just looking at this matrix. Figure 1.4 visualizes
the matrix as an image where each value is shown as a different gray-scale value.

It is also convenient to encode images as a 1D vector by concatenating all the image
columns into a long column vector of M × N values.
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Figure 1.4
Gray scale image showing a person walking in the street. This tiny image has only 18 × 18 pixels.
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Although in practice images will always be discrete signals, in some cases it is useful to
work on the continuous domain as it simplifies the derivation of analytical solutions. This
was the case in the previous chapter were we used the image gradient in the continuous
domain and then approximated it in the discrete space domain. In those cases we will write
images as I(x, y) and sequences as I(x, y, t).

1.2.2 Signal space
As we have done already several times, it is very useful to think of signals and images as
vectors. Let us define the two finite length column vectors f and g of length N. f and
g can be the sequence of numbers of a 1D signal or the concatenation of all the columns
(or rows) of a 2D image into a 1D column vector. Although we have only worked with
real signals and images, later we will manipulate also signals and images made of complex
numbers.

Then we can define:
The scalar product between two (complex) signals is:

〈 f , g〉 =

N−1∑
n=0

f [n] g∗ [n] = f T g∗ (1.2)

where ∗ denotes complex conjugate. Two signals are orthogonal if 〈 f , g〉 = 0.
The scalar product also induces a norm. The squared L2 norm of a signal is:

E f = ‖ f ||2 = 〈 f , f 〉 =

N−1∑
n=0

| f [n]|2 = f T f ∗ (1.3)

some times this is referred to as the energy of the signal.
If we want to compare two signals, we can use the squared L2 distance:

d2
f ,g = ‖ f − g||2 =

N−1∑
n=0

| f [n] − g [n]|2 = E f + Eg − 2 〈 f , g〉 (1.4)

The set of signals with finite L2 norm form a Hilbert space. We can also define basis,
other metrics, ...

The same applies to continuous functions.

1.2.3 Properties of a signal
Signals and images are very high dimensional sequences of numbers. One of our goals
is to find representations that extract from the signal some basic quantities that allow us
making explicit signal properties that might allow us to understand its content. Here are
some important quantities:
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DC value is the mean signal value1:

DC =
∑

n

f [n] (1.5)

The energy of the signal is defined as the squared L2 norm of the signal:

E = ‖ f ‖2 =
∑

n

| f [n] |2 (1.6)

For finite energy signals, there are other quantities of interest:
Center of mass of the signal measure the average position where the signal variations are

located:
µ =

1
E

∑
n

n | f [n] |2 (1.7)

The variance in the spatial domain measures how compact is the signal:

σ2 =
1
E

∑
n

(n − µ)2 | f [n] |2 (1.8)

For an image, the mean is a 2D vector and the co-variance is a 2 × 2 matrix.

1.3 Linear Filtering

Figure 1.5 we show what a general filter looks like. It takes as input a signal g and outputs
the signal f such that

f = H(g) (1.9)

where H is an arbitrary function.

Hg f

Figure 1.5
Notation to describe a general non-linear filter that takes as input a signal g and outputs a signal f so
that f = H(g).

This transformation is very general and it can do all sorts of complex things. For in-
stance, it could detect edges in images, recognize objects, detect motion in sequences or
apply aesthetic transformations to a picture. This generality makes it also very difficult
to characterize them. Therefore, we will start with simpler family of filters. Among all

1 DC means direct current and it comes from electric engineering. Although most signals have nothing to do with
currents, the term DC is still commonly used.
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possible filters, the simplest ones are linear filters. They are nice because there are power-
ful tools to describe and implement them. On the other hand they represent a very small
portion of all the possible filters one could implement. Despite this limitation we will show
in the next chapter how some simple linear filters are capable of creating very interesting
applications.

To make things more concrete, lets assume the input is a 1D signal with length N that
we will write as g [n], and the output is another 1D signal with length M that we will write
as f [n]. Most of the times we will work with input and output pairs with the same length
M = N. A linear filter, in its most general form, can be written as:

f [n] =

N−1∑
k=0

h [n, k] g [k] f or n ∈ [0,M − 1] (1.10)

where each output value f [n] is a linear combination of values of the input signal g [n]
with weights h [n, k]. To help to visualize the operation perform by the linear filter it is
useful to write it in matrix form:

f [0]
f [1]
...

f [M − 1]

 =


h [0, 0] h [0, 1] ... h [0,N − 1]
h [1, 0] h [1, 1] ... h [1,N − 1]

...
...

...
...

h [M − 1, 0] h [M − 1, 1] ... h [M − 1,N − 1]




g [0]
g [1]
...

g [N − 1]


(1.11)

which we will write as
f = Hg (1.12)

The matrix H will have size M × N where N is the length of the input signal g [n] and M
is the length of the output signal f [n]. We will use the matrix formulation many times in
this book.

In 2D dimensions each pixel of the output image is replaced by a linear combination of
pixels of the input image. If horizontal and vertical positions are indexed by n and m, the
output image is f [n,m], and the input image is g [n,m], then a general linear filtering of
the image is

f [n,m] =

N−1, M−1∑
k, l=0

h [n,m, k, l] g [k, l] (1.13)

By writing the images as column vectors, concatenating all the image columns into a long
vector, we can also write the previous equation as a matrix times a vector.

1.3.1 Convolution and translation invariant filtering
One particular case of a linear filter is a translation invariant linear filter.

Typically, we don’t know where within the image we expect to find any given item
(Fig. 1.6), so we often want to process the image in a spatially invariant manner, the
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Figure 1.6
A fundamental property of images is translation invariance–the same image may appear at arbitrary
spatial positions within the image. Image credit: Fredo Durand.
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same processing algorithm at every pixel. In that case, the processing becomes a linear
convolution of the image data with some filter.

Let’s start with the 1D case. As example of a translation invariant filter is a filter for
which the output for the sample n is twice the value of the input at that same time minus
the sum of the two previous time steps. This is:

f [0] = 2g [0] − g [−1] − g [−2]

f [1] = 2g [1] − g [0] − g [−1]

f [2] = 2g [2] − g [1] − g [0]

...

f [n] = 2g [n] − g [n − 1] − g [n − 2] (1.14)

A filter is linear translation invariant (LTI) if it is linear and when we translate the input
signal by m samples, the output is also translated by m samples. This means that the
behavior of the filter does not change depending on the location of the input.

Linear translation invariance imposes a strong constraint on the form of equation 1.10.
The weighting, h, for the linear combination of the input image pixels, g, is only a function
of the spatial offset from the pixels of g. For a 1D signal, a linear convolution, denoted ◦,
of h and g is:

f [n] = h ◦ g =

N−1∑
k=0

h [n − k] g [k] (1.15)

for the previous example h = [2,−1,−1]. N is the length of the signal g [n] and we assume
it is zero outside of the interval n ∈ [0,N − 1].

n

h [n]
g [n] f [n]

Figure 1.7
Example of a linear translation invariant signal processing module. The function inside the box
correspond to the convolution kernel.

Most of the filters we will use will have what is called finite support. A filter has finite
support if the filter kernel h has non-zero values only at a finite number of locations. In the
signal processing literature those filters are called finite impulse response filters (FIR).
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In the 1D case, it helps to make explicit the structure of the matrix:

f [0]
f [1]
f [2]
...

f [N − 1]


=



h [0] h [−1] h [−2] ... h [1 − N]
h [1] h [0] h [−1] ... h [2 − N]
h [2] h [1] h [0] ... h [3 − N]
...

...
...

...

h [N − 1] h [N − 2] h [N − 3] ... h [0]





g [0]
g [1]
g [2]
...

g [N − 1]


(1.16)

Figure 1.8 shows the convolution of a kernel, h, with a 1D signal, g. h and g are shown
in the top row. Subsequent rows show the implementation. h [m − k] is just h, offset by m
pixels and reversed. We multiply this term-by-term with g and sum those weighted values
of g[m] to form the output signal, f[m].

In two dimensions, the processing is analogous: The input filter is flipped vertically and
horizontally, then slid over the image to record the inner product with the image every-
where. Mathematically, this is:

f [m, n] = h ◦ g =
∑
k,l

h [m − k, n − l] g [k, l] (1.17)

Figure 1.9 shows the 2D convolution of a kernel h with an image, g. The particular kernel
used in the figure averages in the vertical direction and takes differences horizontally. The
output image reflects that processing, with horizontal differences accentuated and vertical
changes diminished.

Figure 1.10 shows several simple convolution examples. Figure 1.10.a shows a kernel
with a single central non-zero element, convolved with any image, gives back that same
image (even at the boundaries, by the way, since any pixels beyond the boundaries are mul-
tiplied by zero). This kernel is called the impulse and we will discuss it later. Figure 1.10.b
shows a kernel that produces a shift of the input image. For the last example shown in
figure 1.10.c, can you guess what linear convolution will cause the image to rotate?

At the center of rotation, the center pixel should be output, no matter what the surround-
ing pixels are, so that can only be implemented by convolution with an impulse. But at
the top left corner, one wants to grab a pixel from, say, 5 pixels down and to the right, and
from the bottom one needs to grab the pixel from about 5 pixels up and to the right. So this
rotation operation can’t be written as a spatially invariant convolution.

1.3.1.1 Properties of the convolution The convolution is a linear operation that will
be extensively used thorough the book and it is important to be familiar with some of its
properties.

