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1 Spatial filters

The Fourier Transform is an indispensable tool for linear systems analysis, image analysis,
and for efficient filter output computation. Among the benefits of the Fourier transform
representation: it’s easy to analyze images according to spatial frequency, and this repre-
sents some progress in interpreting the image over merely a pixel representation. But the
Fourier transform has a major drawback as an image representation: it’s too global! Every
sinusoidal component covers the entire image. The Fourier transform tells us a little about
what is happening in the image (based on the spatial frequency content), but it tells us
nothing about where it is happening.

On the other hand, a pixel representation gives great spatial localization, but a pixel
value by itself doesn’t help us learn much about what’s going on in the image. A Fourier
representation tells us a bit about what’s going on, but nothing about where it happens. We
seek a representation that’s somewhere in between those two extremes.

1.1 Filters

Linear convolutions, despite their simplicity, are surprisingly useful for processing and
interpreting images. It’s often very useful to blur images, in preparation for subsampling
or to remove noise, for example. Other useful processing includes edge enhancement and
motion analysis.

From the previous section we know that we can write linear filters as convolutions:

f [n,m] = h [n,m] ◦ g [n,m] (1.1)

where h [n,m] is the impulse response of the system. We can also write this as a product in
the Fourier domain:

F [u, v] = H [u, v] G [u, v] (1.2)

The function H [u, v] is called the transfer function of the filter. If we use the polar form:

H [u, v] = |H [u, v]| exp ( j ∠H [u, v]) (1.3)
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Figure 1.1
Contrast sensitivity function shown by the Campbell & Robson chart.

The magnitude |H [u, v]| is the amplitude gain, and the phase ∠H [u, v] is the phase shift.
The Fourier domain shows that, in many cases, what a filter does is to block or let pass

certain frequencies. Filters are many times classified according to the frequencies that they
let pass through the filter (low, medium or high frequencies):

• Low-pass filter
• Band-pass filter
• High-pass filter

But this classification of a filter might not be appropriate in many cases. Some filters have
their main effect over the phase of the signal and they are better understood in the spatial
domain. In general, filters affect both the magnitude and the phase of the input signal.

In this chapter we will analyze several important linear filters. We will study spatial
filters and then temporal filters.

1.2 Human visual system and the contrast sensitivity function

Before we start describing different types of linear filters, let’s start by gaining some sub-
jective experience by playing with one: our own visual system. Although our visual system
is clearly a non-linear system, linear filter theory can explain some aspects of our percep-
tion. Indeed, under certain conditions, the first stages of visual computation perform of the
visual system can be approximated by a linear filter.
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To experience the transfer function of our own visual system, let’s build the following
N × M image:

I [n,m] = A [m] sin(2π f [n] n/N) (1.4)

with

A [m] = Amin

(
Amax

Amin

)m/M

(1.5)

and

f [n] = fmin

(
fmax

fmin

)n/N

(1.6)

This image is separable and it is composed of two factors: an amplitude, A [m], that varies
only along the vertical dimension, and a wave with a frequency, f [n], that varies along
the horizontal component. We set the amplitude so that it is Amax in the lowest part of the
image and it decreases logarithmically to Amin at the top. And the frequency function is
defined as an increasing function that starts from 0 and grows up to 60 (with N = 2048
being the number of horizontal pixels in the image). This image is shown in figure 1.1 and
it is also called the Campbell & Robson chart. It shows a signal with a wave that oscillates
slow at the left and faster towards the right and that has high contrast a the bottom and
loses contrast towards the top becoming invisible.

The first sign that our visual system is non-linear is that we do not perceive the amplitude
as changing logarithmically from top to bottom. It feels more linear. This is because our
photo-receptors compute the log of the incoming intensity (approximately).

What is interesting is that figure 1.1 is not perceived as being separable. If you trace
the region where the sine wave seems to disappears you will trace a curve. In fact, your
visual system is behaving as a band-pass filter: you are sensitive to middle spatial frequen-
cies (with a pick around 6 cycles/degree) and you are less sensitive for very low spatial
frequencies (left of the image) and to high-spatial frequencies (right of the image). This
curve is called the contrast sensitivity function (CSF) in the psychophysics literature and
is closely related to the transfer function of the filter.

The CSF is not a simple linear function but it can be approximated by one under certain
conditions. However, the CSF changes depending of many factors such as overall intensity
(the pick moves towards the left under low illumination. ), adaptation (long exposure to
one frequency reduces the sensitivity for that frequency), age, ...

The DFT and use of sine waves became very popular in the study of visual psychophysics.

1.3 Spatial convolutional filters

We will start by studying several important linear spatially invariant filters. These filters
can be implemented as convolutions between an input image and a linear kernel.
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1.3.1 Box filter
Let’s start with a very simple filter, the box filter. In the box filter, each output pixel is
the sum of the input pixels around its neighborhood. The box convolution kernel can be
written as:

hN,M [n,m] =

1 if − N ≤ n ≤ N and − M ≤ m ≤ M

0 otherwise
(1.7)

The box filter is separable as it can be written as the convolution of two 1D kernels:
hN,M [n,m] = hN,0 ◦ h0,M .

Filtering an image with the box filter results in blurring the picture. Figure 1.2 shows
some box filters and the corresponding output images. Figure 1.2 (a) shows an image
convolved with a uniform, rectangular kernel. Each pixel is an average of the input pixels
within the rectangle. Figure 1.2 (b) and (c) show the results of blurring in just one direction.
Blur happens very often in real life. It happens when we look at something very far away,
or at some detail inside a picture, or when we remove our eyeglasses (or wear some that
are not ours).

The box filter is simple but it has a number of issues:

• If you convolve two boxes you get a triangle. You can easily check this. For instance, in
the simple case where N = 1,M = 0:

h1,0 ◦ h1,0 = [1, 1, 1] ◦ [1, 1, 1] = [1, 2, 3, 2, 1] (1.8)

the output is a triangular filter with length 2 × L − 1, with L = 3 the length of the box
filter. Although that is not a problem at first sight, it means that if you blur an image
twice with box filters, what you get is not equivalent to blurring only once with a larger
box filter.

• The box filter is not a perfect blurring filter. A blur filter should attenuate high spatial
frequencies with stronger attenuation for higher spatial frequencies. However, if you
consider the highest spatial frequency, which will be an oscillating signal that takes suc-
cessively on the values 1 and -1: [..., 1,−1, 1,−1, 1,−1, ...] when filtered with the box fil-
ter h1,0 the results is the same signal! However, if you filter a wave with lower frequency
such as [..., 0.5, 0.5,−1, 0.5, 0.5,−1, ...] then the result is [..., 0, 0, 0, 0, ...]. Therefore, the
attenuation is not monotonic with spatial frequency as it is shown in figure 1.3. This is
not a desirable behavior for a blurring filter and it can cause artifacts to appear. This
could be addressed using an even size box filter [1, 1]. However, an even box filter is
not centered around the origin and the output image will have a half-pixel translation.
Therefore, odd filter sizes are preferred.

The next blurring filter addresses both of these issues.
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a) b) c)

d) e) f)

g) h) i)
Figure 1.2
Blurring with (a) a rectangle, and a (b) horizontal and (c) vertical line. Note the structures that are
both averaged out (along the direction of blurring), and maintained (perpendicular to that direction)
in each resulting image.
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a) −10 0 10

1

n

h1 [n]

b) −10 10

1

3

u

|H1 [u]|

Figure 1.3
a) A one dimensional box filter ([1, 1, 1]) and b) its Fourier transform over 20 samples. Note that the
frequency gain is not monotonically decreasing with spatial frequency.

1.3.2 Gaussian filter
One of the important blurring (low-pass) filters in computer vision is the gaussian filter.
The gaussian filter is important because it is a good model for many naturally occurring
filters. It also has a number of properties, as we will discuss here, that make it unique.

The gaussian distribution is defined in continuous variables. In one dimension:

g(x;σ) =
1

√
2πσ2

exp−
x2

2σ2 (1.9)

and in 2 dimensions:

g(x, y;σ) =
1

2πσ2 exp−
x2 + y2

2σ2 (1.10)

The parameter σ adjusts the spatial extend of the gaussian. The normalization constant is
set so that the function integrates to 1.

In order to use this filter in practice we need to consider discrete locations and also ap-
proximate the function by a finite support function. In practice, we only need to consider
samples within three standard deviations x ∈ (−3σ, 3σ). At 3σ the amplitude of the gaus-
sian is around 1% of its central value. Unfortunately, many of the properties of the gaussian
that we will discuss later are only true in the continuous domain and are only approximated
when using its discrete form.