• Using equation. 1.15 or equation 1.17 is it easy to show that convolution is commutative
operator:

h [n] ◦ g [n] = g [n] ◦ h [n] (1.18)
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Figure 1.8
Illustration in 1-d of the steps in computing the convolution of a kernel h with a signal g. Shifted and
offset versions of the kernel h provide the weights to construct f[m] from a linear combination of the
samples of g[m].
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111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 
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? -24 37 349 -224 -120 -10 ? 

? -23 33 360 -217 -134 -23 ? 
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-1 2 -1
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=

Figure 1.9
Illustration of a 2-d convolution of an input image, g, convolved with a kernel, h, giving the output
image, f. The images are shown with both their pixel values and the corresponding image intensities
(the assignment of intensities to numbers was rescaled for the output image, f). Border pixel values
of the output image are not determined by the convolution, since the kernel would include pixel
values outside of the input image.
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a) b)

c) d)

Figure 1.10
a) An impulse convolved with the input image gives no change (each color channel is convolved with
the same kernel). b) A shifted impulse shifts the image. c) Sum of two shifted copies of the image.
d) The text discusses why there is no space invariant convolution kernel can rotate an image. All the
examples use zero padding for handling boundary conditions.
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this means that the order of convolutions is irrelevant.
• It is associative:

h [n] ◦ g [n] ◦ q [n] = h [n] ◦ (g [n] ◦ q [n]) = (h [n] ◦ g [n]) ◦ q [n] (1.19)

• It is distributive with respect to the sum:

h [n] ◦ ( f [n] + g [n]) = h [n] ◦ f [n] + h [n] ◦ g [n] (1.20)

• Another interesting property involves reversing the shifts between the two convolved
functions. If f [n] = h [n] ◦ g [n], then:

f [n − n0] = h [n] ◦ g [n − n0] = h [n − n0] ◦ g [n] (1.21)

• The convolution of a signal a support of N samples with another one with a support of
M samples results in a signal with a support L ≤ M + N − 1.

• The convolution also has an identity function which we will introduce in section 1.4.1.

1.3.1.2 Handling boundaries When implementing a convolution, one is confronted
with the question of what to do at the image boundaries. There’s really no satisfactory
answer for how to handle the boundaries that works well for all applications. One solution
consists in omitting from the output any pixels that are affected by the input boundary.
The issue with this is that the output will have a different size than the input and, for large
convolutional kernels, there might be a large portion of the output image missing.

The most general approach consists in extending the input image by adding additional
pixels so that the output can have the same size as the input. So, for a kernel with support
[−N,N] × [−M,M], one has to add N/2 additional pixels left and right of the image and
M/2 pixels at the top and bottom. Then, the output will have the same size as the original
input image.

Some typical choices for how to pad the input image are (see fig. 1.11):

• Zero padding: set the pixels outside the boundary to zero (or to some other constant such
as the mean image value).

• Repeat padding: set the value to that of the nearest output image pixel with valid mask
inputs.

• Mirror padding: reflect the valid image pixels over the boundary of valid output pixels.
This is the most common approach and the one that gives the best results.

• Circular padding: extend the image by replicating the pixels from the other size. If the
image has size P×Q, then, circular padding consists in: I [n,m] = I [mod(n, P),mod(m,Q)].
This padding transform the finite length signal into a periodic infinite length signal.
Although this will introduce many artifacts, it is a convenient extension for analytical
derivations.
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zero padding circular repetition mirror edge pixels repeat edge pixels ground truth

Figure 1.11
Boundary extensions are different ways of approximating the ground truth image that exists beyond
the image boundary. Each column shows: a) Different types of boundary extension. The last image
shows the ground truth. b) the output of convolving the image with a kernel that is a box of 1 with
size 11 × 11. The output only shows the central region that corresponds to the input image without
boundary extension. c) difference between each output and the ground truth output, last column of
(b). Note that the ground truth will not be available in practice.
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1.3.1.3 Convolution in the continuous domain Although in practice all the convolu-
tions will be done in the discrete domain, the continuous domain is important for analytical
derivations and for characterizing signals before they are captured by the camera.

The convolution in the continuous domain is defined in the same way as the discrete
equations but replacing the sums by integrals. Given two continuous signals h(t) and g(t),
the convolution operator is defined as:

f (t) = h(t) ◦ g(t) =

∫ ∞

−∞

h(t − τ)g(τ)dτ (1.22)

The properties of the continuous domain convolution are analogous to the properties of
the discrete convolution, with the commutative, associative and distributive relationships
still holding.

1.3.2 Correlation and template matching
Another form of writing a translation invariant filter is using the correlation operator. The
correlation provides a simple technique to locate a template in an image.

1.3.2.1 Correlation vs. convolution The correlation and the convolution are closely
related. The convolution between image g and filter h is:

f [m, n] = h ◦ g =
∑
k,l

h [m − k, n − l] g [k, l] (1.23)

where the sum is done over the support of the filter h. The correlation between the image
g and the filter h is written as:

f [m, n] = h ∗ g =
∑
k,l

h [m + k, n + l] g [k, l] (1.24)

In the correlation, the filter is not inverted left-right and up-down as it is done in the convo-
lution. In particular, note that the correlation and convolution operators are identical when
the filter h is symmetric.

The difference between the two operators is that the convolution is commutative and
associative while the correlation is not. The correlation breaks the symmetry between the
two functions h and g. For instance, in the correlation, shifting h is not equivalent to
shifting g.

1.3.2.2 Template matching and normalized correlation Template matching can be
defined as detection of complex patterns such as objects within cluttered signals such as
images. For instance figure 1.12 illustrates the detection of the “a” letters through matching
an example “a” template (figure 1.12(a)) in a given text image (figure 1.12(b)).

Although correlation is a potential method for template matching it also has certain flaws.
Consider matching the “a” template in figure 1.12(a) in a given input image. Just by in-
creasing the brightness of the image in different parts we can increase the filter response
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a) b)a) c) d) e)

Figure 1.12
a) Template. b) Input image. c) Output of the correlation between the image and the template. d)
Output of the normalized correlation. e) Locations with values of the normalized correlation above
75% of its maximum value.

since correlation is essentially a multiplication between the filter f and any input image
patch g, and note that all the values are positive in f and g. This suggests that in bright
white regions we will have the maximum responses of the template. One way of improv-
ing the robustness of the template f would be introducing negative values inside it by
constructing a zero-mean template:

f ′ = f − m f where m f =
1

MN

N−1∑
n=0

M−1∑
m=0

f [n,m] (1.25)

To further improve the robustness we can normalize both the filter f and the applied image
patch g with standard deviations, eventually obtaining normalized cross-correlation (NCC)
as:

NCC( f , g) =
〈

f̄ , ḡ
〉

where f̄ =
f − m f√〈

f − m f , f − m f

〉 =
f ′√
〈 f , f ′〉

,

ḡ =
g − mg√〈

g − mg, g − mg

〉 =
g′√
〈 f ′, f ′〉

(1.26)

Note that both f̄ and ḡ are unit norm vectors. Therefore NCC( f , g) =
〈

f̄ , ḡ
〉

= || f̄ || ||ḡ|| cosα =

cosα where α is the angle between the vectors f ′ and g′.
Another common method of comparing patches is through sum of squared distances

(SSD), also referred to as squared L2 distance:

S S D( f , g) = || f − g||2 =
∑

n

| f [n] − g [n] |2 = E f + Eg − 2 〈 f , g〉 (1.27)

However this method also suffers in extreme illumination changes as the distance is strongly
effected by the energy of the signals E f and Eg. We can remove such undesired effects
through L2 normalization of signals f̂ =

f
|| f || and ĝ =

g
||g|| , and eventually obtain normalized
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squared L2 distance:

S S D( f̂ , ĝ) = || f̂ − ĝ||2 = E f̂ + Eĝ − 2 〈 f , g〉 = 2 − 2
〈

f̂ , ĝ
〉

(1.28)

where E f̂ = Eĝ = 1 as f̂ and ĝ are unit norm vectors due to the normalization. An important
factor to note here is that the distance is no longer effected by the norm of the signals, but
it is merely defined by the angle between two signals as follows:

S S D( f̂ , ĝ) = 2 − 2cosθ since
〈

f̂ , ĝ
〉

= || f̂ || ||ĝ|| cosθ = cosθ (1.29)

where θ is the angle between the vectors f and g. The quantity
〈

f̂ , ĝ
〉

is also referred to as
cosine similarity, a well known similarity metric that is essentially the cosine of the angle
between two vectors defined as follows:

cossim( f , g) =
〈 f , g〉
|| f || ||g||

(1.30)

Note that cosine similarity is bounded by the interval [−1,+1] as cosθ is. Hence S S D( f̂ , ĝ)
is bounded by the interval [0, 4].

If we want to have a measure of similarity between two signals that is invariant to overall
image brightness, then a more appropriate measure is the angle. Note that both NCC and
cossim are angular similarity measures and they are not effected by the energy of the signals
such as illumination changes in images. The major difference between them is that θ in
cossim is the angle between original signals f and g whereas α in NCC is the angle between
the zero-mean vectors f ′ and g′ defined in (1.25).

Convolution and correlation operators are the main building blocks of the convolutional
neural networks which will be discussed in chapter ??.

1.4 Special signals

There are two families of signals that deserve special attention due to their role in modeling
linear systems: the impulse and sinusoidal waves.

1.4.1 The impulse
One important discrete signal is the impulse (also called the Kronecker delta function).
The impulse in 1D is the signal defined as:

δ [n] =

1 if n = 0

0 if n , 0
(1.31)

it takes the value 1 for n = 0 and it is zero everywhere else.
This signal is important because it has some very useful properties. The most important

one is that it behaves as the identity function for the convolution. The result of convolving
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−3 −2 −1 0 1 2 3

1

n

δ [n]

Figure 1.13
Impulse signal.

a signal g [n] with the impulse signal is the same signal:

f [n] = δ ◦ g =
∑

k

δ [n − k] g [k] = g [n] (1.32)

Convolving a signal f with a translated impulse δ [n − n0] results in a translated signal:

f [n − n0] = δ [n − n0] ◦ f [n] (1.33)

For an LTI filter with kernel h [n], the output from an impulse is f [n] = h [n]. The output
of a translated impulse δ [n − n0] is h [n − n0]. This is why the filter kernel h [n] is also
called the impulse response of the system. For an unknown system, one way of finding the
convolution kernel h consists in computing the output of the system when the input is an
impulse.

If you are in a room and you clap (which is a good approximation to an impulse of sound),
the echoes that you hear are very close to the impulse response of the system formed by the
acoustics of the room. Any sounds that originates at the location of your clap will produce
a sound in the room that will be qualitatively similar to the convolution of the acoustic
signal with the echoes that you hear before when you clapped.

To see how the shift operation works, let’s see what happens in 1D. The linear system
that shifts the signal by one sample can be written as h [n] = δ [n − 1]. In matrix form this
is: 

0 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
...

...
...

...

0 0 0 ... 1 0





g [0]
g [1]
g [2]
...

g [N − 1]


=



0
g [0]
g [1]
...

g [N − 2]


(1.34)

The first zero is a boundary artifact (in this example we are using zero-padding to extend
the signal). The rest of the signal is translated by 1 location.

The set of impulse signals, δ [n − k], delayed for all values k ∈ [0,N − 1], constitutes a
basis for the set of discrete signals defined in the domain [0,N − 1]. Any discrete signal
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can be written as a linear combination of delayed impulse responses:

f [n] =

N−1∑
k=0

f [k] δ [n − k] (1.35)

where the values f [k] are the coefficients used for the linear combination of the set of
impulses.

In 2D, the impulse is

δ [n,m] =

1 if n = 0, m = 0

0 either n , 0 or m , 0
(1.36)

The 2D impulse is a separable function, meaning that it can be written as the product of
two 1D functions, both impulses:

δ [n,m] = δ [n] δ [m] (1.37)

Convolution by an impulse can be used to translate an image:

f [n − n0,m − m0] = δ [n − n0,m − m0] ◦ f [n,m] (1.38)

Although this might seem like an obscure way of doing such a simple image operation, it
is very useful for analytical derivations.

The impulse can also be defined on the continuous domain. The continuous impulse is
represented as δ(t) with t ∈ <. The impulse function is defined as being zero everywhere
but at the origin where it takes an infinitely high value so that its integral is equal to 1:∫ ∞

−∞

δ(t)dt = 1 (1.39)

The impulse function is also called the impulse distribution (as it is not a function in the
strict sense) or the Dirac delta function.

The impulse has several important properties:

• Scaling property: δ(at) = δ(t)/|a|
• Symmetry: δ(−t) = δ(t)
• Sampling property: f (t)δ(t− a) = f (a)δ(t− a) where a is a constant. From this, we have:∫ ∞

−∞

f (t)δ(t − a)dt = f (a) (1.40)

• As in the discrete case, the continuous impulse is also the identity for the convolution:
f (t) ◦ δ(t) = f (t).

This function will be useful in analytical derivations and we will see it come back in
section 1.6 when we discuss sampling.
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1.4.2 Cosine and sine waves
Sine, and cosine waves are, after the impulse, the most important family of functions.

The continuous sine wave function is:

s (t) = A sin (w t − θ) (1.41)

where A is the amplitude, w is the frequency, and θ is the phase. The wave signal is periodic
with a period is T = 2π/w. In discrete time, the sine wave is:

s [n] = A sin (w n − θ) (1.42)

where w is the frequency. Note that the discrete sine wave will not be periodic for any
arbitrary value of w. A discrete signal f [n] is periodic, if there exists T ∈ N such that
f [n] = f [n + mT ] for all m ∈ Z. For the discrete sine (and cosine) wave to be periodic the
frequency has to be w = 2πK/N for K,N ∈ N. If K/N is an irreducible fraction, then the
period of the wave will be T = N samples. Although θ can have any value, here we will
consider the θ = 0 or θ = π/2, which will give the sine and cosine waves respectively.

In general, to make explicit the periodicity of the wave we will use the form:

sk [n] = sin
(

2π
N

k n
)

(1.43)

the same applies for the cosine:

ck [n] = cos
(

2π
N

k n
)

(1.44)

This particular notation makes sense when considering the set of periodic signals with
period N, or the set of signals with finite support signals of length N with n ∈ [0,N − 1].
In such a case, k ∈ [1,N/2] denotes the number of wave cycles that will occur within the
region of support. Note that if k = 0 then s [n] = 0 and c [n] = 1 for all n. One can also
verify that cN−k = ck, and sN−k = −sk, therefore for k > N/2 we find the same set of waves
as the ones in the interval s ∈ [1,N/2].

One remarkable property of sine and cosine waves is that the set of function sk and ck

constitute what is called an orthogonal basis for all periodic discrete signals with period
N, and also for all discrete signals of length N (and a similar property exists also for
continuous signals). Therefore, any such signal can be written as:

f [n] = a0 +

N/2∑
k=1

ak cos
(

2π
N

k n
)

+

N/2∑
k=1

bk sin
(

2π
N

k n
)

(1.45)
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Figure 1.14
Sine and cosine waves with A = 1 and N = 20. Each row corresponds to k = 1, k = 2 and k = 3.
Note that for k = 3 the waves oscillates 3 times in the interval [0,N − 1] but the samples in each
oscillation are not identical and it is only truly periodic once every N samples. This is because 3/20
is an irreducible fraction.

were the coefficients ak and bk are constants.

a0 =
1
N

N−1∑
n=1

f [n]

ak =
2
N

N−1∑
n=1

f [n] cos
(

2π
N

k n
)

bk =
2
N

N−1∑
n=1

f [n] sin
(

2π
N

k n
)

(1.46)
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The set of coefficients (ak, bk) provide an alternative representation of the signal f to the
one provided by its sample values f [n]. As shown in equations 1.46, the coefficients (ak,
bk) are a linear transformation of the samples f [n].

The same analysis can be extended to 2 dimensions. In 2D, the discrete sine and cosine
waves are:

su,v [n,m] = A sin
(
2π

(u n
N

+
v m
M

))
(1.47)

cu,v [n,m] = A cos
(
2π

(u n
N

+
v m
M

))
(1.48)
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Figure 1.15
2D sine waves with N = M = 20. The frequency values are: a) u = 2, v = 0, b) u = 3, v = 1, c)
u = 7, v = −5

1.5 Fourier analysis

We need a more precise language to talk about the effect of linear filters, and the differ-
ent image components, than to say “sharp” and “blurry” parts of the image. The Fourier
transform provides that precision. By analogy with temporal frequencies, which describe
how quickly signals vary over time, a “spatial frequency” describes how quickly a signal
varies over space. The Fourier transform lets us describe a signal as a sum of complex
exponentials, each of a different spatial frequency.

1.5.1 Discrete Cosine Transform
As we discussed in the previous section, sine, cosine and complex exponential waves are
basis for signals and images. A signal can be decomposed into a linear combination of
wave functions with different frequencies. The process of going from the signal to the
wave coefficients is called a transform. Going back from the coefficients into the original
signal is the inverse transform.
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The basis introduced in section 1.4.2 are not the only ones based in cosine and sine
waves. There are many variants that can be obtained by extending the signal outside the
interval [0,N − 1] with different kinds of symmetries.

One very important transform is the Discrete Cosine Transform (DCT), introduced in
1974 by Ahmed, Natarajan, and Rao []. There are several forms for the discrete cosine
transform. Here we describe the most common one. For signals in the domain [0,N − 1]
the DCT uses the basis:

x0 [n] =

√
1
N

xk [n] =

√
2
N

cos
(
π

2N
k (2n + 1)

)
for k ∈ [1,N − 1] (1.49)

with n ∈ [0,N − 1]. The N functions xk are an orthonormal basis. This is:

〈xk, xr〉 =

N−1∑
n=0

xk [n] xr [n] = δ [k − r] =

1 if k = r

0 if k , r
(1.50)

The discrete cosine transform (DCT) is extensively used in image processing.
The DCT of the signal f [n] is:

F [k] =

N−1∑
n=0

f [n] xk [n] (1.51)

where F [k] with k ∈ [0,N − 1] is the DCT. The inverse DCT is:

f [n] =

N−1∑
k=0

F [k] xk [n] (1.52)

which reconstructs the signal f from the DCT coefficients. Therefore, the DCT transform
is invertible.

We can also write this in matrix form, with one basis xk [n] per row. The DCT matrix is
an N × N matrix:

X =


x0 [0] x0 [1] . . . x0 [N − 1]
x1 [0] x1 [1] . . . x1 [N − 1]
...