For a given standard deviation parameter, σ, the discretized gaussian kernel is g [m, n;σ]:

g [m, n;σ] = exp−
m2 + n2

2σ2 (1.11)

We have removed the normalization constant as the sum of the discrete gaussian will be
different from the integral of the continuous function. So here we prefer to use the form in
which the value at the origin is 1. In practice, we should normalize the discrete gaussian
by the sum of its values to make sure that the gain at DC is 1.
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a) b) c)

d) e) f)
Figure 1.4
An image filtered with three gaussians with standard deviations: a) σ = 2, b) σ = 4, and c) σ = 8.
Plots (d) - (f) show the three Gaussians over the same spatial support as the image. The discrete
Gaussians are approximated by sampling the continuous Gaussian. The convolutions are perform
with mirror boundary conditions.

By adjusting the standard deviation, σ, of the Gaussian, it is possible to adjust the level
of image detail that appears in the blurred image. Figure 1.4 shows the result of narrow
and wider Gaussians applied to an image.

The multi-dimensional Gaussian filter has the additional computational advantage that it
can be applied as a concatenation of 1-d Gaussian filters. This can be seen by writing the
2-d Gaussian, Eq. (1.11), in the convolution equation, Eq. (??). Letting gx and gy be the
1-d Gaussian convolution kernels in the horizontal and vertical directions, we have

g [m, n] ◦ f [m, n] =
∑
k,l

g [m − k, n − l] f [k, l]

=
∑
k,l

exp−
(m − k)2 + (n − l)2

2σ2 ◦ f [m, n]

=
∑

k

exp−
(m − k)2

2σ2

∑
l

exp−
(n − l)2

2σ2 f [k, l]


= gx ◦ (gy ◦ f [m, n])

This can save quite a bit in computation time when applying the convolution of Eq. (1.12).
If the 2-d convolution kernel is nxn samples, then a direct convolution of that 2-d kernel
scales in proportion to n2, since Eq. (1.12) requires one multiplication per image position
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per kernel sample. Using the cascade of two 1-d kernels, resulting in an equivalent 2-d
filter of the same size, scales in proportion to 2n.

Another application of blurring is to remove distracting high-resolution image details.
Fig. 1.7 shows a Gaussian low-pass filter applied to remove unwanted image details (the
blocky artifacts) from an image.

Properties of the Gaussian filter:

• The n-dimensional Gaussian is the only completely circularly symmetric operator that is
separable.

• The continuous Fourier transform of a gaussian is also a gaussian.

G(u, v;σ) = exp−2π2(u2 + v2)σ2 (1.12)

Note that this function is monotonically decreasing in magnitude for increasing frequen-
cies, and it is also radially symmetric.

• The convolution of two n-dimensional gaussians is an n-dimensional gaussian.

g(x, y;σ1) ◦ g(x, y;σ2) = g(x, y;σ3) (1.13)

where the variance of the result is the sum σ2
3 = σ2

1 + σ2
2. This is a remarkable property

of gaussian filters and is the basis of the gaussian pyramid that we will see later. To
prove this property, one can use the Fourier transform of the gaussian and the fact that
the convolution is the product of Fourier transforms.

• The gaussian is the solution to the heat equation.
• Repeated convolutions of any function concentrated in the origin result in a gaussian

(central limit theorem).
• In the limit σ → 0 the Gaussian becomes an impulse. This property is shared by many

other functions, but it is a useful thing to know.

However, many of these properties do not work for the discrete approximation g [n,m;σ]
obtained by directly sampling the values of the gaussian at discrete locations. To see this
let’s look at some examples. Let’s consider a gaussian with variance σ2 = 1/2. It can be
approximated by 5 samples. We will call this approximation g5:

g5 [n] = [0.0183, 0.3679, 1.0000, 0.3679, 0.0183] (1.14)

first, note when convolved with a wave [1,−1, 1,−1, ...] the result is not zero. This is to be
expected from the form of the FT of the gaussian. You can check that if you compute the
approximation for σ2 = 1 by discretizing the gaussian, the result obtained is not equal to
doing g5 ◦ g5. Therefore, as you apply successive convolutions of gaussian the errors will
accumulate.

In practice, there are very efficient approximations to the Gaussian filter for certain σ

values with nicer properties than when working with discretized gaussians. One common
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approximation of the gaussian filter is to use binomial coefficients ??. Binomial coeffi-
cients provide a compact approximation of the gaussian coefficients using only integers.
The binomial coefficients use the central limit theorem to approximate a gaussian as suc-
cessive convolutions of a very simple function. The simplest low-pass filter is the box filter
[1, 1]. The binomial coefficients form the Pascal’s triangle as shown in figure 1.5.

b0 1 σ2
0 = 0

b1 1 1 σ2
1 = 1/4

b2 1 2 1 σ2
2 = 1/2

b3 1 3 3 1 σ2
3 = 3/4

b4 1 4 6 4 1 σ2
4 = 1

b5 1 5 10 10 5 1 σ2
5 = 5/4

b6 1 6 15 20 15 6 1 σ2
6 = 3/2

b7 1 7 21 35 35 21 7 1 σ2
7 = 7/4

b8 1 8 28 56 70 56 28 8 1 σ2
8 = 2

Figure 1.5
Binomial coefficients. To build the Pascal’s triangle, each number is the sum of the number above to
the left and the one above to the right.

The sum of all the coefficients for each binomial filter bn is 2n, and their variance is
σ2 = n/4. One remarkable property of the binomial filters is that bn ◦ bm = bn+m, and,
therefore, σ2

n +σ2
m = σ2

n+m, which is the analogous to the gaussian property in the continu-
ous domain. Note that the values of b2 are different from g5 despite that both will be used
as approximations to the same gaussian.

The simplest approximation to the Gaussian filter is the 3-tap kernel:

b2 = [1, 2, 1] (1.15)

This filter is interesting because it is even (so it can be applied to an image without pro-
ducing any translation) and its DFT is:

B2 [u] = 2 + 2 cos(2πu/N) (1.16)

it has a monotonic amplitude gain in frequency (there are no ripples) as shown in figure
1.6. All the even binomial filters can be written as successive convolutions with the kernel
[1, 2, 1]. Therefore, their Fourier transform is a power of the Fourier transform of the filter
[1, 2, 1] and therefore they are also monotonic:

B2n [u] = (2 + 2 cos(2πu/N))n (1.17)
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For all the binomial filters bn, when they are convolved with the wave [1,−1, 1,−1, ...], the
result is the zero signal [0, 0, 0, 0, ...]. This is a very nice property of binomial filters and
will become very useful later when talking about downsampling an image (see section ??).

a) −10 0 10

1

2

n

b2 [n]

b) −10 10

2

4

u

|B2 [u]|

Figure 1.6
a) A one dimensional 3-tap approximation to the gaussian filter ([1, 2, 1]) and b) its Fourier transform
over 20 samples. Note that the frequency gain is decreasing monotonically with spatial frequency
and it becomes zero at the highest frequency, G3 [10] = 0.

The gaussian in 2D can be approximated, using separability, as the convolution of two
binomial filters one vertical and another horizontal. For instance:

b2,2 = b2,0 ◦ b0,2 =
[
1 2 1

]
◦


1
2
1

 =


1 2 1
2 4 2
1 2 1

 (1.18)

What is the inverse? can we remove gaussian filter? Show the matrix for some simple
case and show it does not behave nicely.

Due to all these properties the gaussian and the binomial filter are extensively used in
computer vision.

1.3.3 Image derivatives
Computing image derivatives is an essential operator for extracting useful information from
images. As we show in the previous chapter, image derivatives allowed us computing
boundaries between objects and to have access to some of the 3D information lost when
projecting the 3D world into the camera plane. Derivatives are useful because they give
us information about where are happening the changes in the image and we expect those
changes to be correlated with transitions between objects.

If we had access to the continuous image, then image derivatives could be computed
as: ∂I(x, y)/∂x. However, there are two reasons why we might not be able to apply this
definition

• the first one is that we only have access to a sampled version of the input image: I [m, n]
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Figure 1.7
Left: input image. Right: blurred version. The left version has many spurious details introduced by
the undersampling of the image. The right image has been blurred by a large Gaussian filter. ((image
from http://acor.org/sgreene/hmsbeagle/html/content/17/recroom/artgalas.htm, after 1973 image by
Bela Julesz and Leon Harmon )).

• even if we had access to the continuous image, the image could contain many non-
derivable points and the gradient would not be defined. We will see how to address this
issue later when we study gaussian derivatives.

for now, let’s focus on the problem of approximating the continuous derivative with discrete
operators. As the derivative is a linear operator, it can be approximated by a discrete linear
filter. There are several ways in which image derivatives can be approximated.