...
...

xN−1 [0] xN−1 [1] . . . xN−1 [N − 1]

 (1.53)

Note that X XT = I where I is the identity matrix. Treating the signals as vectors, we can
write:

F = X f (1.54)

and
f = XT F (1.55)
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It is helpful to visualize the matrix for some values of N. For instance, for N = 4 we can
write the full matrix as:

X =
1
2


1 1 1 1

1.31 0.54 −0.54 −1.31
1 −1 −1 1

0.54 −1.31 1.31 −0.54

 (1.56)

The first row is a constant vector, the second and third rows contains waves with one period
with two different phases, and the last row has two periods. It is easy to check that these
four row vectors are orthogonal. Figure 1.16 shows the DCT matrix, displayed as an image,
for N = 32.

= *

Discrete cosine transform matrixF f
-0.25

+0.25

0

key

Figure 1.16
Visualization of discrete cosine transform as a matrix. The signal to be transformed forms the entries
of the column vector at right. The values of the DCT matrix are indicated by the gray-scale key in
the bottom left. In the vector at the right, black values indicate zero.

The DCT can be easily extended to 2D as the product of two 1D basis functions:

xu,v [n,m] = xu [n] xv [m] (1.57)

with xu and xv defined as in equation 1.49.
Although the DCT is very popular in image processing (concerned with image manipu-

lation), it is not commonly used in computer vision (concerned with image interpretation).
As a signal representation the DCT has a few issues:
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Figure 1.17
Lack of invariances in the DCT. a) a signal with N = 32, its DCT coefficients and the absolute value
of the DCT coefficients. b) that same signal but translated. Note that both the DCT coefficients
and their absolute values change. c) The same signal but with a left-right mirror. Again the DCT
coefficients change. Therefore, it is difficult to use the DCT coefficients to extract properties of the
signal invariant to where it is located.

• Translation invariance. Fig. 1.17 shows that the DCT coefficients change when we trans-
late a signal, even if it is shape does not change. This is an undesirable property if our
goal is to recognize the signal.

• In fact, the frequency content on a signal can not be easily analyzed. Even if you take a
single sine wave and you translate it, the coefficients change in a complex way.

In the next section we will see another transform that addresses these two issues: the
Fourier Transform.

1.5.2 Discrete Fourier Transform
The Fourier Transform is the most important transform and it is used in many fields.

1.5.2.1 Complex exponentials We have seen cosine and sine waves and how they can
be used to transform the image into another representation. We will first describe the
complex exponential, an important basis function. In continuous time, it is:

s (t) = A exp ( j w t) (1.58)

with j =
√
−1, w is the frequency, and A is the amplitude. A can be a complex number

A = |A| exp( jθ). Using Euler’s formula:

s (t) = A exp ( j w t) = |A| cos(wt + θ) + j |A| sin(wt + θ) (1.59)
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the complex exponential is a periodic function s (t) = s (t + T ) for T = 2π/w.
In discrete time (setting A = 1), we can write:

ek [n] = exp
(

j
2π
N

k n
)

= cos
(

2π
N

k n
)

+ j sin
(

2π
N

k n
)

(1.60)

Figure 1.18 shows the discrete complex exponential function. As the values are complex,
the plot shows in the x axis the real component and in the y axis the imaginary component.
As n goes from 0 to N − 1 the function rotates along the complex circle of unit magnitude.

a)
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Figure 1.18
Complex exponential wave with a) N = 40, k = 1, A = 1, and b) N = 40, k = 3, A = 1. The red and
green curves show the real and imaginary waves. The yellow line is the complex exponential. The
dots correspond to the discrete samples.

And in 2D, the complex exponential wave is:

eu,v [n,m] = exp
(
2π j

(u n
N

+
v m
M

))
(1.61)

where u and v are the two spatial frequencies. Note that complex exponentials in 2D are
separable. This means they can be written as the product of two 1D signals:

eu,v [n,m] = eu [n] ev [m] (1.62)

The set of functions ek [n], with k ∈ [0,N − 1], form an orthogonal basis for discrete
signals of length N. In fact,

〈ek, er〉 =

N−1∑
n=0

ek [n] e∗r [n] = Nδ [k − r] =

N if k = r

0 if k , r
(1.63)
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Similarly, the 2D complex exponentials form a basis for discrete images of size N × M:

〈
eu,v, eu′,v′

〉
=

N−1∑
n=0

M−1∑
m=0

eu,v [n,m] e∗u′,v′ [n,m] = MNδ
[
u − u′

]
δ
[
v − v′

]
(1.64)

Therefore, any finite length discrete signal can be decomposed as a linear combination of
complex exponentials.

Complex exponentials are related to cosine and sine waves by the equalities (using Eu-
ler’s formula):

cos
(
2π

(u n
N

+
vm
M

))
=

1
2

(
eu,v [n,m] + e∗u,v [n,m]

)
(1.65)

sin
(
2π

(u n
N

+
vm
M

))
=
− j
2

(
eu,v [n,m] − e∗u,v [n,m]

)
(1.66)

1.5.2.2 Discrete Fourier Transform and inverse Transform The Discrete Fourier
Transform (DFT) transforms an image f [m,m] into the complex image Fourier transform
F [u, v] as:

F [u, v] =

N−1∑
n=0

M−1∑
m=0

f [n,m] exp
(
−2π j

(u n
N

+
v m
M

))
(1.67)

By applying 1
MN

∑M−1
u=0

∑N−1
v=0 to both sides of Eq. (1.72) and exploiting the orthogonality

between distinct Fourier basis elements, we find the inverse Fourier transform relation:

f [n,m] =
1

NM

N−1∑
u=0

M−1∑
v=0

F [u, v] exp
(
+2π j

(u n
N

+
v m
M

))
(1.68)

We will call F [u, v] the Fourier transform of f [m, n].
As we can see from the inverse transform equation, we re-write the image, instead of as a

sum of offset pixel values, as a sum of complex exponentials, each at a different frequency,
called a spatial frequency for images, since they describe how quickly things vary across
space. From the inverse transform formula, we see that to construct an image from a
Fourier transform, capital F, we just add-in the corresponding amount of that particular
complex exponential (conjugated).

As F [u, v] is obtained as a sum of complex exponential with a common period of N,M
samples, the function F [u, v] is also periodic: F [u + aN, v + bM] = f [u, v] for any a, b ∈
Z. Also the result of the inverse DFT is a periodic image. Indeed you can verify from
equation 1.69 that f [n + aN,m + bM] = f [n,m] for any a, b ∈ Z.

The DFT and its inverse in 1D are defined in the same way. We can also write the DFT in
matrix form, with one basis per row. Working in 1D, as we did before, allows us visualizing
the transformation matrix. Figure 1.19 shows a color visualization of the complex-valued
matrix for the 1D DFT, which, when used as a multiplicand, yields the Fourier transform
of 1D vectors. Many Fourier transform properties and symmetries can be observed from
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Figure 1.19
Visualization of Discrete Fourier Transform as a matrix. The signal to be transformed forms the en-
tries of the column vector at right. The complex values of the Fourier Transform matrix are indicated
by the color, with the key in the bottom left. In the vector at the right, black values indicate zero.

inspecting that matrix. Note that this matrix has also some similarities with the matrix used
to compute the 1D DCT.

Using the fact that eN−u,M−v = e−u,−v, another equivalent way to write for the Fourier
transform is to sum over the frequency interval [−N/2,N/2] and [−M/2,M/2]. This is
specially useful for the inverse that can be written as:

f [n,m] =
1

NM

N/2∑
u=−N/2

M/2∑
v=−M/2

F [u, v] exp
(
+2π j

(u n
N

+
v m
M

))
(1.69)

This formulation allows us to arrange the coefficients in the complex plane so that the
zero frequency, or “DC”, coefficient is at the center. Slow, large variations correspond
to complex exponentials of frequencies near the origin. If the amplitudes of the complex
conjugate exponentials are the same, then their sum will represent a cosine wave; if their
amplitudes are opposite, it will be a sine wave. Frequencies further away from the origin
represent faster variation with movement across space.

The DFT often provides a better representation than the DCT. Note that, as both are
invertible transforms, it is possible to compute the DCT coefficients from the DFT co-
efficients (and vice-versa), but the DFT makes explicit signal information (such as the
frequency content and translation invariance of the coefficient magnitudes) that is useful
for image interpretation.

We will see later some properties of the Fourier transform. But one very important
property is that the decomposition of a signal into a sum of complex exponentials is unique:
there is a unique linear combination of the exponentials that will result in a signal.
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Figure 1.20
Invariances in the DFT (compare with fig. 1.17). a) a signal with N = 32, its DFT coefficients (real
and imaginary parts shown in red and green) and the magnitude of the DFT coefficients. b) that
same signal but translated. Note that both the magnitude of the DFT coefficients has not changed. c)
The same signal but with a flipped left-right. Again the DFT coefficient magnitude has not change.
Therefore, the DFT coefficients provide a translation invariant signal representation.

1.5.2.3 Discrete Fourier Transform of real images Let’s now look at the DFT of a
real picture. In this case we will not be able to write the analytic form of the result, but
there are a number of properties that will hold and that will help us to interpret the result.