Let’s start with a simple approximation to the derivative operator that we have already
played with: d0 = [1,−1]. In one dimension, convolving a signal f [n] with this filter
results in:

f ◦ d0 = f [n] − f [n − 1] (1.19)

this approximates the derivative by the difference between consecutive values. Figure 1.8.c
shows the result of filtering a 1-d signal (fig.1.8.a) convolved with d0 [n] (fig.1.8.b). The
output is zero wherever the input signal is constant and it is large in the places where there
are variations in the input values. However note that the output is not perfectly aligned
with the input. In fact there is a half a sample displacement to the right. This is due to the
fact that d0 [n] is not centered around the origin.

This can be addressed with a different approximation to the spatial derivative: d1 =

[1, 0,−1] /2. In one dimension, convolving a signal f [n] with d1 [n] results in:

f ◦ d1 =
f [n + 1] − f [n − 1]

2
(1.20)

Figure 1.8.e shows the result of filtering the 1-d signal (fig.1.8.a) convolved with d1 [n]
(fig.1.8.d). Now the output shows the highest magnitude output in the mid point where
there is variation in the input signal.
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a) 0 5 10 20

1

2

n

f [n]

b)

−3 3
−1

1

n

d0 [n]

c)

5 10 20
−1

1

n

f [n] ◦ d0 [n]

d)

−3 3
−1

1

n

d1 [n]

e)

5 10 20
−1

1

n

f [n] ◦ d1 [n]

Figure 1.8
a) b).

It is also interesting to see the behavior of the derivative and its discrete approximations
in the Fourier domain.

d f (x)/dx↔ jwF(w) (1.21)

in the continuous Fourier domain, derivation can be done by multiplying by jw. The DFT
of d0 [n] is:

D0 [u] =1 − exp
(
−2π j

u
N

)
=

= exp
(
−π j

u
N

) (
exp

(
π j

u
N

)
− exp

(
−π j

u
N

))
= exp

(
−π j

u
N

)
2 j sin(πu/N)

(1.22)

the first term is a pure phase shift and it is responsible of the half a sample delay in the
output. The second term is the amplitude gain and it can be approximated by a linear
dependency on u for small u values.
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a) −10 10

1

2

u

|D0 [u]|

b) −10 10

1

2

u

|D1 [u]|

Figure 1.9
Magnitude of a) D0 [u] and b) D1 [u] and comparison with |2πu/N|, shown as a thin black line. Both
DFT are computed over 20 samples.

The DFT of d1 [n] is:

D1 [u] =1/2 exp
(
2π j

u
N

)
− 1/2 exp

(
−2π j

u
N

)
=

= j sin(2πu/N)
(1.23)

Figure 1.10 shows the magnitude of D0 [u] and D1 [u] and compares it with |2πu/N |
which will be the ideal approximation to the derivative. The amplitude of D0 [u] provides a
better approximation to the ideal derivative, but the phase of D0 [u] introduces a small shift
in the output. On the other hand, D1 [u] has no shift, but it approximates the derivative over
a smaller range of frequencies. The output to D1 [u] is smoother than the output to D0 [u],
and, in particular, D1 [u] gives a zero output when the input is the signal [1,−1, 1,−1, ...].
In fact, we can see that [1, 0,−1] = [1,−1] ◦ [1, 1], and, therefore D1 [u] = D0 [u] B1 [u],
where B1 [u] is the DFT of the binomial filter b1 [n].

Derivates have become an important tool to represent images and they can be used to
extract a great deal of information from the image as it was shown in the previous chapter.
One thing about derivatives is that it might seem as we are loosing information from the
input image. An important question is: if we have the derivative of a signal, can we
recover the original image? what information is being lost? Intuitively, we should be able
to recover the input image by integrating its derivative, but it is an interesting exercise to
look in detail how this integration can be performed. We will start with a one dimensional
signal and then we will discuss the two dimensional case.

A simple way of seeing that we can recover the input from its derivatives is to write
the derivative in matrix form. This is the matrix that corresponds to the convolution with
the kernel [1,−1] that we will call D0. The next two matrices show the matrix D0 and its
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inverse D−1
0 for a 1D image of length 5 pixels using zero boundary conditions:

D0 =



1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


D−1 =



1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


(1.24)

We can see that the inverse D−1 is reconstructing each pixel as a sum of all the derivate
values from the left-most pixel to the right. And the inverse perfectly reconstructs the
input. But, this is cheating because the first sample of the derivative gets to see the actual
value of the input signal and then we can integrate back the entire signal. That matrix is
assuming zero boundary conditions for the signal and the boundary gives us the needed
constraint to be able to integrate back the input signal.

But what happens if you only get to see differences and you remove any pixel that was
affected by the boundary? In this case, the derivative operator in matrix form is:

D0 =


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 (1.25)

Let’s consider the next 1D input signal:

g = [1, 1, 2, 2, 0] (1.26)

then, the output of the derivative operator is:

f = D0g = [0,−1, 0, 2] (1.27)

Note that this vector has one sample less than the input.
To recover g we can not invert D0 as it is not a square matrix, but we can compute the

pseudo inverse which turns out to be:

D+
0 =

1
5



−4 −3 −2 −1
1 −3 −2 −1
1 2 −2 −1
1 2 3 −1
1 2 3 4


(1.28)

It has a funny structure and it is easy to see how it can be written in the general form for
signals of length N. Also note that this is not a convolution. Another important thing is that
the inversion process is trying to recover more samples than there are observations. The
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trade off is that the signal that it will recover will have zero mean (so it looses one degree
of freedom that can not be estimated). In this example, the reconstructed input is:

ĝ = D+ f = [−0.2,−0.2, 0.8, 0.8,−1.2] (1.29)

Note that
∑

ĝ = 0 and that this is ĝ = g − 1.2, where 1.2 is the mean value of samples on
g. Then, you still can recover the input signal up to the DC component.

In two dimensions things are a bit more complex. There are several ways in which partial
image derivatives can be approximated. For instace, we can compute derivatives along the
n and m components.  1

−1

 [
1 − 1

]
(1.30)

Or we can use a rotated reference frame as it is done in the Robert-Cross operator, in-
troduced in 1963 in a time when reading an image of 256 × 256 pixels into memory took
several minutes: 1 0

0 −1

  0 1
−1 0

 (1.31)

Although these operators are very old and better algorithms exist nowadays for edge
extraction, when an efficient solution is needed, these simple operators are still very useful
and had been used as key operators in modern computer vision descriptors such as HOG
as we will see later.

Show some applications doing edge edition. This is a non-linear filter.
FIGURE: a) removing one object, b) moving one object from one image to another.

1.3.4 Gaussian derivatives
In the previous section we studied how to discretize derivatives. However, computing
derivatives in practice has several difficulties. First, derivatives are sensitive to noise. In
the presence of noise, as images tend to vary slowly, the difference between two continuous
pixel values will be dominated by noise. There are also situations in which the derivative
of an image is not defined. For instance, consider an image in the continuous domain with
the form: I(x, y) = 0 if x < 0 and 1 otherwise. If we try to compute ∂I(x, y)/∂x we will get
0 everywhere, but around x = 0 the value of the derivative is not defined. We avoided this
issue in the previous section as for discrete images the approximation of the derivative is
always defined.

Gaussian derivatives address these two issues. They where introduced by Koendering
and Van Doorm as a model of the processing perform by neurons in the visual system.
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Figure 1.10
a) 1D Gaussian with σ = 1 and b-d) its derivatives up to order 3.

Let’s start with the following observation: For two functions defined in the continuous
domain f (x, y) and g(x, y), we can write:

∂ f (x, y)
∂x

◦ g(x, y) = f (x, y) ◦
∂g(x, y)
∂x

(1.32)

this is easy to prove in the Fourier domain. If our goal is to compute image derivatives
and then blur the output using a low-pass filter, g(x, y), then, instead of computing the
derivative of the image we can compute the derivatives of the filter kernel and convolve it
with the image. Even if the derivative of f is not defined in some locations, we can always
compute the result of this convolution.

If g(x, y) is a blurring kernel it will smooth the derivatives reducing the output noise at
the expense of a loss in spatial resolution. If g is a Gaussian, then the derivative is:

gx(x, y;σ) =
∂g(x, y;σ)

∂x
=
−x

2πσ4 exp−
x2 + y2

2σ2 =
−x
σ2 g(x, y;σ) (1.33)

and the second order derivative is:

gx2 (x, y;σ) =
x2 − σ2

σ4 g(x, y;σ) (1.34)

Each derivative can be written as the product between a polynomial on x, with the same
order as the derivative, times a gaussian. The family of polynomials that result on comput-
ing gaussian derivatives is called Hermite polynomials. The general expression for the n
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Figure 1.11
Gaussian derivatives up to order 6. All the kernels are separable. Although the seem similar to
Fourier basis fig. 1.12 shows that they are different to sine and cosine waves, instead they look more
like products of cosine and sine waves.

derivative of a gaussian is:

gxn (x;σ) =
∂ng(x)
∂xn =

(
−1

σ
√

2

)n

Hn

(
x

σ
√

2

)
g(x;σ) (1.35)

the first Hermite polynomial is H0(x) = 1, for n = 0 we have the original Gaussian.
Figure 1.10 shows the 1D Gaussian derivatives.