Figure 1.21 shows the Fourier Transform of a 64× 64 resolution image of a cube. As the
DFT results in a complex representation, there are two possible ways of writing the result.
Using the real and imaginary components:

F [u, v] = Re {F [u, v]} + j Imag {F [u, v]} (1.70)

where Re and Imag denote the real and imaginary part of each Fourier coefficient. Or using
a polar decomposition:

F [u, v] = A [u, v] exp ( j θ [u, v]) (1.71)

where A [u, v] ∈ R+ is the amplitude and θ [u, v] ∈ [−π, π] is the phase. Figure 1.21 shows
both decompositions of the Fourier transform.

Although the DFT is a complex transform (the basis functions are vectors of complex
numbers), we will use it to represent images of real numbers. This means that when we use
the inverse Fourier transform to recover the real image from its complex Fourier transform,
the imaginary coefficients of the Fourier Transform will have to cancel out. Indeed, really
we’re describing the image as a sum of sines and cosines, which we’ll create from the
complex exponentials by taking sums and differences of them, at the same amplitude. So
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Figure 1.21
DFT of an image.
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to generate a real valued image, the Fourier transform will always have real component
that is even, and an imaginary component that is odd. We can show this from the definition
of the Fourier transform:

F∗ [u, v] =

N−1∑
n=0

M−1∑
m=0

f [n,m] exp
(
2π j

(u n
N

+
v m
M

))
= F [−u,−v] = F [N − u,M − v]

(1.72)
So, the Fourier transform of a real signal has coefficients that come in pairs, with F [u, v]

being the complex conjugate of F [−u,−v]. From this we can show that the real and imag-
inary parts of the Fourier transform will have the symmetries:

Re {F [u, v]} = Re {F [−u,−v]} (1.73)

Imag {F [u, v]} = −Imag {F [−u,−v]} (1.74)

If the image was composed only of imaginary numbers, then F∗ [u, v] = −F [−u,−v]. It
is easy to show that if the image is symmetric, f [n,m] = f [N − n,M − m], then the DFT
is real (i.e., phase of the DFT is 0).

Upon first learning about Fourier transforms, it may be a surprise to learn that one can
synthesize any image as a sum of complex exponentials (sines and cosines). To help gain
insight into how that works, it is informative to show examples of partial sums of complex
exponentials. Figure 1.22 shows partial sums of the Fourier components of an image. In
each partial sum of N components, we use the largest N components of the Fourier trans-
form. Using the fact that the Fourier basis functions are orthonormal, it is straightforward
to show that this is the best least squares reconstruction possible from each given number
of Fourier basis components. This first image shows what is reconstructed from the largest
Fourier component which turns out to be F [0, 0]. This component encodes the DC value
of the image, therefore the resulting image is just a constant. The next two components
correspond to two complex conjugates of a very slow varying wave. And so on. As more
components get added, the figure slowly emerges. In this example, the first 127 coefficients
are sufficient for recognizing this 64x64 resolution image.

1.5.2.4 Useful transforms It’s useful to become adept at computing and manipulat-
ing simple Fourier transforms. Figure 1.23 shows a list of useful Fourier transform pairs
(temporarily showing figures from Bracewell and Szeliski’s books), and these are useful to
study and become familiar with.

For some simple cases, we can compute the analytic form of the Fourier transform.
Fourier transform of the Delta function δ [n,m]:

F [u, v] =

N−1∑
n=0

M−1∑
m=0

δ [n,m] exp
(
−2π j

(u n
N

+
v m
M

))
= 1 (1.75)



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 19, 2018 9:31pm

1.5 Fourier analysis 33
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Figure 1.22
Reconstructing an image from the N Fourier coefficients of the largest amplitude. The left frame
shows the location, in the Fourier domain, of the N Fourier coefficients which, when inverted, give
the image at the right. Using only 1025 coefficients, the image is seen clearly.
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(a)

(b)
Figure 1.23
(a) and (b): A collection of useful Fourier transform pairs, from [? ] and [? ].
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the Fourier transform of the delta signal is a constant. If we think in terms of the inverse
Fourier transform, this means that if we sum all the complex exponentials with a coefficient
of 1, then all the values will cancel but the one at the origin which results in a delta function:

δ [n,m] =
1

NM

N/2∑
u=−N/2

M/2∑
v=−M/2

exp
(
2π j

(u n
N

+
v m
M

))
(1.76)

The Fourier transform of the cosine wave, cos
(
2π

(
u0 n
N +

v0 m
M

))
, is:

F [u, v] =

N−1∑
n=0

M−1∑
m=0

cos
(
2π

(u0 n
N

+
v0 m
M

))
exp

(
−2π j

(u n
N

+
v m
M

))
= (1.77)

=
1
2

(δ [u − u0, v − v0] + δ [u + u0, v + v0]) (1.78)

this can be easily proven using Euler’s equation 1.65 and the orthogonality between com-
plex exponentials. And for the sine wave, sin

(
2π

(
u0 n
N +

v0m
M

))
, we have a very similar

relationship:

F [u, v] =
1
2 j

(δ [u − u0, v − v0] − δ [u + u0, v + v0]) (1.79)

Figure 1.24 shows the DFT of several waves with different frequencies and orientations.
Figure 1.25 shows the 2-d Fourier transforms of some simple signals. The depicted

signals all happen to be symmetric about the spatial origin. From the Fourier transform
equation, one can show that real and even input signals transform to real and even outputs.
So for the examples of Fig. 1.25, we only show the magnitude of the Fourier transform,
which in this case is the absolute value of the real component of the transform, and the
imaginary component happens to be zero for the signals we’ll examine. Also, all these
images but the last one are separable (they can be written as the product of two 1D signals).
Therefore, their DFT is also the product of 1D DFTs from figure 1.23.

1.5.2.5 Discrete Fourier transform properties For now, when we talk about images or
signals we will assume they are periodic signals with periods N and M in each dimension.

Linearity The Fourier transform and its inverse are linear transformations:

DFT {α f [n,m] + βg [n,m]} = αF [u, v] + βG [u, v] (1.80)

where α and β are complex constants.

Separability An image is separable if it can be written as the product of two 1D signals,
f [n,m] = f1 [n] f2 [m]. If the image is separable, then its Fourier transform is separable:
F [u, v] = F1 [u] F2 [v]

Shift: translation in space If we displace a signal in the spatial domain, it results in
multiplying its Fourier transform by a complex exponential.
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Figure 1.24
Some two-dimensional Fourier transform pairs. Images are 64 × 64 pixels. The waves are cos with
frequencies (1, 2), (5, 0), (10, 7), (11,−15). The last two examples show the sum of two waves and
the product.
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Figure 1.25
Some two-dimensional Fourier transform pairs. Note the trends visible in the collection of transform
pairs: As the support of the image in one domain gets larger, the magnitude in the other domain
becomes more localized. A line transforms to a line oriented perpendicularly to the first. Images are
64 × 64 pixels.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 19, 2018 9:31pm

1.5 Fourier analysis 37

To show this, consider an image f [n,m], with Fourier Transform F [u, v] and period
N,M. When displacing the image by n0,m0 pixels, we get f [n − n0,m − m0] and its
Fourier Transform is:

DFT { f [n − n0,m − m0]} =

=

N−1∑
n=0

M−1∑
m=0

f [n − n0,m − m0] exp
(
−2π j

(u n
N

+
v m
M

))
=

=

N−1∑
n=0

M−1∑
m=0

f [n,m] exp
(
−2π j

(
u (n + n0)

N
+

v (m + m0)
M

))
=

= F [u, v] exp
(
−2π j

(u n0

N
+

v m0

M

))
(1.81)

Note that as the signal f and the complex exponentials have the period N,M, we can change
the sum indices over any range of size N × M samples.

Note that in practice, if we have an image and we apply a translation there will be some
boundary artifacts. So, in general, this property is only true if we apply a circular trans-
lation. Otherwise, it will be only an approximation. Fig. 1.26 shows two images that
correspond to a translation with n0 = 16 and m0 = −4. Note that at the image boundaries,
new pixels appear in (c) not visible in (a). As this is not a pure circular translation, the re-
sult from eq. 1.81 will not apply exactly. To verify eq. 1.81 let’s look at the real part of the
DFT of each image shown in fig. 1.26.b and d. If eq. 1.81 holds true, then the real part of
the ratio between the DFTs of the two translated images should be cos

(
−2π j

(
u n0
N +

v m0
M

))
with N = M = 128 and [n0,m0] = [16,−4]. Fig. 1.26.f shows that the real part of the ratio
is indeed very close to a cosine, despite of the boundary pixels which are responsible of
the noise (the same is true for the imaginary part). In fact, fig. 1.26.e shows the inverse
DFT of the ratio between DFTs, considering both real and imaginary components, which
is very close to an impulse at [16,−4].

Locating the maximum on Fig. 1.26.f can be used to estimate the displacement between
two images when the translation corresponds to a global translation. However, this method
is not very robust and it is rarely used in practice.