In two dimensions, as the gaussian is separable, the partial derivatives result on the prod-
uct of two Hermite polynomial, one for each dimension:

gxn,ym (x, y;σ) =
∂n+mg(x, y)
∂xn∂ym =

(
−1

σ
√

2

)n+m

Hn

(
x

σ
√

2

)
Hm

(
y

σ
√

2

)
g(x, y;σ) (1.36)

Figure 1.11 shows the 2D Gaussian derivatives, and Figure 1.12 shows the corresponding
Fourier transforms.

The Gaussian derivatives share many of the properties of the Gaussian:

• The convolution of two Gaussian derivatives of order n and m and variances σ2
1 and σ2

2
results in another gaussian derivative of order n + m and variance σ2

1 + σ2
2. Proving this

property on the spatial domain can be tedious. However it is trivial to prove it in the
Fourier domain.
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Figure 1.12
Fourier transform of the Gaussian derivatives shown in figure 1.11. Units are arbitrary.

a) b) c)

d) e) f)
Figure 1.13
An image filtered with three Gaussian derivatives with standard deviations: a) σ = 2, b) σ = 4,
and c) σ = 8. In the filtered images, bright pixels correspond to positive values and dark pixels
correspond to negative values. Plots (d) - (f) show the three Gaussian derivatives over the same
spatial support as the image. The discrete functions are approximated by sampling the continuous
Gaussian derivatives. The convolutions are perform with mirror boundary conditions.
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Figure 1.13 shows an image filtered with three gaussian derivatives with different widths.
Interestingly, derivatives at different scales emphasize different aspects of the image. The
fine-scale derivatives (fig. 1.13.a) highlight the bands in the zebra, while the coarse-scale
derivatives (fig. 1.13.c) emphasize more the object boundaries. This multiscale image anal-
ysis will be studied in depth in the following chapter.

When processing images we have to use discrete approximations for the Gaussian deriva-
tives. After discretization, many of the properties of the continuous Gaussian will not hold
exactly.

There are many discrete approximations. For instance, we can take samples of the con-
tinuous functions. In practice it is common to use the discrete approximation given by the
binomial filters. Figure 1.14 shows the result of convolving the binomial coefficients with:
bn ◦ [1,−1].

d0 1 −1
d1 1 0 −1
d2 1 1 −1 −1
d3 1 2 0 −2 −1
d4 1 3 2 −2 −3 −1
d5 1 4 5 0 −5 −4 −1

Figure 1.14
Derivative of binomial coefficients resulting from convolving bn ◦ [1,−1]. The first two filters are the
ones we have studied in detail in the previous section.

In two dimensions, we can use separable filters and build a partial derivative as:

S obelx =
[
1 0 −1

]
◦


1
2
1

 =


1 0 −1
2 0 −2
1 0 −1

 (1.37)

S obely =


−1 −2 −1
0 0 0
1 2 1

 (1.38)

This particular filter is called the Sobel-Feldman operator. The goal of this operator was
to be compact and to be as isotropic as possible. The sobel-feldman operator can be im-
plemented very efficiently as it can be written as the convolution with 4 small kernels:
S obelx = b1 ◦ d0 ◦ bT

1 ◦ bT
1 . The DFT is:

S obelx [u, v] = D1 [u] B2 [v] = j sin (2πu/N) (2 + 2 cos (2πv/N)) (1.39)
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Figure 1.15
Magnitude of the DFT of four different discretization of Gaussian derivatives: a) d0, b) d1, c) Cross-
Robert operator and d) Sobel-Feldman operator. As d0 and d1 are one dimensional their 2D-DFT
vary only along one dimension. The Cross-Robert operator is similar to a rotated version of d1. The
Sobel-Feldman operator has the profile of D1 along the axis u = 0 and it is proportional to the profile
of B2 along any section v = constant.

and it is shown in fig. 1.15.d. N × N is the extension of the domain (the operator is zero
padded).

Fig. 1.15 compares the DFT of the 4 types of approximations of the derivatives that
we have discussed. These operators are still very popular. S obel has the best tolerance
to noise due to its band-pass nature. The kernel d0 is the one that provides the highest
resolution in the output. Fig. 1.16 shows the output of different derivative approximations
to a simple input image containing a circle. In the next section we will discuss now to use
these derivatives to extract other interesting quantities.

1.3.5 Image gradient and directional derivatives
As we saw in chapter one, an important image representation is given by the image gradi-
ent. From the image derivatives we can define also the image gradient as the vector:

∇I =

(
∂I
∂x
,
∂I
∂y

)
(1.40)

For each pixel, the output is a two dimensional vector. In the case of using gaussian
derivatives, we can write:

∇I ◦ g =
(
gx(x, y), gy(x, y)

)
◦ I = ∇g ◦ I (1.41)

Although we have mostly computed derivatives along the x and y variables, we can obtain
the derivative on any orientation as a linear combination of the two derivatives along the
main axes. With t = (cos(θ), sin(θ)), we can write the directional derivative a long the
vector t as:

∂I
∂t

= ∇I · t = cos(θ)
∂I
∂x

+ sin(θ)
∂I
∂y

(1.42)

In the gaussian case:

∂I
∂t
◦ g =

(
cos(θ)gx(x, y) + sin(θ)gy(x, y)

)
◦ I = (∇g · t) ◦ I = gθ(x, y) ◦ I (1.43)
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Figure 1.16
Image containing a circle filtered along the directions n, m and 45 degrees. And also the magnitude
and the angle of the gradient. The angle is shown only where the magnitude is > 0. The derivative
output along 45 degrees is obtained as a linear combination of the derivatives outputs along n and m.
Check the differences among the different kernels. The Sobel operator gives the most rotationally
invariant gradient magnitude at the expense of a bit of blurring of the output.

with gθ(x, y) = cos(θ)gx(x, y) + sin(θ)gy(x, y). However, to compute the derivate a long any
arbitrary angle θ does not require doing new convolutions. Instead, we can compute any
derivative as a linear combination of the output of convolving the image with gx(x, y) and
gy(x, y):

∂I
∂t
◦ g = cos(θ)gx(x, y) ◦ I + sin(θ)gy(x, y) ◦ I (1.44)

When using discrete convolutional kernels dn [n,m] and dm [n,m] to approximate the
derivatives along n and m, it can be written as:

∇I = (dn [n,m] , dm [n,m]) ◦ I (1.45)

and
∇I · t = dθ [n,m] ◦ I (1.46)

with dθ [n,m] = cos(θ)dn [n,m] + sin(θ)dm [n,m]. We expect that the linear combination of
these two kernels should approximate the derivative in the direction θ. The quality of this
approximation will vary for the different kernels we have seen in the previous sections.

- The structure tensor: this is an example of a powerful image derivative representation.
And we will see more of it (or related) later.
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a) b) c)

Figure 1.17
Three 2D gaussian-related convolutional kernels: a) 2D gaussian with σ = 1, b) its x derivative, and
c) its laplacian.

1.3.6 Laplacian
The Laplacian filter was made popular by Marr and Hildreth in 1980 in the search for
operators that locate the boundaries between objects. The Laplacian is a common oper-
ator from differential geometry to measure the divergence of the gradient and it appears
frequently in modeling fields in physics. One cool example is the paper ”can one hear the
shape of a drum” where the laplacian is used for modeling vibrations in a drum and the
sounds it produces as a function of its shape, those results have applications also in spectral
methods for image segmentation as we will see later.

The Laplacian operator is defined as the sum of the second order partial derivatives of a
function:

∇2I =
∂2I
∂x2 +

∂2I
∂y2 (1.47)

The laplacian is more sensitive to noise than the first order derivatives. Therefore, in the
presence of noise, it is useful to filter the output with a gaussian. We can write:

∇2I ◦ g = ∇2g ◦ I (1.48)

Where

∇2g =
x2 + y2 − 2σ2

σ4 g(x, y) (1.49)

Figure 1.17 compares the 2D gaussian laplacian (fig. 1.17.c) with the first order derivative
(fig. 1.17.b) of a 2D gaussian (fig. 1.17.a). Due to its shape, the laplacian is also called the
inverted mexican hat wavelet. Despite that visually it might seem as if the laplacian has
a negative mean the mean is actually zero as the positive side is wider than the negative.
Figure 1.18 shows the DFT of the gaussian laplacian for three different values of σ. For
values σ > 1 the resulting filter is band-pass.
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Figure 1.18
Magnitude of the DFT of the Gaussian Laplacian with three different widths and a discrete approx-
imation: a) σ = 1/2, b) σ = 1, c) σ = 2 and d) DFT of the five-point discrete approximation to the
laplacian.