Modulation: Translation in frequency If we multiply an image with a complex expo-
nential, its Fourier Transform is translated, a property related to the previous one:

DFT
{

f [n,m] exp
(
−2π j

(u0 n
N

+
v0 m
M

))}
= F [u − u0, v − v0] (1.82)

Note that now the image is not real anymore, and for this reason its Fourier Transform does
not has symmetries around u, v = 0.
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f[n, m] g[n, m]=f[n-16, m+4]

real(G[u, v])real(F[u, v]) real(G[u, v] / F[u, v])

iDFT(G[u, v] / F[u, v])

Figure 1.26
Translation in space. Image (c) corresponds to image (a) after a translation of 16 pixels to the
right and 4 pixels down. Images (b) and (d) show the real parts of their corresponding DFTs (with
N = 128). The image (f) shows the real part of the ratio between the two DFTs, and (e) is the
inverse transform of the ratio between DFTs. The inverse is very close to an impulse located at the
coordinates of the displacement vector between the two images.
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A related relationship is:

DFT
{

f [n,m] cos
(
2π j

(u0 n
N

+
v0 m
M

))}
= F [u − u0, v − v0] + F [u + u0, v + v0] (1.83)

Multiplying a signal by a wave is called signal modulation and it is one of the basic oper-
ations in communications. It is also an important property in image analysis and we will
see its use later.

Note that a shift and a modulation are equivalent operations in different domains. A
shift in space is a modulation in the frequency domain and that a shift in frequency is a
modulation in the spatial domain.

Parseval’s theorem As the DFT is a change of basis, the dot product between two signals
and the norm of a vector is preserved (up to a constant factor) after the basis change. This
is stated by Parseval’s theorem:

N−1∑
n=0

M−1∑
m=0

f [n,m] g∗ [n,m] =
1

NM

N−1∑
u=0

M−1∑
v=0

F [u, v] G∗ [u, v] (1.84)

and, in particular, if f = g this reduces to the Plancherel theorem:
N−1∑
n=0

M−1∑
m=0

‖ f [n,m] ‖2 =
1

NM

N−1∑
u=0

M−1∑
v=0

‖F [u, v] ‖2 (1.85)

This relationship is important because it tells us that the energy of a signal can also be
computed as a sum of the squared magnitude of the values of its Fourier transform.

Convolution The Fourier transform lets us characterize images by their spatial frequency
content. It’s also the natural domain in which to analyze space invariant linear processes,
because the Fourier bases are the eigenfunctions of all space invariant linear operators. In
other words, if you start with a complex exponential, and apply any linear, space invariant
operator to it, you always come out with a complex exponential of that same frequency,
but, in general, with some different amplitude and phase.

Another way to state that property is through the Fourier convolution theorem, given
below. Consider a function f that is the convolution of two functions, g and h:

f = g ◦ h (1.86)

If we take the Fourier transform of both sides, and use the definition of the Fourier trans-
form, we obtain

F [u, v] = DFT {g ◦ h}

=

M−1∑
m=0

N−1∑
n=0

M−1∑
k=0

N−1∑
l=0

g [m − k, n − l] h [k, l] exp
(
−2π j

(mu
M

+
nv
N

)) (1.87)
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Changing the dummy variables in the sums (introducing m′ = m − k and n′ = n − l), we
have

F [u, v] =

M−1∑
k=0

N−1∑
l=0

h [k, l]
M−k−1∑
m′=−k

N−l−1∑
n′=−l

g
[
m′, n′

]
exp

(
−2π j

(
(m′ + k)u

M
+

(n′ + l)v
N

))
(1.88)

Recognizing that the last two summations give the DFT of g [n,m], using circular boundary
conditions, gives

F [u, v] =

M−1∑
k=0

N−1∑
l=0

G [u, v] exp
(
−2π j

(
ku
M

+
lv
N

))
h [k, l] (1.89)

Performing the DFT indicated by the second two summations gives the desired result,

F [u, v] = G [u, v] H [u, v] (1.90)

Thus, the operation of a convolution, in the Fourier domain, is just a multiplication of the
Fourier transform of each term in the Fourier domain. This property lets us examine the
operation of a filter on any image by examining how it modulates the Fourier coefficients
of any image.

Dual convolution The Fourier transform of the product of two images

f [n,m] = g [n,m] h [n,m] (1.91)

is the convolution of their DFTs:

F [u, v] =
1

NM
G [u, v] ◦ H [u, v] (1.92)

1.5.3 Continuous Fourier Transform
For signals defined on the continuous domain, the Fourier Transform is defined as:

F(wx,wy) =

∫ ∫ ∞

−∞

f (x, y) exp
(
− j

(
wxx + wyy

))
dx dy (1.93)

and its inverse is:

f (x, y) =

∫ ∫ ∞

−∞

F(wx,wy) exp
(

j
(
wxx + wyy

))
dwx dwy (1.94)

Most of the equations that we have seen for the DFT also apply to the continuous domain,
replacing sums with integrals.

The convolution between two continuous signals is written as:

f (x, y) = h ◦ g =

∫ ∫ ∞

−∞

h(x − x′, y − y′)g(x′, y′) dx′ dy′ (1.95)

Although, in practice, images and filters will be discrete signals, many times it is conve-
nient to think of them as continuous signals.
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1.5.4 Fourier analysis as an image representation
The Fourier Transform has been extensively used as an image representation. In this sec-
tion we will discuss the information about the picture that is made explicit by this repre-
sentation.

1.5.4.1 Amplitude and Phase As we discussed before, the Fourier transform of an
image can be written in polar form:

F [u, v] = A [u, v] exp ( j θ [u, v]) (1.96)

where
A [u, v] = |F [u, v]| (1.97)

and
θ [u, v] = ∠F [u, v] (1.98)

If we think in terms of the inverse of the Fourier transform, A [u, v] gives the strength
of the weight for each complex exponential and the phase θ [u, v] translates the complex
exponential. The phase carries the information of where the image contours are, by speci-
fying how the phases of the sinusoids must line up in order to create the observed contours
and edges. In fact, as shown in section ??, translating the image in space only modifies the
phase of its Fourier transform. In short, one can think that location information goes into
the phase while intensity scaling goes into the magnitude.

One might ask which is more important in determining the appearance of the image, the
magnitude of the Fourier transform, or its phase. Figure 1.27 shows the result of a classical
experiment that consists in computing the Fourier transform of two images and building
two new images by swapping their phases []. The first output image is the inverse Fourier
transform of the amplitude of the first input image and the phase of the DFT of the second
input image. The second output image contains the other two terms. The figure shows that
the appearance of the resulting images is mostly dominated by the phase of the image they
come from. The image built with the phase of the stop sign looks like the stop sign even
if the amplitude comes from a different image. Figure 1.27 shows the result in color by
doing the same operation over each color channel (R, G and B) independently. The phase
signal determines where the edges and colors are located in the resulting image. The final
colors are altered as the amplitudes have changed.

As we will discuss in chapter ??, one remarkable property of real images is that the
magnitude of the DFT of natural images are quite similar one to another and can be ap-
proximated by A [u, v] = a/(u2 + v2)b with a and b being two constants.

However, this does not mean that all the information of the image is contained inside the
phase only. The amplitude contains very useful information as shown in fig. 1.28. To get
an intuition of the information available on the amplitude and phase let’s do the following
experiment: let’s take an image, compute the Fourier transform and create two images
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Figure 1.27
Swapping the amplitude and the phase of the Fourier Transform of two images. Each color channel
is processed in the same way.

by applying the inverse Fourier transform when removing one of the components while
keeping the other original component. For the amplitude image, we will randomize the
phase. For the phase image, we will replace the amplitude by a non-informative A [u, v] =

1/(u2 + v2)1/2 for all images. This amplitude is better than a random amplitude because
a random amplitude produces a very noisy image hiding the information available, while
this generic form for the amplitude will produce a smoother image revealing its structure
while still removing any information available on the original amplitude. Fig. 1.28 shows
different types of images and how the DFT amplitude and phase contribute to define the
image content. The top image is inline with the observation from fig. 1.27 where phase
seems to be carrying most of the image information. However, the rest of the images do
not show the same pattern.

The amplitude is great for capturing images that contain strong periodic patterns. In such
cases, the amplitude can be better than the phase. This observation has been the basis for
many image descriptors [? ? ]. The amplitude is somewhat invariant to location (although
it is not invariant to the relative location between different elements in the scene). However
the phase is a complex signal that does not seem to make explicit any information about
the image.

Exercise: reproduce the figure 1.28 but in color. For this to work, it is better to do PCA
in color space first to rotate the color space to three channels that are decorrelated, then
build each decorrelated channel independently and then merge undoing the rotation to get
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DFT Amplitude DFT Phase Random phase 1/f amplitude

Figure 1.28
The relative importance of phase and amplitude depends on the image. Each row shows one image, its
Fourier transform (amplitude and phase), and the resulting images obtained by applying the inverse
Fourier transform to a signal with the original amplitude and randomized phase, and a signal with
the original phase and a generic fixed 1/ f amplitude. Note that for the first image, the phase seems
to be the most important component. However, as we move down, the relative importance between
the two components changes. And for the bottom image (showing a pseudo-periodic threat texture)
the amplitude is the most important component.
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an RGB image. In the color chapter we will see better examples of why this rotation is
important.

1.5.4.2 Orientations and scales (needs to be written)
Another way in which the Fourier transform is useful is because it makes explicit which

components contribute to different scales and different orientations.
Show some examples to illustrate how to read orientation and scale.
FIGURE: rocks of different sizes. textures of different orientations.

1.5.4.3 Images in the Fourier domain (needs to be written)
- show pictures in which basic frequencies are visible: waves in the water, images with

strong periodic patterns and show their fourier transforms
- table of some basic images and their 2D fourier transforms (e.g, a wave, a rectangle, a

circle, an oriented line, a segment, a dot, ...)
- discuss the issue about visualizing the power spectrum of natural images to avoid DC

component. Also, use a window to avoid the vertical and horizontal lines in the power
spectrum due to the boundary artifacts.