In the discrete domain there are several approximations to the laplacian filter. Lindeberg
explored different approximations to the image Laplacian in order to optimize its proper-
ties. In one dimension, the Laplacian can be approximated by [1,−2, 1] which is the result
of the convolution of [1,−1] ◦ [1,−1]. In two dimensions, the most popular approximation
is the five-point formula which consists in convolving the image with the kernel:

∇2
5 =


0 1 0
1 −4 1
0 1 0

 (1.50)

It involves the central pixel and its four nearest neighbors. This is a sum-separable kernel: it
corresponds to approximating the second order derivative for each coordinate and summing
the result (i.e., convolve the image with [1,−2, 1] and also with its transpose and summing
the two outputs. It is important to shift by one pixel, on the appropriate dimension, the two
results to make sure that the sum results in the Laplacian.) Figure 1.17.d shows the DFT of
this approximation. It also has a quadratic from near the origin of the frequency domain,
but it has a high-pass shape similar to the one obtained for a small value of σ.

Note that when summing two first order derivatives along x and y, what we obtain is
a first order derivative along the 45 degrees angle. However, when summing up the two
second order derivatives we obtain a rotationally invariant kernel. This is shown in fig. 1.19

The discrete approximation also provides a better intuition of how it works than its con-
tinuous counterpart. The Laplacian filter has a number of advantages with respect to the
gradient:

• It is rotationally invariant: it is a linear operator that responds equally to edges in any
orientation (this is only approximate in the discrete case).

• It measures curvature: if the image contains a linear trend the derivative will be non-zero
despite being no boundaries, while the laplacian will be zero.

• Edges can be located as the zero-crossings in the Laplacian output. However, this way
of detecting edges is not very reliable.
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a) b) c) d)
Figure 1.19
a) Input image, b) second order derivative along x, c) second order derivative along y and d) the sum
of the two second order derivatives, which results in the laplacian output.

• Zero crossings of an image form closed contours.

Marr-Hildreth used zero-crossings of the laplacian output to compute edges, but this
method is not used nowadays for edge detection. Instead the laplacian filter is widely used
in a number of other image representations. It is used to build image pyramids (multiscale
representations, chapter ??), to detect points of interest in images (it is the basic operator
used to detect keypoints where to compute SIFT descriptors, which we will discuss in
chapter ??).

Figure 1.20 compares the output of the first order derivative (Fig. 1.20.b) and the lapla-
cian (Fig. 1.20.d) on a simple 1D signal (Fig. 1.20.a). The local maximum of the derivative
output (Fig. 1.20.c) and the zero crossings of the laplacian output (Fig. 1.20.e) are aligned
with the transitions (boundaries) of the input signal (Fig. 1.20.a).

The Laplacian filter can also be used as a coarse approximation of the behavior of the
early visual system. When looking at the magnitude of the DFT of the laplacian with σ = 1
(fig. 1.18), the shape seems reminiscent of our subjective evaluation of our own visual
sensitivity to spatial frequencies when we look at the Campbell & Robson chart (fig. 1.1).
As the visual filter does not seem to cancel exactly the very low spatial frequencies as the
laplacian does, a better approximation is:

h = ∇2g + λg (1.51)

where h is the approximate impulse response of the human visual system, λ is a small
constant that is equal to the DC gain of the filter. This particular form of the human
sensitivity function helps to explain some visual illusions. One of them is shown in figure
1.21. This visual illusion is called the Vasarely visual illusion. Images (a) and (d) show
two gray-scale pyramids formed by superimposing squares of increasing (or decreasing)
intensity. When looking at them we perceive the diagonal directions as being brighter (a) or
darker (d) than their neighborhood. This is an illusion because there is not such a difference
in image intensity. One explanation consists in saying that the image that we perceive is
the output of a filter (as shown in eq. 1.51). Images (b) and (e) show the output of such a
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Figure 1.20
Comparison between the output of a first order derivative and the Laplacian of 1D signal. a) Input
signal, b) kernel d1, c) output of the derivative (convolution of (a) and (b)), d) discrete approximation
of the Laplacian and e) output of convolving the signal (a) with the laplacian kernel (d).

filter. We can see the diagonals again as being brighter or darker but now this effect is not
an illusion, the brighter and darker diagonals are really part of the filtered image. In fact,
(c) shows in blue an horizontal section at one quarter of image (b). The red curve is the
section of the input image (a). We can see that the output really contains a pick in intensity
on the diagonals of image (b). The plot in figure (f) shows the same for images (d) and (e).

1.3.7 Sharpening filter
One example of a simple but very useful filter is a sharpening filter. The goal of a sharpen-
ing filter is to transform an image so that it appears sharper. This can be achieved by am-
plifying the amplitude of the high-spatial frequency content of the image. We can achieve
this with a combination of filters that we have already discussed in this section.

A simple way to design a sharpening filter is to de-emphasize the blurry components of
an image. By the linearity of the convolution operator, we’re allowed to add and subtract
kernels to make a new kernel that would give us the same filtered image as if we had added
and subtracted the filtered outputs of each of the component kernels. For this example,
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a) b) c)

d) e) f)
Figure 1.21
Vasarely visual illusion. Images (a) and (d) show two gray-scale pyramids. When looking at them we
perceive the diagonal directions as being brighter (a) or darker (d) than their neighborhood. Images
(b) and (e) show the output of the human model given by the filter from eq. 1.51. The plots (c) and (f)
show, in blue, an horizontal section at one quarter of image (b) and (e) showing the intensity profile
as a function of x. The red curve is the section of the corresponding input image. We can see that the
output really contains a pick in intensity on the diagonals of the input image.
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a) b) c)

d) e) f)
Figure 1.22
Sharpening achieved by subtraction of blurred components. a) Original image, b) sharpened once by
filtering with kernel from eq. 1.52. Each color channel is filtered independently. c) - f) the same filter
is applied successively to the previous output. In the last image the sharpening filter has been applied
5 times to the input image. The last image seems looks substantially sharper than the original image,
but close inspection will reveal some artifacts.
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we start with twice the original image (sharp plus blurred parts), then subtract away the
blurred components of the image:

sharpening filter =


0 0 0
0 2 0
0 0 0

 − 1
16


1 2 1
2 4 2
1 2 1

 (1.52)

Note that the DC gain of this sharpening filter is 1. That would leave one original image
in there, plus an additional component of the sharp details. The perceptual result is that
of a sharpened image, Fig. 1.22. We can apply this filter successively in order to further
enhance the image details. If too much sharpening is applied we might end up enhancing
noise and introducing image artifacts.

1.3.8 Motion blur and camera shake.
The Gaussian filter that we have studied can be used to model how images are blur when
a picture is taken out of focus, or when we remove the eyeglasses. But there are other
types of image blur that also happen in natural situations. Figure 1.23 shows examples
of linear motion blur (fig 1.23.a-c), and camera shake (fig 1.23.d-i). Motion blur happens
when there are objects moving in the scene or when the camera is moving while the shutter
is open. Camera shake is produced due to the small camera vibration that happens while
taking a picture and it is more important under low-light conditions. Camera shake can be
modeled as a blur kernel, describing the camera motion during exposure, convolved with
the image intensities. Depending on the shake the resulting picture looks as

Figure 1.23.d-i shows one simulated example of camera shake. In this case, the photog-
rapher is trying to capture the scene shown in fig. 1.23.d, but during exposure the camera
followed a circular path. Therefore, the resulting picture (fig. 1.23.f) is the convolution
of the ideal picture (fig. 1.23.d) with the convolution kernel (fig. 1.23.e). The result has
probably a familiar effect for anyone that has taken pictures at night. The light sources in
the picture are like delta functions that produce multiple copies of the convolution kernel.
Figure 1.23.g-i shows a different example where the camera has follow a more complex
trajectory.

It will be nice to have tools capable to removing the effect of camera motion to produce
sharp pictures. This is an active area of research and we will discuss approaches to this
problem in chapter ??.

1.3.9 Artistic filters
Despite the simplicity of linear filters, they can be used to produce pleasing artistic effects.
Combining linear filters with some simple non-linearities provides a very large number of
possibilities. These types of image manipulation techniques are very popular as they can
be implemented very efficiently and can be computed very fast even on mobile devices.
Linear convolutional filters are the basis of applications such as Photoshop or Instagram.
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a) b) c)

d) e) f)

g) h) i)
Figure 1.23
a) Simulated motion blur, in this case it is produced because the picture is taken from a moving car.
d) Simulated camera shake blur (the camera has followed a circular trajectory while the shutter was
open). Probably the reader has seen this type of effect in some pictures taken at night.
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a) b) c)

d) e) f)
Figure 1.24
Simple linear filters can create interesting effects. a-c) Random kernel. Here, by filtering the image
(a) with a random set of impulses (b) at random locations and random positive amplitudes, creates
an image that seems to be drawn with a pencil (c). In this example, the image is 512×512 pixels and
the kernel has a support of 64 × 64 pixels with 50 random dots with random amplitudes between 0.5
and 1. Each color channel is filtered independently with the same kernel. d-f) Vertical motion blur.