- game A B C, 1 2 3: maybe make it add a few more examples to make it more challeng-
ing and interesting.

IDEA: can we extract the pattern that gets repeated?
Based on this example, and the Fourier transform pairs of Fig. 1.25, take the following

quiz: match these Fourier transform magnitudes with the corresponding images in Fig. 1.29

1.5.4.4 Filters in the Fourier domain Some image patterns are easily visible in the
Fourier domain. For instance, strong image contrasts produce oriented lines in the Fourier
domain. Periodic patterns are also clearly visible in the Fourier domain. A periodic pattern
in the image domain produces picks in the Fourier domain. The location of the picks will
be related to the period and orientation or the repetitions.

Fig. 1.30.a shows a picture of the main MIT building. The columns produce a quasi
periodic pattern. Fig. 1.30.b shows the magnitude of the DFT of the MIT picture. One
can see picks in the horizontal frequency axis, those picks are due to the columns. To
check this we can verify first that the location of the picks is related to the separation of
the columns. The image in Fig. 1.30.a has a size of 256 × 256 pixels, and the columns
are are repeated each 14 pixels. Therefore, the DFT, with N = 256, will have picks at the
horizontal frequencies: 256/14 = 18.2, which is indeed what we observe in Fig. 1.30.b. As
the repeated pattern is not a pure sinusoidal function, there will be picks at all the harmonic
frequencies k 256

14 , where k is an integer. Note also that the picks seem to produce vertical
bands with decreasing amplitude with increasing vertical frequency v. These bands are to
the fact that the columns only occupy a small vertical segment of the image. Also, as the
columns only exist in a portion of the horizontal region of the image, the picks have also
some horizontal width.
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a) b) c) d)

e) f) g) h)

a)b)
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1) 2) 3) 4)
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f) g)h)

5) 6) 7) 8)

Figure 1.29
The Fourier transform matching game: Match each image (a-h) with its corresponding Fourier trans-
form magnitude (1-8). The correct answer is: 1-h, 2-f, 3-g, 4-c, 5-b, 6-e, 7-d, 8-a.
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Figure 1.30
Simple filtering in the Fourier domain. (a) The repeated columns of the building of the MIT dome
generate harmonics along a horizontal line in the Fourier domain. (b) By zeroing out those Fourier
components, the columns of the building are substantially removed.

We can now also check the effect of suppressing those frequencies by zeroing the mag-
nitude of the DFT around each pick (here we zero 7 pixels in the horizontal dimension
and all the pixels along the vertical dimension) as shown Fig. 1.30.d. Fig. 1.30.c shows
the resulting image where the columns are almost gone while the rest of the image is lit-
tle affected. Fig. 1.30.e shows the complementary image (in fact a = c + e) and its DFT
Fig. 1.30.f.

1.6 Sampling

Sampling is the process of transforming a continuous signal into a discrete one. In nature,
most of the signals we measure (sound, light, ...) are defined over continuous domains
(time, space, ...). In order to process them with computers we need to transform the con-
tinuous domain into a discrete one. This process is called sampling.

We need to study the following questions: what are the possible sampling patterns to
discretize a signal? how can we characterize the lost of information? and how do we
reduce artifacts?
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Figure 1.31
a) Continuous signal and its samples. b) Discrete signal and the reconstructed continuous signal by
interpolation. c) Superposition of continuous signal (a) and its reconstructed approximation from the
discrete samples from (b).

Let’s consider a 1D continuous time signal f (t) and its sampled version f [n] = f (nTs),
were Ts is the sampling period. Intuitively, it is clear that in this sampling process some
information will get lost. If no information was lost, then we should be able to recover the
continuous signal f (t) from its sampled version f [n] by doing some kind of interpolation.
One could simply decrease Ts, which will results in a more accurate approximation of
the continuous signal f (t) at the expense of the amount of memory needed to store f [n].
Decreasing Ts will also result in an increase of the computational cost of processing the
signal f [n]. Therefore, it is interesting choosing the appropriate Ts. Understanding the
sampling process and how to reconstruct the continuous signal is important as it will allow
us to find the optimal sampling parameters.

1.6.1 Sampling theorem
Let’s first look at one example to get a sense of the type of issues that might arise when
discretizing a signal. Figure 1.31.a shows one continuous signal with the form f (t) =

cos(wt) with w = 18π. The period of this signal is T = 1/9 (there are 9 periods in the
interval t ∈ [0, 1]). We now build a discrete signal f [n] = f (nTs) with Ts = 1/11 (there
are 11 samples in the same interval t ∈ [0, 1]). This could seem enough because there are
more samples than periods.
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Figure 1.31.b shows f [n]. If we now want to reconstruct the original continuous signal
from its samples f [n] there are many possibilities as the samples do not constraint what
happens between samples. Therefore we will need to make some assumptions about the
continuous signal. In the absence of any other prior information, we will assume that
the most likely signal is the slowest and smoothest signal (we will make this assumption
more precise later). Figure 1.31.c shows the superposition of the original signal and the
reconstructed one. Both signals perfectly pass through the same samples. Clearly the
samples seem to correspond to a cosine function with a lower frequency (in this example
T = 1/2) than the input (which had T = 1/9).

It is important to mention that there is nothing special on how the parameters have been
chosen for this example. Many different parameter choices would have yielded the same
qualitative behavior. This confusion of frequencies is called aliasing. We will show that
for the reconstruction to match the input we need Ts < 1/(2T ). The sampling theorem
(also known as Nyquist theorem) states that for a signal to be perfectly reconstructed from
it samples, the sampling frequency fs = 1/Ts has to be fs > 2 fmax when fmax is the
maximum frequency present in the input signal. You can check that our previous example
did not satisfied the Nyquist condition.

One way of characterizing the sampling process is achieved by analyzing the relationship
between the Fourier transform of the continuous and discrete signals. There are many ways
of finding the relationship between the two Fourier transforms. Here we will describe the
most common one.

Let’s start writing a model of the sampling process by defining a special signal:

f̂ (t) = f (t)
∞∑

n=−∞

δ(t − nTs) =

∞∑
n=−∞

f (nTs)δ(t − nTs) = f (t)δTs (t) (1.99)

where f̂ (t) is a very special function that contains the same amount of information as the
discrete signal f [n] but that is defined over the continuous domain t. Note that f̂ (t) is the
product of two continuous signals. The first term is the continuous signal f (t), the second
term is a function composed of impulses placed at regular time instants δ(t− nTs). The use
of impulses is interesting because they are infinitely narrow in time, so the product of an
impulse with a function is equivalent to taking just one sample of that function. Remember
from the definition of δ(t) that f (t)δ(t − nTs) = f (nTs)δ(t − nTs). We define the impulse
train (also called Dirac comb), δTs (t), as the signal:

δTs (t) =

∞∑
n=−∞

δ(t − nTs) (1.100)

Although we will never directly work with the signal f̂ (t), it is a convenient construction
to understand how information is transformed during the sampling process. To see the
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interest of this construction, let’s compute its Fourier transform. The continuous Fourier
transform of f̂ can be written as the convolution of the Fourier transforms of f (t) and δTs (t).

The Fourier transform of a Delta comb is:

∆Ts (w) =

∫ ∞

−∞

δTs (t) exp (− jwt) dw (1.101)

=

∞∑
n=−∞

∫ ∞

−∞

δ(t − nTs) exp (− jwt) dw (1.102)

=

∞∑
n=−∞

exp (− jwnTs) (1.103)

=
2π
Ts

∞∑
k=−∞

δ

(
w − k

2π
Ts

)
(1.104)

It is honest to admit that the last step in this derivation is far from trivial. The Fourier
transform of an impulse train is also an impulse train but with an displacement in frequency
between impulses that grows when the spacing in time decreases.

Therefore, the continuous Fourier transform of f̂ can be written as:

F̂(w) = F(w) ◦
2π
Ts

∞∑
k=−∞

δ

(
w − k

2π
Ts

)
=

2π
Ts

∞∑
k=−∞

F
(
w − k

2π
Ts

)
(1.105)

where F(w) is the Fourier transform of f (t). This equation shows that F̂(w) is build as an
infinite sum of translated copies of F(w). Each copies is centered on k 2π

Ts
. If Ts is small (i.e.

if we sample very fast) then those copies will be far away from each other. But if we have
few samples and Ts is large, those copies will get very close and will start mixing with
each other. High frequency content in F(w) will affect the low frequency content of F̂(w),
and this is exactly what produces aliasing. Figure 1.32 illustrates this. In this example,
there is one band limited signal (i.e., there is a frequency, wmax, for which the magnitude
of the Fourier transform is zero for all frequencies above wmax). First Ts = 4 seconds, in its
FT we see replicates of the F(w) centered around π/2. With Ts = 8 seconds, the replicates
appear centered around π/4 and they start touching. Ts = 8 is slightly above the Nyquist’s
limit and some aliasing will exist. For Ts = 16 aliasing is severe and information will
be lost making it impossible (without any additional prior information) to reconstruct the
continuous function from its samples.