Exploring artistic effects and playing with filters to enhance pictures is a nice way of
learning and gaining intuition about linear filter theory. Figure 1.24 shows a few linear
filters and the result they have in images. Those filters are easy to implement and will
allow you creating nice effects.

Intentional motion blur that can be achieved by moving the camera while taking a picture.
The example in figure 1.24.f simulates the effect of moving the camera up and down. The
linear filtering produces an interesting effect on the tree trunks making them become more
visually salient while attenuating other image details.
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1.4 Gabor filters

Although linear filters can perform a wide range of operations, image understanding re-
quires non-linear operators.

In the previous chapter we discussed several useful image representations: representing
an image in the frequency domain and decomposing it into amplitude and phase, and also
the analysis of image content across different scales and orientations. The Fourier trans-
form was a tool that allowed us to extract that information, but only globally. For this
information to be useful it needs to be localized. For instance, the analysis of orientations
of local image structures can be done using image gradients (section ??), which are local-
ized in space. Here we will discuss Gabor filters which allow analyzing the local frequency
content (amplitude and phase).

A good start for a localized image analysis is to restrict the spatial support of a sinusoidal
basis function. We can multiply a Fourier basis function, exp (2π j (u0x + v0y)) (shown here
in the x direction), by a spatially localizing Gaussian window, exp

(
−

x2+y2

2σ2

)
to obtain a

Gabor function, ψ(x, y):

ψ(x, y; u0, v0) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
exp (2π j (u0x + v0y)) (1.53)

A Gabor function is complex-valued, but we can look at the real or imaginary parts to
examine cosine and sine phase local filters:

ψr(x, y; u0, v0) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
cos (2π j (u0x + v0y)) (1.54)

ψi(x, y; u0, v0) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
sin (2π j (u0x + v0y)) (1.55)

Figure 1.25 shows the Gaussian window and the real and imaginary parts of the Gabor
function. The value of σ sets the locality of the window of analysis and the values of
(u0, v0) adjust the orientation of the Gabor function and frequency. If the value of σ is very
large, then analyzing the image with a set of Gabor functions is like the Fourier transform
of the image. The Gabor filter is and oriented band pass filter. The Fourier transform of
a complex Gabor function is a gaussian in the Fourier domain shifted with respect to the
origin:

Ψ(u, v; u0, v0) = exp
(
−2π2

(
(u − u0)2 + (v − v0)2

)
σ2

)
(1.56)

Figure 1.26 shows the magnitude of the Fourier transform of the Gabor filters.
The sine phase Gabor function is zero mean. However, the cosine phase Gabor function

is not zero mean. The gaussian width σ has to be sufficiently large so that the Gabor func-
tion behaves as a zero mean filter. All the previous definitions are given in the continuous
domain. The discrete version of the Gabor function is obtained by sampling the continuous
functions.
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a) b) c)

d) e)

Figure 1.25
Gabor functions. a) The localizing Gaussian window (σ = 1), which can be thought of as a Gabor
function for a zero frequency sinusoid. b) Cosine and c) sine phase Gabor functions with u0 = 0.5
and v0 = 0.

u

v

u

v

x

y

x

y

Figure 1.26
a) Cosine phase Gabor function, ψr(x, y; u0, v0), b) sine phase Gabor function, ψi(x, y; u0, v0), c)
Fourier transform of the cosine phase Gabor function, Ψr(u, v; u0, v0). d) Fourier transform of the
complex Gabor function, Ψ(u, v; u0, v0).



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 23, 2018 3:57pm

1.4 Gabor filters 33

Figure 1.27
Cosine phase Gabor function tuned to different widths, frequencies, and orientations, and their cor-
responding Fourier transforms (only the magnitude is shown).

One important characteristic of the Gabor filters is that they are very similar to the shape
of some cortical receptive fields found in the mammalian visual system ?. This provides a
hint that we’re on the right track with these filters to build image representations.

The convolution of the Gabor function with an image results in a signal that depends
both in space and frequency:

Iψ (x, y, u, v) = I (x, y) ◦ ψ(x, y; u, v) (1.57)

Figure 1.28 shows the result of the convolution between a picture and the cosine and sine
phase Gabor functions at three different scales (σ = 2, 4, 8). In this example, the Gabor
filters are tuned to detect vertical edges. Gabor filters are useful for analyzing line or edge
phase structures in images. But they have many other benefits when we combine them
together in quadrature pairs.

1.4.1 Quadrature pairs and the Hilbert transform
Pairs of filters can be in a relationship to each other that is called “quadrature phase”.
This relationship is useful for many low-level visual processing tasks. When in quadrature
phase, pairs of oriented filters can measure what is called local oriented energy, can identify
contours, independently of the phase of the contour, and can measure positional changes
very accurately. Let’s start with the mathematical definition of quadrature.

For notational simplicity, we’ll describe quadrature pair filters in the time domain, but
they extend naturally to two or more dimensions, as illustrated in Figs. ?? and 1.29. Con-
sider an even symmetric zero-mean signal, f (t) and with Fourier transform F(ω), with
F(0) = 0 because the signal is zero-mean. In the Fourier domain, two functions, F(ω) and
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Cosine Sine Local amplitude Local phase

a) b) c)

d) e) f)

g) h) i)

Figure 1.28
Zebra picture filtered by cosine and sine Gabor functions at three scales with σ = 2, 4, 8 and u0 =

1/(2σ), v0 = 0. Each row shows one scale. a) Shows the cosine and sine kernels, b) cosine and sine
outputs, c) magnitude and phase of the output of the complex Gabor filter.
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H(ω), are said to be Hilbert transform pairs if:

H(ω) =

 − jF(ω) if ω > 0

jF(ω) if ω < 0
(1.58)

We now define the complex signal:

g(t) = f (t) + jh(t) (1.59)

This signal is called the analytic signal and its Fourier transform has no negative frequency
components:

G(ω) =

 2F(ω) if ω > 0

0 if ω < 0
(1.60)

It is interesting to write the complex signal g(t) in polar form:

g(t) = a(t) exp ( j θ(t)) (1.61)

where a(t) is the instantaneous amplitude (local amplitude) and θ(t) is the instantaneous
phase (local phase). This particular representation is common in communications theory,
and it has been used to build image representations invariant to certain image structures as
we will discuss in the following sections.

The extension of the Hilbert transform to images can be done in several ways. The most
common approach in image processing is to define one direction in the frequency space n
and then the Hilbert transform as follows:

H(ωx, ωy) =

 − jF(ωx, ωy) if nT · (ωx, ωy) > 0

jF(ωx, ωy) if nT · (ωx, ωy) < 0
(1.62)

Two bandpass filters are said to be in quadrature if the impulse responses are Hilbert
transform pairs. Sine and cosine functions of the same frequency are Hilbert transform
pairs, as are sine and cosine phase Gabor functions, of the same frequency and Gaussian
envelope parameters. Thus, these filter pairs are also quadrature pairs. When convolving
two filters in quadrature with a signal (or image) the two outputs are also in quadrature.

The quadrature in the Gabor functions is an approximation that only holds for σ suffi-
ciently large. For small σ the filter does not form a quadrature pair. For large σ, the real
and imaginary parts of the Gabor filter (cosine and sine phase local filters) are filters in
quadrature with the vector n = (u0, v0) pointing in the direction of the central frequency of
the Gabor function.

1.4.2 Local amplitude
Let f (x, y) and h(x, y) be bandpass filters in quadrature, and let I f (x, y) and Ih(x, y) be the
result of convolving the signal I(t) with f (x, y) and h(x, y), respectively. Then, the squared
local amplitude is a measure of the image power within the passband of the filters in the
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(.)2

(.)2

+

Figure 1.29
Computation of localized amplitude. The input is filtered by a pair of quadrature Gabor filters. Each
filter output is squared and the result is added.

local neighborhood of (x, y):

a2(x, y) = I f (x, y)2 + Ih(x, y)2 (1.63)

Figure 1.29 shows the steps to compute the local amplitude of an input image using Gabor
filters.

To see how useful the local amplitude is, let’s start by computing it for some simple
images. If the input image is a delta, I(x, y) = δ(x, y), and the filters f and h are the cosine
and sine phase Gabor filters, then, the local amplitude image is:

a(x, y) =

√
I f (x, y)2 + Ih(x, y)2 =

=

√
ψ2

r (x, y; u0, v0) + ψ2
i (x, y; u0, v0) =

=
1

2πσ2 exp
(
−

x2 + y2

2σ2

) (1.64)

The amplitude of the delta function is the gaussian envelope of the Gabor function. This
result is independent of the contrast of the input image. For instance, if the input is I(x, y) =

−δ(x, y), the amplitude image does not change. Figure 1.30.a shows an image with two
impulses of opposite signs. Figures 1.30.b show the output of the cosine and phase filters,
and figure 1.30.c shows the local amplitude a(x, y). The local amplitude is two Gaussians
centered on each impulse.

This contrast invariance property is specially useful when using the local amplitude to
localize edges in images. Figures 1.30.d shows an image composed of several squares.
Each square is defined by different polarities with respect to the background. Two of
the squares are solid while the other two are only defined by lines. The local amplitude,
Figures 1.30.f, provides a detector for the square boundaries that is invariant to all those
changes. The differences between all the squares are encoded in the local phase image
as we will discuss in the following section. Figure 1.28 shows the local amplitude signal
computed on real images.
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Cosine Sine Local amplitude Local phaseInput

a) b) c)

d) e) f)

Figure 1.30
Examples of Gabor outputs to illustrate the contrast invariances present in the local amplitude. In
these examples the Gabor filters are centered along the horizontal frequency axis (v0 = 0) therefore
detecting only vertical edges.

One property to notice in all these examples, is that, although the images I f (x, y) and
Ih(x, y) are band-pass, the amplitude a2(x, y) is a low-pass image. To check this it is inter-
esting to compute the Fourier transform of a2(x, y).

Consider the bandpass filter, f (x, y), with Fourier transform F(u, v). We can write F(u, v)
as the sum of two functions F+(u, v) and F−(u, v) so that F+(u, v) = 0 for nT · (ωx, ωy) < 0
and F−(u, v) = 0 for nT · (ωx, ωy) > 0. If f (x, y) is even symmetric then we have that
F+(u, v) = F−(−u,−v), for instance the cosine phase Gabor filter. This decomposition is
illustrated in figure 1.31.a. If the Fourier transform of I f (x, y) is I f (u, v), then the Fourier
transform of I2

f (x, y) is I f (u, v) ◦ I f (u, v). Then the Fourier transform of I2
f (x, y) is:

I f ◦ I f = I(F+ + F−) ◦ I(F+ + F−) = IF+ ◦ IF+ + IF− ◦ IF− + 2IF+ ◦ IF− (1.65)

If h(x, y) is the Hilbert transform of f (x, y), then H(u, v) = j (F+(u, v) − F−(u, v)), as illus-
trated in figure 1.31.b. The Fourier transform of I2

h (x, y) is:

Ih ◦ Ih = jI(F+ − F−) ◦ jI(F+ − F−) = −IF+ ◦ IF+ − IF− ◦ IF− + 2IF+ ◦ IF− (1.66)

Note that if IF+ is centered around the frequency (u0, v0), then (IF) ◦ (IF) is centered
around (2u0, 2v0). Also, (IF+) ◦ (IF−) is centered around the frequency (0, 0). This is
shown in figures 1.31.b and d.

The Fourier transform of the local amplitude a2(x, y) = I2
f + I2

h is:

I f ◦ I f + Ih ◦ Ih = 4IF+ ◦ IF− (1.67)

Eq. (1.67) reveals that a2(x, y) is a low-pass signal, as shown shown in figure 1.31.e.
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Figure 1.31
Sketch of the derivation of the Fourier transform of the local amplitude. a) frequency response of
even filter f , b) a) frequency response of odd filter h, c) Fourier transform of f 2, d) Fourier transform
of h2, e) Fourier transform of a2 = f 2 + h2

1.4.3 Local phase
The local phase is

θ(x, y) = ∠
[
I f (x, y) + jIh(x, y)

]
(1.68)

where θ(x, y) is the instantaneous phase (local phase).
For oriented, spatial filters, cycling through the phase of the quadrature pair of filters can

generate motion along the direction of the phase change.

1.4.4 Gabor filter bank
As shown in fig. 1.26, 2D Gabor filters are selective in spatial frequency. It is very useful to
work with sets of Gabor filters, each selective to a different spatial frequency. Figure 1.32
shows two different arrangements of Gabor filters. Figure 1.32.a shows a set of Gabor
filters sampling the frequency domain using a rectangular grid. Figure 1.32.c shows the
corresponding (cosine) Gabor kernels. All the functions have the same σ. Figure 1.32.b
shows a polar arrangement of Gabor functions, and Figure 1.32.d the spatial kernels. Here,
the Gaussian width σ is proportional to the distance between the central frequency and the
origin. This produces filters that are rotated and scaled versions of each other.

If we write in detail the convolution from eq. 1.57 we can see that the convolution with a
Gabor function is like doing a Fourier transform of the image after applying to it a Gaussian
window:

f (x, y, u, v) =

"
I
(
x′, y′

)
ψ(x − x′, y − y′; u, v) dx′dy′ =

=

"
I
(
x′, y′

)
g(x − x′, y − y′) exp

(
2π j

(
u(x − x′) + v(y − y′)

))
dx′dy′ =
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Figure 1.32
Examples of Gabor sets.
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if we extract the term that does not depend on (x′, y′) and we also use the symmetry of the
Gaussian window, we get

= exp (2π j (ux + vy))
"

I
(
x′, y′

)
g(x′ − x, y′ − y) exp

(
−2π j

(
ux′ + vy′

))
dx′dy′ (1.69)

The analogous to the Fourier transform is obtained when we vary the central frequency of
the Gabor function (u, v). The Gabor transform is not self inverting.

1.5 Steerable filters and orientation analysis

One question that arises with oriented filters is how to change their orientation. More
precisely, what we want is, given a filter f (x, y), we want to transform it into a continuous
function f (x, y, θ) of angle θ. The angle θ specifies the rotation of the original filter f (x, y).

In the case of the Gabor filters (eq. 1.53), each orientation requires convolving the image
with a Gabor function tuned to that orientation. But do we need to create a new Gabor
function for each orientation, or can we interpolate between a fixed number of predefined
oriented filter outputs? How many orientations need to be sampled?

We’d like an analog in orientation for the Nyquist sampling theorem in space: given a
certain number of discrete samples in orientation (or space), can one interpolate between
the samples and synthesize what would have been found from having a filter (or a spatial
sample) at some arbitrary, intermediate orientation? The answer is yes, and the number of
filter samples needed to interpolate depends on the form of the filter.

From section ??, we described the simplest example of an oriented filer: a gaussian
derivative. As we discussed in eq. ??, we can synthesize a directional derivative in any
direction as a linear combination of derivatives in the horizontal and vertical directions.
By the linearity of convolution, that applies to the derivative applied to any filter or image,
as well. It can be seen that the “steering equation” for the first derivative of a Gaussian
filter is

gx(x, y, θ) = cos(θ)gx(x, y) + sin(θ)gy(x, y) (1.70)

where gx and gy are the Gaussian derivatives along x and y, and gx(x, y, θ) is the derivative
along the direction defined by the angle θ. The interpolation functions are k1(θ) = cos(θ)
and k2(θ) = sin(θ).

In fact, all higher order Gaussian derivatives have the same property but the number
of basis filters changes. For instance, for second order Gaussian derivatives, the steering
equation is:

gx,x(x, y, θ) = gxx(cos(θ)x − sin(θ)y, sin(θ)x + cos(θ)y) =

= cos2(θ)gxx(x, y) + sin2(θ)gyy(x, y) − 2 cos(θ) sin(θ)gxy(x, y)
(1.71)

To interpolate the derivative along any orientation requires three basis filters and the inter-
polation functions are: k1(θ) = cos2(θ), k2(θ) = sin2(θ), and k3(θ) = −2 cos(θ) sin(θ). The
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Figure 1.33
The simplest steerable filters: a 1st order derivative filter of any orientation can be synthesized from
a linear combination of two basis filter derivatives. The 2nd order derivative needs three basis.
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Figure 1.34
Architecture for steerable filters.

minus sign in k3 is due to the positive direction of θ to be counter-clockwise. Figure 1.33
shows examples for the 1st and 2nd order Gaussian derivatives.

This leads to an architecture for processing images with oriented steerable filters shown
in figure 1.34. The input images pass through a set of “basis filters”, then the outputs of
those filters are modulated with a set of “gain maps” (which can be different at each pixel).
Those gain maps adjust the linear combinations of the basis filters to allow the input filter
to be steered to the desired orientations at each position.

In the case of oriented Gabor filters it is not possible to reconstruct exactly any filter
orientation by interpolating filter responses. It is interesting to study the conditions in
which interpolation gives exact results.
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1.5.1 Steering theorem
Let’s make the previous observation more precise and general. How many basis filters does
it take to steer any given filter? You could imagine that will depend on how sharply oriented
the filter is. A circularly symmetric filter takes just one basis function to synthesize all other
orientation responses, and a very narrow filter will take quite a few. This is quantified by
steering theorems.