1.6.2 Reconstruction
If the copies do not touch, then we can see how it is possible to reconstruct the original
continuous signal. We just need to apply a filter that has a constant gain for all the frequen-
cies inside w ∈ [−wmax,wmax], and 0 outside. The phase of the filter should be zero. This
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Figure 1.32
Aliasing examples. (a) - (f) Far left column: spatial sampling pattern. 2nd column: Fourier transform
of that spatial pattern, revealing replication locations of the Fourier transform spectrum of the sub-
sampled image. The subsampled image is shown in the 3rd column. Zeroing out all but the central
replication of the image spectrum (far right), yields the interpolated images of the 4th column.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 19, 2018 9:31pm

1.6 Sampling 51

is:

H(w) =

 Ts
2π if w ∈ [−wmax,wmax]

0 otherwise
(1.106)

One piece of bad news: for any time limited signal (i.e., a signal that is defined inside an
interval t ∈ [a, b] and it is zero outside) the Fourier transform is not band limited. In other
words, a signal can not be simultaneously time limited and band limited. Anyway, when
something is impossible, generally it is because it does not matter and it might just mean
that it is not the right way of thinking about the problem. So let’s not worry about it.

The impulse response of such a filter is:

h(t) =
sin(t)

t
= sinc(t) (1.107)

it is called the sinc function.
In fact, it is easy to show that, in the lack of any other prior information, this is the

optimal reconstruction in terms of the L2 norm. This is:

sinc(t) = argminh

∫ (
f (t) − f̂ (t) ◦ h(t)

)2
dt = argminH

∫ (
F(w) − F̂(w)H(w)

)2
dw

(1.108)
then the function, f̃ (t), that better reconstructs the input signal from its samples is:

f̃ (t) = f̂ (t) ◦ sinc(t) =

∞∑
n=−∞

f [nTs] sinc
(

t − nTs

Ts

)
(1.109)

where f̃ (t) is the reconstructed signal and f̂ (t) is the sampled signal. One disadvantage
of this reconstruction is that the sinc function has infinite support which means that to
interpolate each instant, we need to linearly combine all the samples f [nTs]. Sometimes
it is better to have a local reconstruction that only depends on the nearby samples. Indeed,
there are other possible reconstructions that are not optimal in terms of L2 norm, but that
only require local computations: linear, bilinear, bicubic, splines, etc. All of them can be
written as a linear convolution with a kernel h(t). In the case of the linear interpolation, the
kernel h(t) is a triangle of width 2Ts.

1.6.3 2D spatial sampling
Let’s now analyze what happens when sampling 2D signals to form discrete images.

In 2D things get more interesting. If we have a continuous image f (x, y) we can sample
it using a rectangular grid as f [n,m] = f

(
nTx,mTy

)
. We can do a very similar analysis

to the one we just did for the 1D case. But in 2D we can have more interesting sampling
patterns. For instance, we could define the discrete image as:

f [n,m] = f (an + bm, cn + dm) (1.110)
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a) b)

c) d)

e)
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Figure 1.33
Reconstruction. a) Signal multiplied by a delta train. Each line corresponds to one impulse. The
height of each impulse corresponds to the value of its integral. b) sinc function. c) magnitude of
the Fourier transform of (a). d) Fourier transform of (b). The width of the box is set to cover just
the central repetition of the FT shown in (c). e) Illustration of the reconstruction process. The sinc
functions are scaled and shifted on top of each sample and then summed up (only six are shown).
Note how the zero crossings coincide with the sample locations. The sum of all the sinc function
corresponds to the red curve.
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where a, b, c, d are constants. For instance, if a = T, b = 0, c = 0, d = T then we will have
a regular rectangular sampling. But we could have other patterns. For instance, if we set
a = T1, b = −T2/2, c = 0, d = T2 then we obtain an hexagonal sampling. So, now we
can ask the following question: what is the optimal 2D sample arrangement given a fixed
number of samples? The answer will require studying how aliasing will happen. What we
want is to chose the sample arrangement that will allow the best reconstruction of the input
continuous signal from a fixed number of samples. As we did with the 1D case, we can
address this by studying the relationship between the Fourier transform of the continuous
signal and the sampled one.

f̂ (x, y) = f (x, y)
∞∑

n=−∞

∞∑
m=−∞

δ (x − an − bm, y − cn − dm) (1.111)

Where the 2D delta train can be written using vector notation for the continuous spatial
coordinates:

δA(~x) =
∑
~n∈Z2

δ
(
~x − A~n

)
(1.112)

where ~x = (x, y)T , ~n = (n,m)T , and A is the matrix:

A =

 a b
c d

 (1.113)

The continuous Fourier transform of this delta train can be done by applying a change in
variables and then using a similar procedure as the one followed in the 1D case. The result
is:

∆A(~w) =
(2π)2

|A|

∑
~k∈Z2

δ
(
~w − 2πA−1~k

)
(1.114)

Therefore, the Fourier transform of the sampled signal f̂ (x, y) is:

F̂
(
~w
)

=
(2π)2

|A|

∑
~k∈Z2

F
(
~w − 2πA−1~k

)
(1.115)

Remember that for 2 × 2 matrices the inverse is easy to write:

A−1 =
1
|A|

 d −b
−c a

 (1.116)

We can now check what happens with different sampling strategies. For the 2D rectangular
sampling, eq. 1.115, simplifies to:

F̂
(
wx,wy

)
=

(2π)2

T 2

∞∑
k1=−∞

∞∑
k2=−∞

F
(
wx −

2π
T

k1,wy −
2π
T

k2

)
(1.117)
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This is similar to the 1D case. Figure 1.34 shows two different delta trains for two different
sampling patterns and also their Fourier transforms. The region delimited by the green
polygon shows the region of valid frequencies. If the input signal only has spectral content
within that region, then there will be no aliasing. The optimal sampling will be the one that
makes that region as large as possible for a fixed number of samples. The optimal sampling
strategy is the regular hexagonal sampling. This is not the sampling used in computer vi-
sion as all images are always represented on a rectangular grid, but an hexagonal sampling
achieves an increase of around 10% in resolution for the same amount of samples. In fact,
the distribution of photoreceptors in the eye [? ] are distributed on an hexagonal array as
shown in figure 1.35. Working with convolutional filters defined over an hexagonal grid is
more efficient and it can achieve better radial symmetry [? ].

For all the examples and derivations in this book, we will be working always of a regular
rectangular grid.

1.6.3.1 Aliasing and anti-aliasing filter Sampling with the wrong frequency has inter-
esting effects in 2D. Figure 1.36.a shows an example of a picture downsampled at different
resolutions (412×512, 103×128, 52×64, and 26×32) and then reconstructed to the original
resolution (412×512 pixels). For the figures, as we do not have access to the continu-
ous image, we always work with sampled versions. But the original image is very high
resolution and we can think of it as being the continuous image.

The images in Figure 1.36.a show the effects of aliasing. The stripes in the Zebra’s body
change orientation as we down sample them. And for the lowest resolution image, it is
even hard to recognize the animal as being a zebra. Figure 1.36.b shows what happens
with the image Fourier transform when we multiply it with the delta train (compare it
with fig. 1.34). Figure 1.36.c shows the magnitude of the DFT of the sampled image
(it corresponds to the region inside the green square in fig. 1.36.b). The DFT changes
substantially, due to aliasing, from one resolution to the next one.

In order to reduce aliasing artifacts we need to filter the continuous signal with a low-
pass filter in order to make it band-limited. Then we will be able to sample it avoiding
high-spatial frequencies to interfere with the low-frequency content of the image. The anti-
aliasing filter will not prevent from loosing the information contained in the high spatial
frequencies. Figure 1.36.e shows the reconstructed images at different resolutions when
an antialising filter is applied before sampling. Each resolution requires a different filter.
The antialising filter can be a box filter like in eq. 1.106 with the support equal to the green
region in Figure 1.36.b.

1.6.4 Spatio-temporal sampling
Spatio-temporal sampling can be studied with the tools we have already seen. In particular,
eq. 1.115 can explain sampling in the N-dimensional case. Temporal aliasing is responsible
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Sampling patterns.
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Figure 1.35
Distributions of cones in the fovea (cite source).

of the typical illusion in which we see wheels or fans changing the sense of rotation in
movies. To avoid those artifacts it is important to apply an antialiasing filter as before.

There are many strategies commonly used to sample movies and each one has different
advantages/disadvantages in terms of hardware implementation, efficiency, etc.

The most common type of spatiotemporal sampling is regular sampling: here, all the
pixels are sampled in a regular spatial 2D grid and at regular time instants in which all the
pixels are exposed simultaneously. This is also called Global Shutter mode.

In many cameras (DSLRs, mobile phones, ...) the most commonly used sampling is
the Rolling Shutter mode. Here, every row in the image is sampled simultaneously. But
different rows are sampled at different instants. This sampling mode allows for a faster
sampling rate with current hardware implementations but it can create spatial distortions
in the image if the camera moves or when taking pictures of moving objects.
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Figure 1.36
Aliasing and antialiasing filter. a) The zebra sampled with aliasing starts looking as a cow. b)
Fourier transform of the continuous signal f (x, y) multiplied by delta trains: f̂ (x, y), c) Discrete
Fourier transform of the corresponding sampled signals, f [n,m], and d) Fourier transform of the
reconstructed signal. e) Sampled image after processing it with an antialiasing filter. f) Discrete
Fourier transform of the corresponding antialiased sampled images, f [n,m]. Note that now the
central part of the Fourier transform is not changing.
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