Lets consider a filter with impulse response f (x, y). For convenience, it is better to write
the filter response in polar coordinates, f (r, φ) The “steering condition” is the requirement
that the rotated filter, f (r, φ − θ), be a linear combination of a set of basis filters which are
rotated versions of itself, f (r, φ − θm) with m ∈ (1,M). The steering condition is:

f (r, φ − θ) =

M∑
m=1

km(θ) f (r, φ − θm). (1.72)

If we express the filter to be steered as a Fourier series in angle (using complex exponen-
tials for notational convenience), we have

f (r, φ) =

N∑
n=−N

an(r) exp ( jnφ) (1.73)

Substituting Eq. (1.73) into Eq. (1.72), we have an equation for the interpolation func-
tions, k j(θ). The steering condition, Eq. (1.72), holds for functions expandable in the form
of Eq. (1.73) if and only if the interpolation functions k j(θ) are solutions of:

1
exp( jθ)
. . .

exp( jNθ)

 =


1 1 . . . 1

exp( jθ1) exp( jθ2) . . . exp( jθM)
...

...
...

...

exp( jNθ1) exp( jNθ2) . . . exp( jNθM)




k1(θ)
k2(θ)
...

kM(θ)

 . (1.74)

Let’s check this for a simple example. Our derivative of a gaussian filter (eq. ??) is x
times a Gaussian. When changing to polar coordinates x = r cos(θ), which gives an an-
gular distribution times a radially symmetric Gaussian, g(r), when written in polar coordi-
nates. This requires two complex exponentials to write (to create the cos(θ) from complex
exponentials) and thus requires two basis functions to steer.

Sometimes its more convenient to think of the filters as polynomials times radially sym-
metric window functions (this is the case for high-order Gaussian derivatives). Then you
can show Freeman and Adelson (1991) that for an Nth order polynomial with even or odd
symmetry N+1 basis functions are sufficient.

Although everything has been derived in the continuous domain, steerability is a property
that still holds after sampling the filter function. This is because spatial sampling and
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Figure 1.35
Quadrature pair, gxx [n,m] and hxx [n,m], and its Fourier transform. The filters are sampled in space
and cropped into a window of 13 × 13 pixels. The DFT is computed by zero padding to 256 × 256
pixels. a) gxx is even phase; b) hxx is odd phase. c) The sum of their squares reveals the square of
their Gaussian envelopes. d) The plot shows a section of the magnitude of their Fourier transforms
for v = 0. hxx is a sampled 3rd order polynomial approximation to the Hilbert transform of gxx, so
their power spectra may not be exactly the same). In blue it is shown the magnitude of the analytic
filter gxx + jhxx. It has double amplitude, and the content for negative frequencies is close to zero.

steerability are interchangeable: the weighted sum of spatially sampled function is equal
to the spatial sampling of the same weighted sum of continuous basis functions.

For computational efficiency, it’s more convenient to have the basis filters all be x-y
separable functions. In many cases, it’s straightforward to find such basis functions, and
where it’s not, there are simple numerical methods to find the best fitting x-y separable
basis set. See for example ?.

1.5.2 Steerable quadrature pairs
As in the case of Gabor filters, it is useful to build quadrature pairs of steerable filters.
Steerable-quadrature filters allow for arbitrary shifts both in orientation and in phase. We
can design such filters. For instance, let’s consider the second order derivatives of a Gaus-
sian with σ2 = 1/2 and normalized so that the integral over all the space of its squared
magnitude equals 1:

gxx(x, y) = 0.9213(2x2 − 1) exp
(
−(x2 + y2)

)
gxy(x, y) = 1.843(xy) exp

(
−(x2 + y2)

)
gyy(x, y) = 0.9213(2y2 − 1) exp

(
−(x2 + y2)

) (1.75)
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a) b)

c) d)

Figure 1.36
(a) Second derivative of Gaussian, x-y separable steerable basis set. c) Non-separable basis spanning
the same space as the filters of (a). b) Approximation to Hilbert transform of second derivative of
Gaussian, x-y steerable basis set. (d) Non-separable basis set spanning the same space as the filters
of (b).

It is possible to get a good approximation to its Hilbert transform using a Gaussian times a
third order odd polynomial. The approximation to the Hilbert transform of gxx(x, y) is:

hxx(x, y) = −0.9780(−2.254x + x3) exp
(
−(x2 + y2)

)
(1.76)

gxx(x, y) and its Hilbert transform hxx(x, y) have the same spectral content, but the oppo-
site phase. Figure. 1.35 analyzes the quality of the approximation. The figure shows the
quadrature pair, gxx and hxx, sampled in space and cropped into a window of 13×13 pixels.

To steer hxx(x, y) to an angle θ, this approximation requires 4 basis functions, and not just
3 as for the 2nd order derivative of a Gaussian. The other three functions needed are:

h2(x, y) = −0.9780(−0.7515 + x2)y exp
(
−(x2 + y2)

)
h3(x, y) = −0.9780(−0.7515 + y2)x exp

(
−(x2 + y2)

)
h4(x, y) = −0.9780(−2.254y + y3) exp

(
−(x2 + y2)

) (1.77)

These functions have been optimized in order to be x-y separable. The basis function for
steerability are not unique. For instance, figure 1.36.a and 1.36.c show two basis functions
that span all rotations of gxx. Figure 1.36.a has separable filters corresponding to gxx, gxy

and gyy, and figure 1.36.c shows three rotated versions of gxx at 0, 60 and 120 degrees.
Figure 1.36.b and 1.36.d show two basis functions that span all rotations on hxx. Spatial
scaling of the filters will result in changing σ.

Putting it all together, can we compute oriented energy as a function of angle, for all
angles, just from the 7 basis filter responses shown in Figure 1.36.

E(x, y, θ) = gxx(x, y, θ)2 + hxx(x, y, θ)2 (1.78)
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a) b)

Figure 1.37
(Polar plots of orientation energy as a function of angle, computed using gxx, hxx filters. a) Note
the non-superposition of orientated energies near the junction of the two lines. b) Spatially blurring
the oriented energy components of the filters results in much improved linear superposition of the
orientation plots, removing spurious interference terms, as described in the text.

From the basis filter responses we can form polar plots of the oriented energy as a func-
tion of angle, Fig. 1.37. Note some strange goings on at intersections using the gxx, hxx

filters. You might think this was a result of simply not enough angular resolution from those
filters, and indeed using 4th order gaussian derivatives and its quadrature pair doesn’t suf-
fer from that problem. But actually the gxx, hxx filters do have enough angular resolution,
and the issue is a more subtle one.

When there are two oriented structures within the passband of the quadrature pair filters,
the sum of the energies of the individual structures is not the same as the energy of the
sum of the structures. Because we’re squaring to find the energies, the combination of
multiple structures isn’t linear. As the figure 1.37.a shows, when there are two oriented
structures within the passband, when the filter responses are squared, the convolution in
the Fourier domain picks up extra cross-terms from the one oriented structure interacting
with the other, in addition to the desired term from simply squaring all the frequency
responses individually within the passband. These cross terms show up as spurious spatial
frequencies in the energy term, and we can get rid of them by spatially low-pass filtering
the squared oriented energy responses. Using the blurred squared basis filter responses, we
get much cleaner oriented energy as a function of angle plots, even with the gxx, hxx filters
in the junctions, Fig. 1.37.b.

Fig. 1.38 shows two examples on real images.
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a) b)

Figure 1.38
Polar plots of orientation energy as a function of angle, computed using gxx, hxx filters in two images.

We can also make steerable filters in 3 dimensions, allowing us to analyze medical volu-
metric data, or to spatio-temporal volumes to measure image motion.

1.6 Non-linear spatial filters

In this section we have exclusively focused on linear filters. Non-linear filters are hard to
characterize and the number of possibilities is endless. But there are a number of non-
linear filters that are closely related to some of the linear filters we have seen before and it
is worth studying them here.

1.6.1 Bilateral filtering
- bilateral filtering: related to gaussian filtering

- do small perturbation analysis

1.6.2 Local contrast enhancement
- local contrast enhancement

1.7 Conclusion

In this chapter we have talked about:

• Signals, images
• Representations in the Space and frequency domain
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Important topics that we have not described:

• We have not gone in detail in recursive filters. Maybe we should add another example in
the temporal domain?

• We have not described how to connect difference equations and the transfer function of
a system.

• We have not described how to analyze the stability of recursive systems.
• Feedback and feedforward systems



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 23, 2018 3:57pm



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 23, 2018 3:57pm

Bibliography

Freeman, W. T., and E. H. Adelson. 1991. The design and use of steerable filters. IEEE Pat. Anal.
Mach. Intell. 13 (9): 891–906.



MITPress NewMath.cls LATEX Book Style Size: 7x9 September 23, 2018 3:57pm


